The Insulin Receptor: Structure, Function, and Signaling
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
DNA Damage and the Activation of the P53 Pathway Mediate Alterations in Metabolic and Secretory Functions of Adipocytes
3062 Diabetes Volume 65, October 2016 Bastien Vergoni,1,2 Pierre-Jean Cornejo,1,2 Jérôme Gilleron,1,2 Mansour Djedaini,1,2 Franck Ceppo,1,2 Arnaud Jacquel,2,3 Gwennaelle Bouget,1,2 Clémence Ginet,1,2 Teresa Gonzalez,1,2,4 Julie Maillet,5,6,7 Véronique Dhennin,5,6,7 Marie Verbanck,5,6,7 Patrick Auberger,2,3 Philippe Froguel,5,6,7,8 Jean-François Tanti,1,2 and Mireille Cormont1,2 DNA Damage and the Activation of the p53 Pathway Mediate Alterations in Metabolic and Secretory Functions of Adipocytes Diabetes 2016;65:3062–3074 | DOI: 10.2337/db16-0014 Activation of the p53 pathway in adipose tissue contributes Insulin resistance is associated with obesity and is a major to insulin resistance associated with obesity. However, the risk factor for type 2 diabetes. Adipose tissue (AT) plays mechanisms of p53 activation and the effect on adipocyte an important role in glucose and lipid homeostasis (1,2), functions are still elusive. Here we found a higher level of and AT dysfunction associated with obesity has emerged DNA oxidation and a reduction in telomere length in adipose as a critical event for the development of insulin resis- tissueofmicefedahigh-fatdietandanincreaseinDNA tance. Low-grade inflammation and oxidative and hypoxic damage and activation of the p53 pathway in adipocytes. stresses both develop in obese AT and are involved in the Interestingly, hallmarks of chronic DNA damage are visible alteration of adipocyte functions (3–6). Therefore, activa- at the onset of obesity. Furthermore, injection of lean mice tion of stress-signaling pathways in adipocytes is critically with doxorubicin, a DNA damage-inducing drug, increased involved in AT dysfunction and insulin resistance (7–10). -
Homeobox Gene Expression Profile in Human Hematopoietic Multipotent
Leukemia (2003) 17, 1157–1163 & 2003 Nature Publishing Group All rights reserved 0887-6924/03 $25.00 www.nature.com/leu Homeobox gene expression profile in human hematopoietic multipotent stem cells and T-cell progenitors: implications for human T-cell development T Taghon1, K Thys1, M De Smedt1, F Weerkamp2, FJT Staal2, J Plum1 and G Leclercq1 1Department of Clinical Chemistry, Microbiology and Immunology, Ghent University Hospital, Ghent, Belgium; and 2Department of Immunology, Erasmus Medical Center, Rotterdam, The Netherlands Class I homeobox (HOX) genes comprise a large family of implicated in this transformation proces.14 The HOX-C locus transcription factors that have been implicated in normal and has been primarily implicated in lymphomas.15 malignant hematopoiesis. However, data on their expression or function during T-cell development is limited. Using degener- Hematopoietic cells are derived from stem cells that reside in ated RT-PCR and Affymetrix microarray analysis, we analyzed fetal liver (FL) in the embryo and in the adult bone marrow the expression pattern of this gene family in human multipotent (ABM), which have the unique ability to self-renew and thereby stem cells from fetal liver (FL) and adult bone marrow (ABM), provide a life-long supply of blood cells. T lymphocytes are a and in T-cell progenitors from child thymus. We show that FL specific type of hematopoietic cells that play a major role in the and ABM stem cells are similar in terms of HOX gene immune system. They develop through a well-defined order of expression, but significant differences were observed between differentiation steps in the thymus.16 Several transcription these two cell types and child thymocytes. -
Selective Insulin Signaling Through a and B Insulin Receptors Regulates Transcription of Insulin and Glucokinase Genes in Pancreatic  Cells
Molecular Cell, Vol. 7, 559±570, March, 2001, Copyright 2001 by Cell Press Selective Insulin Signaling through A and B Insulin Receptors Regulates Transcription of Insulin and Glucokinase Genes in Pancreatic  Cells Barbara Leibiger,*§ Ingo B. Leibiger,*§k ceptors as the primary target, include signaling via mito- Tilo Moede,* Sabine Kemper,* gen-activated protein (MAP) kinases and phosphoinosi- Rohit N. Kulkarni,² C. Ronald Kahn,² tol-3 kinase (PI3K). The insulin receptor (IR), the first Lina Moitoso de Vargas,³ and Per-Olof Berggren* step in these cascades, exists in two isoforms as a result *The Rolf Luft Center for Diabetes Research of alternative mRNA splicing of the 11th exon of the insulin Department of Molecular Medicine proreceptor transcript (Seino et al., 1989). The A type Karolinska Institutet (IR-A), or Ex11Ϫ (Ullrich et al., 1985), lacks whereas the S-171 76 Stockholm B type (IR-B), or Ex11ϩ (Ebina et al., 1985), contains Sweden the respective sequence coding for 12 amino acids in ² Research Division the C terminus of the ␣ chain of the receptor. To date, Joslin Diabetes Center and no insulin-induced effect has been reported that dis- Department of Medicine criminates signaling via A- and B-type receptors. In fact, Harvard Medical School the functional significance of these IR isoforms remains Boston, Massachusetts 02215 unclear. ³ Department of Medicine Recent studies have shown that the insulin-producing New England Medical Center and pancreatic  cell is a target for insulin action, with insulin Tufts University School of Medicine effects on transcription, translation, Ca2ϩ flux, and exo- Boston, Massachusetts 02111 cytosis (Leibiger et al., 1998a, 2000; Xu and Rothenberg, 1998; Xu et al., 1998; Aspinwall et al., 1999; Kulkarni et al., 1999a). -
Insulin–Insr Signaling Drives Multipotent Progenitor Differentiation Toward Lymphoid Lineages
Article Insulin–InsR signaling drives multipotent progenitor differentiation toward lymphoid lineages Pengyan Xia,1* Shuo Wang,1* Ying Du,1 Guanling Huang,1,2 Takashi Satoh,3 Shizuo Akira,3 and Zusen Fan1 1Key Laboratory of Infection and Immunity of CAS, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China 2University of Chinese Academy of Sciences, Beijing 100049, China 3Department of Host Defense, Research Institute for Microbial Diseases (RIMD), Osaka University, Suita, Osaka 565-0871, Japan The lineage commitment of HSCs generates balanced myeloid and lymphoid populations in hematopoiesis. However, the un- derlying mechanisms that control this process remain largely unknown. Here, we show that insulin–insulin receptor (InsR) signaling is required for lineage commitment of multipotent progenitors (MPPs). Deletion of Insr in murine bone marrow causes skewed differentiation of MPPs to myeloid cells. mTOR acts as a downstream effector that modulates MPP differentiation. mTOR activates Stat3 by phosphorylation at serine 727 under insulin stimulation, which binds to the promoter of Ikaros, lead- ing to its transcription priming. Our findings reveal that the insulin–InsR signaling drives MPP differentiation into lymphoid lineages in early lymphopoiesis, which is essential for maintaining a balanced immune system for an individual organism. Hematopoiesis is the process of producing all compo- Insulin, as the primary anabolic hormone, modulates a nents of the blood system from hematopoietic stem cells variety of physiological processes, including growth, differ- (HSCs; Naik et al., 2013; Mendelson and Frenette, 2014; entiation, apoptosis, and synthesis and breakdown of lipid, Walter et al., 2015). HSCs are quiescent, self-renewable pro- protein, and glucose (Samuel and Shulman, 2012). -
PSM, a Mediator of PDGF-BB-, IGF-I-, and Insulin-Stimulated Mitogenesis
Oncogene (2000) 19, 39 ± 50 ã 2000 Macmillan Publishers Ltd All rights reserved 0950 ± 9232/00 $15.00 www.nature.com/onc PSM, a mediator of PDGF-BB-, IGF-I-, and insulin-stimulated mitogenesis Heimo Riedel*,1,2, Nasim Yousaf1, Yuyuan Zhao4, Heping Dai1,3, Youping Deng1 and Jian Wang1 1Department of Biological Sciences, Wayne State University, Detroit, Michigan, MI 48202, USA; 2Member, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan, MI 48201, USA PSM/SH2-B has been described as a cellular partner of Introduction the FceRI receptor, insulin receptor (IR), insulin-like growth factor-I (IGF-I) receptor (IGF-IR), and nerve The platelet-derived growth factor (PDGF) family growth factor receptor (TrkA). A function has been represents key mitogenic and chemotactic factors that proposed in neuronal dierentiation and development but have been exploited by the Simian sarcoma virus v-sis its role in other signaling pathways is still unclear. To oncogene which results in altered PDGF expression further elucidate the physiologic role of PSM we have (Water®eld et al., 1983). Normal cellular PDGF identi®ed additional mitogenic receptor tyrosine kinases appears in three distinct isoforms as any combination as putative PSM partners including platelet-derived of the PDGF A and B chains which act in paracrine growth factor (PDGF) receptor (PDGFR) beta, hepato- and autocrine mechanisms (Heldin, 1993). PDGF cyte growth factor receptor (Met), and ®broblast growth receptor (PDGFR) signal transduction appears to be factor receptor. We have mapped Y740 as a site of a largely membrane delineated event (Hughes et al., PDGFR beta that is involved in the association with 1996). -
Structure of the Tie2 RTK Domain: Self-Inhibition by the Nucleotide Binding Loop, Activation Loop, and C-Terminal Tail
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Structure, Vol. 8, 1105±1113, November, 2000, 2000 Elsevier Science Ltd. All rights reserved. PII S0969-2126(00)00516-5 Structure of the Tie2 RTK Domain: Self-Inhibition by the Nucleotide Binding Loop, Activation Loop, and C-Terminal Tail Lisa M. Shewchuk,* Anne M. Hassell, Byron Ellis, binding domain and an intracellular kinase domain. Binding of W. D. Holmes, Roderick Davis, Earnest L. Horne, extracellular ligand is believed to promote dimerization, which Sue H. Kadwell, David D. McKee, leads to autophosphorylation and activation of the kinase do- and John T. Moore main [reviewed in 15]. Stringent regulation of the phosphoryla- GlaxoWellcome tion state and activity of the Tie2 kinase domain is crucial to Research Triangle Park, North Carolina 27709 normal vasculature development and maintenance. Tie2 activ- ity is precisely regulated by the opposing actions of agonistic and antagonistic extracellular ligands [16±18]. Tie2 activation Summary requires autophosporylation in response to binding its agonists angiopoietin 1 (Ang1) and Ang4, whereas inactivation occurs Background: Angiogenesis, the formation of new vessels from in response to Ang2 and Ang3. Tie2 mutations, which result the existing vasculature, is a critical process during early devel- in ligand-independent and enhanced autophosphorylation, opment as well as in a number of disease processes. Tie2 (also cause hereditary venous malformations [19, 20]. Conversely, known as Tek) is an endothelium-specific receptor tyrosine transgenic mice that express a kinase-inactive form of Tie2 or kinase involved in both angiogenesis and vasculature mainte- Tie2 null mice die in utero due to defects in their microvascula- nance. -
Drosophila Pax6 Promotes Development of the Entire Eye-Antennal Disc, Thereby Ensuring Proper Adult Head Formation
PAPER Drosophila Pax6 promotes development of the entire COLLOQUIUM eye-antennal disc, thereby ensuring proper adult head formation Jinjin Zhua, Sneha Palliyila, Chen Ranb, and Justin P. Kumara,1 aDepartment of Biology, Indiana University, Bloomington, IN 47405; and bDepartment of Biology, Stanford University, Stanford, CA 94305 Edited by Ellen V. Rothenberg, California Institute of Technology, Pasadena, CA, and accepted by Editorial Board Member Neil H. Shubin February 17, 2017 (received for review July 26, 2016) Paired box 6 (Pax6) is considered to be the master control gene for molecular battle among GRNs allows for the subdivision of the eye development in all seeing animals studied so far. In vertebrates, eye-antennal disc to be maintained within a single continuous it is required not only for lens/retina formation but also for the cellular field (13–16). Of the GRNs that are known to operate development of the CNS, olfactory system, and pancreas. Although within the eye-antennal disc, the retinal determination (RD) Pax6 plays important roles in cell differentiation, proliferation, and network, which controls eye development, is the best studied (17). patterning during the development of these systems, the underlying At the core of the RD network lie the Paired box 6 (Pax6) genes mechanism remains poorly understood. In the fruit fly, Drosophila eyeless (ey)andtwin of eyeless (toy), the SIX family member sine melanogaster, Pax6 also functions in a range of tissues, including oculis (so), the transcriptional coactivator eyes absent (eya), and the the eye and brain. In this report, we describe the function of Pax6 in Ski/Sno family member dachshund (dac)(17). -
LCZ696) Compared to Valsartan Attenuates Hepatotoxicity in STZ-Induced Hyperglycemic Rats Faleh Alqahtani#, Mohamed Mohany#, Abdullah F Alasmari, Ahmed Z
Int. J. Med. Sci. 2020, Vol. 17 3098 Ivyspring International Publisher International Journal of Medical Sciences 2020; 17(18): 3098-3106. doi: 10.7150/ijms.49373 Research Paper Angiotensin II receptor Neprilysin inhibitor (LCZ696) compared to Valsartan attenuates Hepatotoxicity in STZ-induced hyperglycemic rats Faleh Alqahtani#, Mohamed Mohany#, Abdullah F Alasmari, Ahmed Z. Alanazi, Osamah M. Belali, Mohammed M Ahmed, and Salim S Al-Rejaie Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 55760, Riyadh – 1145, Saudi Arabia. #These authors contributed equally to this work. Corresponding author: E-mail: [email protected]; Tel.: +966114677178. © The author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). See http://ivyspring.com/terms for full terms and conditions. Received: 2020.06.11; Accepted: 2020.10.09; Published: 2020.10.22 Abstract Background and objectives: Although diabetic-induced hepatotoxicity is less common, it can be included in the list of target organ pathologies associated with diabetes. This study aimed to investigate the potential therapeutic role of sacubitril/valsartan (LCZ696) in modulating oxidative and inflammatory injuries and liver fibrosis in STZ-induced hyperglycemic rats in comparison to valsartan alone. Materials and Methods: Following the induction of diabetes using a single dose of streptozotocin (STZ), STZ-induced hyperglycemic animals were administered LCZ696 or valsartan for 6 weeks. Glucose, transaminases, lipid profile, tumor necrosis factor-alpha (TNF-α), interleukin 1 beta (IL-1β), and interleukin - 6 (IL-6), were estimated using the obtained serum. Oxidative stress biomarkers including thiobarbituric acid reactive substances (TBARS), glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and glutathione S-transferase (GST) were measured in the liver homogenate. -
The Insulin and IGF-1 Receptors
The insulin and IGF-1 receptors Author: Pierre De Meyts Author title: MD, PHD, F.A.C.E. A bit of history The birth of the receptor concept dates back to the early work of John Newport Langley (1852-1925), a Cambridge physiologist, who postulated in 1905 that a "receptive substance" on the surface of skeletal muscle mediated the action of nicotine (1). At about the same time, Paul Ehrlich (1854-1915), a German immunologist who was the founding father of chemotherapy, came up with a "side chain theory" of cell receptors to explain the selectivity of immune reactions, winning him the Nobel Prize in Physiology or Medicine in 1908. His famous adage "Corpora non agunt nisi fixata" ("Substances do not act unless they are bound") is an elegant and concise early statement of the receptor theory (2). The receptor concept was put on more solid ground with the seminal 1948 paper of Raymond P. Ahlquist (1914-1983), an American pharmacologist of Swedish descent at the Medical College of Georgia, who proposed that the excitatory and inhibitory effects of adrenotropic agents were mediated by two separate receptors which he termed a and b (3). The receptors would however remain hypothetical entities until the late 60's, when direct methods to study their biochemistry were developed. The concept that insulin exerts its effects by acting at the membrane of target cells was proposed over 60 years ago by Rachmiel Levine (1910-1991), considered by many as one of the founding fathers of modern diabetology, then working at Walter Reese Hospital in Chicago. -
Five Mutant Alleles of the Insulin Receptor Gene in Patients with Genetic Forms of Insulin Resistance
Five mutant alleles of the insulin receptor gene in patients with genetic forms of insulin resistance. T Kadowaki, … , P Gorden, S I Taylor J Clin Invest. 1990;86(1):254-264. https://doi.org/10.1172/JCI114693. Research Article The nucleotide sequence was determined for all 22 exons of the insulin receptor gene from three patients with genetic syndromes associated with extreme insulin resistance. In all three patients, insulin resistance was caused by decreased insulin binding to the cell surface. The patient with leprechaunism (leprechaun/Winnipeg) came from a consanguineous pedigree and was homozygous for a missense mutation substituting arginine for His209 in the alpha-subunit of the insulin receptor. The other two patients were both compound heterozygotes with a nonsense mutation in one allele of the insulin receptor gene, and a missense mutation in the other allele. In the patient with the Rabson-Mendenhall syndrome (patient RM-1), the missense mutation substituted lysine for Asn15 in the alpha-subunit. In the patient with type A extreme insulin resistance (patient A-1), the missense mutation substituted serine for Asn462 in the alpha-subunit. Both nonsense mutations markedly reduced the levels of insulin receptor mRNA transcribed from the alleles with the nonsense mutation as compared to the transcripts from the other allele. The reduction in the level of mRNA would be predicted to greatly reduce the rate at which the truncated receptors would be synthesized. Furthermore, the truncated receptors would be severely impaired in their ability to mediate insulin action. Find the latest version: https://jci.me/114693/pdf Five Mutant Alleles of the Insulin Receptor Gene in Patients with Genetic Forms of Insulin Resistance Takashi Kadowaki,* Hiroko Kadowaki,* Matthew M. -
The Receptor Interacting Protein 1 Inhibits P53 Induction Through NF-KB Activation and Confers a Worse Prognosis in Glioblastoma
Research Article The Receptor Interacting Protein 1 Inhibits p53 Induction through NF-KB Activation and Confers a Worse Prognosis in Glioblastoma Seongmi Park,1 Kimmo J. Hatanpaa,2,7 Yang Xie,3,8 Bruce E. Mickey,4,7 Christopher J. Madden,4,7 Jack M. Raisanen,2,7 Deepti B. Ramnarain,1 Guanghua Xiao,3 Debabrata Saha,5 David A. Boothman,8 Dawen Zhao,6 Robert M. Bachoo,1,7,8 Russell O. Pieper,9 and Amyn A. Habib1,7,8 Departments of 1Neurology, 2Pathology, 3Clinical Sciences, 4Neurosurgery, 5Radiation Oncology, and 6Radiology, 7Annette G. Strauss Center of Neurooncology, and 8Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas and 9Department of Neurological Surgery, University of California-San Francisco, San Francisco, California Abstract studies have linked components of the NF-nB signaling pathway to Nuclear factor-KB (NF-KB) activation may play an important cell cycle progression and tumorigenesis (11–16). role in the pathogenesis of cancer and also in resistance to An intriguing mechanism underlying the pathogenesis of treatment. Inactivation of the p53 tumor suppressor is a key inflammation-induced cancer is the negative regulation of tumor component of the multistep evolution of most cancers. Links suppressor pathways by inflammatory and stress-induced signals. between the NF-KB and p53 pathways are under intense p53 is a key tumor suppressor altered in a broad range of human investigation. In this study, we show that the receptor cancers, including glioma, and an important outcome of p53 interacting protein 1 (RIP1), a central component of the activation is cell cycle arrest or apoptosis after DNA damage K (17, 18). -
The Insulin Receptor: a Prototype for Dimeric, Allosteric Membrane Receptors?
Review The insulin receptor: a prototype for dimeric, allosteric membrane receptors? Pierre De Meyts Receptor Systems Biology Laboratory, Hagedorn Research Institute, Niels Steensens Vej 6, DK-2820, Gentofte, Denmark The recent crystallographic structure of the insulin receptor (IR) extracellular domain has brought us closer Glossary to ending several decades of speculation regarding the Allosteric: this refers to the regulation of the affinity or activity of a ligand stoichiometry and mechanism of insulin-receptor bind- binding to a protein (e.g. enzyme or receptor) by another ligand binding to a ing and negative cooperativity. It supports a bivalent different site than the ligand of reference (referred to as the orthosteric-binding site). The name comes from the Greek allos (meaning ‘other’) and stereos crosslinking model whereby two sites on the insulin (meaning ‘space’). It was initially used in the restricted sense of the Monod– molecule alternately crosslink two partial-binding sites Wyman–Changeux model of concerted ligand-induced conformational and on each insulin-receptor half. Ligand-induced or -stabil- affinity changes in proteins like haemoglobin, which can only generate positive cooperativity in ligand binding, but has recently been more loosely used in a ized receptor dimerization or oligomerization is a gen- broader sense equivalent to homotropic or heterotropic cooperativity, both eral feature of receptor tyrosine kinases (RTKs), in positive or negative, especially in the GPCR community. Cooperativity: a mechanism whereby binding of a ligand to one site of a addition to cytokine receptors, but the kinetic con- multimeric binding protein (like an enzyme or a receptor) affects the affinity of sequences of this mechanism have been less well stu- another ligand binding to another subunit of the same protein.