Experimental Production of Anti-Membrane Bound Variable

Total Page:16

File Type:pdf, Size:1020Kb

Experimental Production of Anti-Membrane Bound Variable Research Article 2020 iMedPub Journals Stroke Research and Therapy www.imedpub.com Vol.4 No.2:2 Experimental Production of Anti-membrane Reymick Okwong-Oketch1, Julius Nsubuga2, Peter Bound Variable Surface Glycoglycoprotein Ayebare2, Zachary Nsadha2, (Anti-VSGm) Antibodies forin vitro and in George William Lubega 2 and situ Immunostaining of Pathogenic African Ann Nanteza2* Abstract Background: The variant surface glycoprotein (VSG) of the African trypanosomes 1College of Humanities and Socio- is the major membrane protein of the plasma membrane of the bloodstream sciences, Makerere University, Kampala, stage of the parasite. African trypanosomiasis (sleeping sickness in humans and Uganda nagana in animals) is caused by the systemic infection of the host by several sub- species of the extracellular haemoflagellate protozoa under genus Trypanosoma. As a defense barrier against the host immune response, the entire surface of the 2College of Veterinary Medicine, Animal bloodstream form of trypanosome is covered with densely packed molecules of Resources and Biosecurity, Makerere VSG that determines the antigenic phenotype of the parasite. Variant surface University, Kampala, Uganda glycoprotein has a C-terminal domain that is highly conserved in various species of trypanosomes. Methods: The membrane bound VSG (VSGm) protein was prepared without *Corresponding author: Ann Nanteza, denaturing the homologous region and by including numerous variable antigen College of Veterinary Medicine, Animal types from Trypanosoma brucei brucei parasites. The purified VSGm native Resources and Biosecurity, Makerere trypanosome protein was used to produce anti-VSGm immune sera in rabbits. The University, Kampala, Uganda, E-mail: indirect immunofluorescence assay (IFA) was used to detect trypanosomes from [email protected], Tel: +256 mice blood, artificial culture media and cattle histological sections. 772443584 Results: The resultant immune sera were able to detect different strains and species of African trypanosomes from in vivo and in situ sources after immunostaining. Anti-VSGm antibodies also demonstrated a unique property to Citation: Okwong-Oketch R, Nsubuga J, locate trypanosomes within the histological tissues even after the trypanosome’s Ayebare P, Nsadha Z, Lubega GW, et al. (2020) morphology had been distorted. Experimental Production of Anti-membrane Bound Variable Surface Glycoglycoprotein Conclusion: The produced immune sera can be utilized for immunohistochemistry (anti-VSGm) Antibodies for in vitro and in Trypanosoma to detect species in various fluids and tissues. situ Immunostaining of Pathogenic African Keywords: Trypanosome; Variable surface glycoprotein; Immunostaining; Antibodies; Stroke. Res Ther Vol.4 No.2. DOI: 10.36648/ Bloodstream stroke.4.2.2 Received: September 11, 2020; Accepted: October 05, 2020; Published: October 12, 2020 Introduction protein content and numbers of lymphocytes are found in the cerebrospinal fluid (CSF) [5]. African trypanosomiasis results from systemic infection of the mammalian host by several sub-species of the extracellular The drugs widely used in the treatment of second-stage hemoflagellate of the genus Trypanosoma. The parasites are HAT are highly toxic [6,7], therefore, both diagnosis and staging mainly transmitted by a bite of the blood-sucking tsetse fly of of the disease must be highly accurate as a correct diagnosis the genus Glossina [1], and after the initial skin infection, they is beneficial for both infected individuals and the community multiply extracellularly [2] by binary fission in the bloodstream, [8]. Diagnosis of trypanosomes follows a three-step pathway lymph and interstitial fluids [3], then spread via the lymph (screening, diagnostic confirmation and staging). Diagnostic and blood circulation within the host [4]. Human African confirmation mostly relies on identification of trypanosomes trypanosomiasis (HAT) in divided into an early hemolymphatic in the blood, lymph nodes or CSF. However, the standard stage, in which the parasites are confined to the blood and lymph, parasitological techniques available miss up to 30% of patients and a late encephalitic stage, in which T. brucei and increased [9]. Staging allows classification of HAT into the hemolymphatic © Under License of Creative Commons Attribution 3.0 License | This article is available in: https://stroke.imedpub.com/ 1 Stroke ResearchARCHIVOS and DE TherapyMEDICINA 2020 ISSN 1698-9465 Vol.4 No.2:2 or meningo-encephalitic stage but because of the absence of Experimental animals and trypanosome stocks reliable blood tests able to detect central nervous system (CNS) All the experimental animals were purchased from the invasion by the parasite, staging relies on the CSF examination COVAB, Small Animal Laboratory Experimental Unit, Makerere [8]. According to Kennedy [10] there is no consensusas to what University,Kampala, Uganda. Twelve (12) weeks old Albino exactly defines a biologically CNS disease or what specific CSF rats and four weeks old Albino mice were used to propagate findings should justify drug therapy for late-stage involvement trypanosomes. Fourteen [14] weeksold New Zealand White yet diagnosis of the CNS involvement is crucial in order to give an rabbits were used to produce anti-VSG immune sera following appropriate treatment regimen. their immunization by the purified VSGm native trypanosome Trypanosomes have a complex antigenic structure and protein. All control animals were sex and age-matched with elicit the production of a large spectrum of antibodies. Variant test animals in the immunization protocol. Trypanosome surface glycoprotein (VSG) is specific to trypanosomes thus anti- stabilates made from T. b. brucei UTRO 010291B, obtained from VSG antibodies that are able to stain various strains and/or species Molecular Biology Laboratory, Makerere University, Kampala, of trypanosomes would be very significant in mass screening and Uganda, courtesy of Prof. Enock Matovu were used for parasite staging of human trypanosomiasis. Such antibodies would for propagation leading to VSG protein extraction. Frozen stabilates example be coated on plates and be used for mass screening, had been prepared as described by [14]. detecting recently released VSG or trypanosomes in blood. This could reduce on incidences of false positives and false negatives Propagation of trypanosoma brucei brucei utro common in the card antigen test for Trypanosoma brucei 010291b in mice gambiense (CATT/T. b. gambiense) [11], but also reduce on time All experimental infections for parasite propagations were lag between sampling and examination to avoid immobilization made after at least one mouse passage from frozen stabilate and subsequent lysis of trypanosomes in the samples. to revitalize the trypanosomes. Mice were always infected by Microscopic examination of lymph node aspirate, blood intraperitoneal injections of 1 × 104 trypanosomes in 200 µl of or CSF provides direct evidence for trypanosome infections. Phosphate Saline Glucose (PSG) buffer. The trypanosomes were However, most of the available parasite detection methods would propagated in three [3] mice and parasitaemia monitored daily not detect the parasites if their number is below the detection by wet preparations from tail blood and its levels determined by limit of 100 trypanosomes/ml [12]. Anti-VSG antibodies, however, Matching method [15]. can detect even small amounts of the VSG protein in released or soluble form, thus could be used to supplement the current Purification oftrypanosoma brucei brucei parasites methods used in microscopic examination, especially of CSF from whole blood obtained by lumbar puncture during disease staging in HAT. This This was done by chromatography using diethylaminoethyl could allow detecting VSG protein in CSF even after ten minutes (DEAE)-cellulose (Sigma Aldrich, Germany); regenerated of sample collection in which trypanosomes begin to lyse [8], according to manufacturer’s protocol and packed into a column but also promote sensitivity of trypanosome detection in CSF (50 ml syringe) using the gravity flow, then equilibrated using at less time, unlike the double centrifugation method which is PSG buffer until the effluent was pH 8. The rats were sacrificed time consuming and requires two centrifuges [8,13]. This study when the parasitemia was high (108.2-108.4 trypanosomes/ml of produced anti-VSG immune sera in rabbits that could be used to blood) and blood was drawn by cardiac puncture into 8 ml EDTA stain heterologous strains and species of African trypanosomes in vacutainer tubes. The EDTA blood was loaded into the column vitro and in situ. and the components allowed to flow into the DEAE cellulose. Then 1x PSG (pH 8) buffer was continuously added to the column Methods until all the trypanosomes had passed through it as determined Ethics statement and considerations by checking the effluent microscopically at intervals. An aliquot (10 µl) was used to count the number of trypanosomes in the The study was carried out in accordance with the recommendations effluent using a Neubauer haemocytometer. The effluent was in the Standard Operating Procedures (SOPs) of experimental then centrifuged at 3500 revolutions per minute (rpm) for twenty animal care of the College of Veterinary Medicine, Animal minutes, the supernatant was poured off and the mass/weight Resources and Biosecurity (COVAB), Makerere Universit and of the pellet determined. The pellets were snapping frozen and adequate consideration of the 3R's (Replacement
Recommended publications
  • (2016) Prevalence and Associations of Trypanosoma Spp. and Sodalis Glossinidius with Intrinsic Factors of Tsetse Flies
    Wongserepipatana, Manun (2016) Prevalence and associations of Trypanosoma spp. and Sodalis glossinidius with intrinsic factors of tsetse flies. PhD thesis. http://theses.gla.ac.uk/7537/ Copyright and moral rights for this thesis are retained by the author A copy can be downloaded for personal non-commercial research or study This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the Author The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the Author When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given Glasgow Theses Service http://theses.gla.ac.uk/ [email protected] Prevalence and associations of Trypanosoma spp. and Sodalis glossinidius with intrinsic factors of tsetse flies Manun Wongserepipatana This thesis is submitted in part fulfilment of the requirements for the Degree of Doctor of Philosophy. Institute of Biodiversity, Animal Health and Comparative Medicine College of Medical, Veterinary and Life Sciences University of Glasgow August 2016 Abstract Trypanosomiasis has been identified as a neglected tropical disease in both humans and animals in many regions of sub-Saharan Africa. Whilst assessments of the biology of trypanosomes, vectors, vertebrate hosts and the environment have provided useful information about life cycles, transmission, and pathogenesis of the parasites that could be used for treatment and control, less information is available about the effects of interactions among multiple intrinsic factors on trypanosome presence in tsetse flies from different sites. It is known that multiple species of tsetse flies can transmit trypanosomes but differences in their vector competence has normally been studied in relation to individual factors in isolation, such as: intrinsic factors of the flies (e.g.
    [Show full text]
  • The Life Cycle of Trypanosoma (Nannomonas) Congolense in the Tsetse Fly Lori Peacock1,2, Simon Cook2,3, Vanessa Ferris1,2, Mick Bailey2 and Wendy Gibson1*
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by PubMed Central Peacock et al. Parasites & Vectors 2012, 5:109 http://www.parasitesandvectors.com/content/5/1/109 RESEARCH Open Access The life cycle of Trypanosoma (Nannomonas) congolense in the tsetse fly Lori Peacock1,2, Simon Cook2,3, Vanessa Ferris1,2, Mick Bailey2 and Wendy Gibson1* Abstract Background: The tsetse-transmitted African trypanosomes cause diseases of importance to the health of both humans and livestock. The life cycles of these trypanosomes in the fly were described in the last century, but comparatively few details are available for Trypanosoma (Nannomonas) congolense, despite the fact that it is probably the most prevalent and widespread pathogenic species for livestock in tropical Africa. When the fly takes up bloodstream form trypanosomes, the initial establishment of midgut infection and invasion of the proventriculus is much the same in T. congolense and T. brucei. However, the developmental pathways subsequently diverge, with production of infective metacyclics in the proboscis for T. congolense and in the salivary glands for T. brucei. Whereas events during migration from the proventriculus are understood for T. brucei, knowledge of the corresponding developmental pathway in T. congolense is rudimentary. The recent publication of the genome sequence makes it timely to re-investigate the life cycle of T. congolense. Methods: Experimental tsetse flies were fed an initial bloodmeal containing T. congolense strain 1/148 and dissected 2 to 78 days later. Trypanosomes recovered from the midgut, proventriculus, proboscis and cibarium were fixed and stained for digital image analysis.
    [Show full text]
  • České Budějovice BSP Trypanosomiasis & Leishmaniasis
    České Budějovice BSP Trypanosomiasis & Leishmaniasis Seminar 2016 BIOLOGY CENTRE CAS Czech Academy of Sciences INSTITUTE1 OF PARASITOLOGY University of South Bohemia Two routes from the town centre to the campus The Campus Canteen for Lunch Student Accommodation Bus Stop no. 3 from Railway St. BSP meeting venue Bus Stop no. 3 to Railways St. 2 Dear friends, We are happy to welcome you at the Trypanosomiasis and Leishmaniasis Seminar of the British Society for Parasitology held in České Budějovice, the “capital” of South Bohemia. More of you signed up for it than we expected, which is great and shows that the interest in our favorite protists is not waning. The meeting is organized by the Institute of Parasitology and will be held at the Biology Centre, both part of the Czech Academy of Sciences. The conference site is located on the outskirts of the city (about 90,000 inhabitants), walking distance from the historical centre (~ 25 minutes walk) and is well connected by public transportation. The program will be quite intense, following the traditional single session policy, but there will be enough time for discussions, social events and a party at a chateau just for us. The organizers will do all they can to ensure this is an enjoyable meeting for all of you, and please feel free to contact us with any questions. We look forward to meeting you all during the conference. Best wishes, Julius Lukeš 3 Sunday (September 4) (3:00-5:00) program _____________________________ 5 Plenary (7:00 – 7:40 PM) _______________________________________________________
    [Show full text]
  • Identification of Different Trypanosome Species in the Mid-Guts of Tsetse
    Simo et al. Parasites & Vectors 2012, 5:201 http://www.parasitesandvectors.com/content/5/1/201 RESEARCH Open Access Identification of different trypanosome species in the mid-guts of tsetse flies of the Malanga (Kimpese) sleeping sickness focus of the Democratic Republic of Congo Gustave Simo1*, Barberine Silatsa1, Njiokou Flobert2, Pascal Lutumba3, Philemon Mansinsa4, Joule Madinga3, Emile Manzambi5, Reginald De Deken6 and Tazoacha Asonganyi7 Abstract Background: The Malanga sleeping sickness focus of the Democratic Republic of Congo has shown an epidemic evolution of disease during the last century. However, following case detection and treatment, the prevalence of the disease decreased considerably. No active survey has been undertaken in this focus for a couple of years. To understand the current epidemiological status of sleeping sickness as well as the animal African trypanosomiasis in the Malanga focus, we undertook the identification of tsetse blood meals as well as different trypanosome species in flies trapped in this focus. Methods: Pyramidal traps were use to trap tsetse flies. All flies caught were identified and live flies were dissected and their mid-guts collected. Fly mid-gut was used for the molecular identification of the blood meal source, as well as for the presence of different trypanosome species. Results: About 949 Glossina palpalis palpalis were trapped; 296 (31.2%) of which were dissected, 60 (20.3%) blood meals collected and 57 (19.3%) trypanosome infections identified. The infection rates were 13.4%, 5.1%, 3.5% and 0.4% for Trypanosoma congolense savannah type, Trypanosoma brucei s.l., Trypanosoma congolense forest type and Trypanosoma vivax, respectively.
    [Show full text]
  • ILRI Animal Care and Use Manual Second Edition
    ILRI animal care and use manual Second edition August 2021 ILRI animal care and use manual Table of contents Preface to the second edition ...................................................................................................................... vii Introduction to the first edition .................................................................................................................. viii Standard operating procedures (SOPs) by species .................................................................................. 1 1.Avian ......................................................................................................................................................... 1 1.1 Avian Influenza – collecting pathological samples for avian influenza virus diagnosis ........................ 1 1.2 Avian Influenza - necropsy of bird’s carcasses for avian influenza ..................................................... 5 2.Bat ............................................................................................................................................................. 9 2.1 Zoonoses - Procedure for anaesthesia with isoflurane (duplicated on 8.21) .................................... 9 2.2 Zoonoses - Animal bites from field collections in Busia, western Kenya. ....................................... 11 2.3 Zoonoses - Capture of bats for sample collection in Busia, western Kenya .................................. 15 2.4 Zoonoses - Procedure for euthaniasia with isoflurane ...................................................................
    [Show full text]
  • Trypanosomatids: Odd Organisms, Devastating Diseases
    30 The Open Parasitology Journal, 2010, 4, 30-59 Open Access Trypanosomatids: Odd Organisms, Devastating Diseases Angela H. Lopes*,1, Thaïs Souto-Padrón1, Felipe A. Dias2, Marta T. Gomes2, Giseli C. Rodrigues1, Luciana T. Zimmermann1, Thiago L. Alves e Silva1 and Alane B. Vermelho1 1Instituto de Microbiologia Prof. Paulo de Góes, UFRJ; Cidade Universitária, Ilha do Fundão, Rio de Janeiro, R.J. 21941-590, Brasil 2Instituto de Bioquímica Médica, UFRJ; Cidade Universitária, Ilha do Fundão, Rio de Janeiro, R.J. 21941-590, Brasil Abstract: Trypanosomatids cause many diseases in and on animals (including humans) and plants. Altogether, about 37 million people are infected with Trypanosoma brucei (African sleeping sickness), Trypanosoma cruzi (Chagas disease) and Leishmania species (distinct forms of leishmaniasis worldwide). The class Kinetoplastea is divided into the subclasses Prokinetoplastina (order Prokinetoplastida) and Metakinetoplastina (orders Eubodonida, Parabodonida, Neobodonida and Trypanosomatida) [1,2]. The Prokinetoplastida, Eubodonida, Parabodonida and Neobodonida can be free-living, com- mensalic or parasitic; however, all members of theTrypanosomatida are parasitic. Although they seem like typical protists under the microscope the kinetoplastids have some unique features. In this review we will give an overview of the family Trypanosomatidae, with particular emphasis on some of its “peculiarities” (a single ramified mitochondrion; unusual mi- tochondrial DNA, the kinetoplast; a complex form of mitochondrial RNA editing; transcription of all protein-encoding genes polycistronically; trans-splicing of all mRNA transcripts; the glycolytic pathway within glycosomes; T. brucei vari- able surface glycoproteins and T. cruzi ability to escape from the phagocytic vacuoles), as well as the major diseases caused by members of this family.
    [Show full text]
  • African Animal Trypanosomiasis
    African animal trypanosomiasis PART I. DISEASE AND CHEMOTHERAPY P. FlNELLE * This is the first of three articles on African animal trypanosomiasis by Dr. Pierre Finelle, who has spent many years in Africa studying this parasitic disease. This first part describes the disease and its occurrence, and the drugs that have been introduced to combat it and their relative merits. The second part will deal with chemoprophylaxis and the raising of trypano-tolerant livestock, while the third and last article will review vector control as a means of overcoming trypanosomiasis. Trypanosomiasis is a parasitic disease caused by species of flagellate protozoa belonging to the genus Try- panosoma which inhabit the blood plasma and various body tissues and fluids. These parasites are found in many animals but seem to be pathogenic only for mammals, including man. Animal trypanosomiasis occurs in most of the tropical regions, but only in equatorial Africa does it constitute a major obstacle to the development of animal production. The considerable economic and social repercussions make control of this disease a priority operation for the development of a large part of the African continent. Trypanosomes African animal trypanosomiasis can be caused by several species of trypanosomes: Trypanosoma congolense is found in most domestic mammals: cattle, sheep, goats, horses, pigs, camels and dogs; and also in many wild animals (Figure 1). T. vivax is a parasite of domestic and wild ruminants and of horses. T. simiae is found mainly in domestic and wild pigs. T. brucei is a parasite very close to T. gambiense and T. rhodesiense, which are the causes of human sleeping sickness.
    [Show full text]
  • Download Full
    A1289E-Frontespizio:Layout 5 10-03-2008 12:48 Pagina 1 The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. All rights reserved. Reproduction and dissemination of material in this information product for educational or other non-commercial purposes are authorized without any prior written permission from the copyright holders provided the source is fully acknowledged. Reproduction of material in this information product for resale or other commercial purposes is prohibited without written permission of the copyright holders. Applications for such permission should be addressed to: Chief Electronic Publishing Policy and Support Branch Communication Division FAO Viale delle Terme di Caracalla, 00153 Rome, Italy or by e-mail to: [email protected] © FAO 2008 Tsetse and Trypanosomiasis Information Volume 30 Part 2, 2007 Numbers 14165–14340 Tsetse and Trypanosomiasis Information TSETSE AND TRYPANOSOMIASIS INFORMATION The Tsetse and Trypanosomiasis Information periodical has been established to disseminate current information on all aspects of tsetse and trypanosomiasis research and control to institutions and individuals involved in the problems of African trypanosomiasis.
    [Show full text]
  • Iron Chelation and Its Failure During the Progression Of
    IRON BEHAVING BADLY: INAPPROPRIATE IRON CHELATION AS A MAJOR CONTRIBUTOR TO THE AETIOLOGY OF VASCULAR AND OTHER PROGRESSIVE INFLAMMATORY AND DEGENERATIVE DISEASES Douglas B. Kell School of Chemistry and Manchester Interdisciplinary Biocentre, The University of Manchester, 131 Princess St, MANCHESTER M1 7DN, UK [email protected] www.dbkgroup.org www.mcisb.ac.uk Background and preamble This is an unusual experiment in the Open Access scientific publication of a longish pre-print. Its story is as follows. (The Table of Contents is on p3.) While visiting Columbia University to present a seminar in May 2007, I met Jon Barrasch, who described, and got me interested in, his work on NGAL and kidney disease. We discussed some ideas for experiments. On my return, I started reading into this literature to do my homework, found it fascinating, started making notes, and eventually determined that: • many of the features of kidney disease were replicated in a great many other diseases • the literatures of these different diseases barely overlapped but there were clear themes, such as oxidative stress and inflammation, that were common to them • when one looked for additional evidence of a contribution of poorly liganded iron to this oxidative stress there was in many case a considerable literature pointing up its involvement • even when I thought I had trawled the literature exhaustively I continued (and still continue) to find highly pertinent papers, even papers in major journals that have been cited many times; this problem is exacerbated by the fact that most journals restrict the number of citations • this ‘balkanisation’ of the literature is also in part due to the amount of it (some 25,000 journals with presently 2.5 million peer-reviewed papers per year, i.e.
    [Show full text]
  • The Glossina Genome Cluster: Comparative Genomic Analysis of the Vectors of African
    bioRxiv preprint doi: https://doi.org/10.1101/531749; this version posted January 27, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 The Glossina Genome Cluster: Comparative Genomic Analysis of the Vectors of African 2 Trypanosomes 3 Authorship: 4 Geoffrey M. Attardo, ([email protected]) *22; Adly M.M. Abd-Alla, (a.m.m.abd- 5 [email protected])13; Alvaro Acosta-Serrano, ([email protected])16; James E. 6 Allen, ([email protected])6; Rosemary Bateta, ([email protected])2; Joshua B. Benoit, 7 ([email protected])24; Kostas Bourtzis, ([email protected])13; Jelle Caers, 8 ([email protected])15; Guy Caljon, ([email protected])21; Mikkel B. Christensen, 9 ([email protected])6; David W. Farrow, ([email protected])24; Markus Friedrich, 10 ([email protected])33; Aurélie Hua-Van, ([email protected])5; Emily C. 11 Jennings, ([email protected])24; Denis M. Larkin, ([email protected])19; Daniel Lawson, 12 ([email protected])10; Michael J. Lehane, ([email protected])16; Vasileios 13 P. Lenis, ([email protected])30; Ernesto Lowy-Gallego, ([email protected])6; 14 Rosaline W. Macharia, ([email protected], [email protected])27,12; Anna R. Malacrida, 15 ([email protected])29; Heather G. Marco, ([email protected])23; Daniel Masiga, 16 ([email protected])12; Gareth L. Maslen, ([email protected])6; Irina Matetovici, 17 ([email protected])11; Richard P.
    [Show full text]
  • Tripartite Interactions Between Tsetse Flies, Sodalis Glossinidius And
    Infection, Genetics and Evolution 10 (2010) 115–121 Contents lists available at ScienceDirect Infection, Genetics and Evolution journal homepage: www.elsevier.com/locate/meegid Tripartite interactions between tsetse flies, Sodalis glossinidius and trypanosomes—An epidemiological approach in two historical human African trypanosomiasis foci in Cameroon Oumarou Farikou a,b, Flobert Njiokou a, Jean A. Mbida Mbida a, Guy R. Njitchouang a, Hugues Nana Djeunga a, Tazoacha Asonganyi c, Pere P. Simarro d,Ge´rard Cuny b, Anne Geiger b,* a University of Yaounde´ I, Faculty of Science, BP 812, Yaounde´, Cameroon b UMR 177, IRD-CIRAD, CIRAD TA A-17/G, Campus International de Baillarguet, 34398 Montpellier Cedex 5, France c Faculty of Medicine and Biomedical Sciences, University of Yaounde´ I, Cameroon d World Health Organization, Control of Neglected Tropical Diseases, Geneva, Switzerland ARTICLE INFO ABSTRACT Article history: Epidemiological surveys were conducted in two historical human African trypanosomiasis foci in South Received 3 August 2009 Cameroon, Bipindi and Campo. In each focus, three sampling areas were defined. In Bipindi, only Glossina Received in revised form 14 October 2009 palpalis was identified, whereas four species were identified in Campo, G. palpalis being highly Accepted 20 October 2009 predominant (93%). For further analyses, 75 flies were randomly chosen among the flies trapped in each Available online 29 October 2009 of the six villages. Large and statistically significant differences were recorded between both (1) the prevalence of Sodalis glossinidius (tsetse symbiont) and the prevalence of trypanosome infection of the Keywords: major fly species G. p. palpalis and (2) the respective prevalence of symbiont and infection between the Glossina two foci.
    [Show full text]
  • Trypanosoma Ancestor of a Prokaryotic Proline Racemase Implicated in Parasite Evasion from Host Defences Zuleima C
    Virginia Commonwealth University VCU Scholars Compass Microbiology and Immunology Publications Dept. of Microbiology and Immunology 2015 Phylogenetic and syntenic data support a single horizontal transference to aTrypanosoma ancestor of a prokaryotic proline racemase implicated in parasite evasion from host defences Zuleima C. Caballero Universidade de São Paulo, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología-AIP Andre G. Costa-Martins Universidade de São Paulo Robson C. Ferreira Universidade de São Paulo See next page for additional authors Follow this and additional works at: http://scholarscompass.vcu.edu/micr_pubs Part of the Medicine and Health Sciences Commons Copyright © 2015 Caballero et al.; licensee BioMed Central. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Downloaded from http://scholarscompass.vcu.edu/micr_pubs/45 This Article is brought to you for free and open access by the Dept. of Microbiology and Immunology at VCU Scholars Compass. It has been accepted for inclusion in Microbiology and Immunology Publications by an authorized administrator of VCU Scholars Compass. For more information, please contact [email protected]. Authors Zuleima C. Caballero, Andre G. Costa-Martins, Robson C. Ferreira, João M P Alves, Myrna G. Serrano, Erney P. Camargo, Gregory A. Buck, Paola Minoprio, and Marata M G Teixeira This article is available at VCU Scholars Compass: http://scholarscompass.vcu.edu/micr_pubs/45 Caballero et al.
    [Show full text]