Integrated Bioinformatic Analysis of DNA Methylation and Immune In
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
TNF‑Α‑Mediated Epithelial‑To‑Mesenchymal Transition Regulates Expression of Immune Checkpoint Molecules in Hepatocellular Carcinoma
MOLECULAR MEDICINE REPORTS 21: 1849-1860, 2020 TNF‑α‑mediated epithelial‑to‑mesenchymal transition regulates expression of immune checkpoint molecules in hepatocellular carcinoma RITU SHRESTHA1,2, KIM R. BRIDLE1,2, DARRELL H.G. CRAWFORD1,2 and APARNA JAYACHANDRAN1,2 1University of Queensland, Faculty of Medicine and 2Liver Cancer Unit, Gallipoli Medical Research Institute, Greenslopes Private Hospital, Brisbane, QLD 4120, Australia Received June 12, 2019; Accepted January 31, 2020 DOI: 10.3892/mmr.2020.10991 Abstract. Hepatocellular carcinoma (HCC) is the ligand (PD‑L)1, PD‑L2, CD73 and B7‑H3. In contrast, reversal fastest growing cause of cancer-related deaths globally. of EMT suppressed the expression of PD‑L1, PD‑L2, CD73 Epithelial-to-mesenchymal transition (EMT) is a cellular and B7‑H3. In addition, high expression of TNF-α and PD‑L1 process that confers HCC tumor cells with the ability to evade in 422 patients with HCC was associated with poor overall the immune system. Immune escape in most tumors, including survival. The coordinate expression of TNF-α with PD‑L2 in HCC, is controlled by immune checkpoint molecules. The aim this patient cohort was associated with increased HCC recur- of the present study was to investigate the association between rence. In conclusion, the present study demonstrated a close EMT and immune checkpoint in HCC, and identify novel ther- association between immune modulator expression and EMT apeutic targets for HCC. An in vitro model of reversible EMT induction/reversal driven by TNF-α. was utilized based on cytokine tumor necrosis factor (TNF)-α treatment of HCC cell lines Hep3B and PLC/PRF/5. -
Viewpoint, from the Literature, Most of the Genes in Our Sets Are Known to Be Strongly Related to Cancer
BMC Bioinformatics BioMed Central Research Open Access A voting approach to identify a small number of highly predictive genes using multiple classifiers Md Rafiul Hassan*1, M Maruf Hossain*1, James Bailey1,2, Geoff Macintyre1,2, Joshua WK Ho3,4 and Kotagiri Ramamohanarao1,2 Address: 1Department of Computer Science and Software Engineering, The University of Melbourne, Victoria 3010, Australia, 2NICTA Victoria Laboratory, The University of Melbourne, Victoria 3010, Australia, 3School of Information Technologies, The University of Sydney, NSW 2006, Australia and 4NICTA, Australian Technology Park, Eveleigh, NSW 2015, Australia Email: Md Rafiul Hassan* - [email protected]; M Maruf Hossain* - [email protected]; James Bailey - [email protected]; Geoff Macintyre - [email protected]; Joshua WK Ho - [email protected]; Kotagiri Ramamohanarao - [email protected] * Corresponding authors from The Seventh Asia Pacific Bioinformatics Conference (APBC 2009) Beijing, China. 13–16 January 2009 Published: 30 January 2009 <supplement> <title> <p>Selected papers from the Seventh Asia-Pacific Bioinformatics Conference (APBC 2009)</p> </title> <editor>Michael Q Zhang, Michael S Waterman and Xuegong Zhang</editor> <note>Research</note> </supplement> BMC Bioinformatics 2009, 10(Suppl 1):S19 doi:10.1186/1471-2105-10-S1-S19 This article is available from: http://www.biomedcentral.com/1471-2105/10/S1/S19 © 2009 Hassan et al; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. -
Epigenetic Reprogramming Underlies Efficacy of DNA Demethylation
www.nature.com/scientificreports OPEN Epigenetic reprogramming underlies efcacy of DNA demethylation therapy in osteosarcomas Naofumi Asano 1,2, Hideyuki Takeshima3, Satoshi Yamashita3, Hironori Takamatsu2,3, Naoko Hattori3, Takashi Kubo4, Akihiko Yoshida5, Eisuke Kobayashi6, Robert Nakayama2, Morio Matsumoto2, Masaya Nakamura2, Hitoshi Ichikawa 4, Akira Kawai6, Tadashi Kondo1 & Toshikazu Ushijima 3* Osteosarcoma (OS) patients with metastasis or recurrent tumors still sufer from poor prognosis. Studies have indicated the efcacy of DNA demethylation therapy for OS, but the underlying mechanism is still unclear. Here, we aimed to clarify the mechanism of how epigenetic therapy has therapeutic efcacy in OS. Treatment of four OS cell lines with a DNA demethylating agent, 5-aza-2′- deoxycytidine (5-aza-dC) treatment, markedly suppressed their growth, and in vivo efcacy was further confrmed using two OS xenografts. Genome-wide DNA methylation analysis showed that 10 of 28 primary OS had large numbers of methylated CpG islands while the remaining 18 OS did not, clustering together with normal tissue samples and Ewing sarcoma samples. Among the genes aberrantly methylated in primary OS, genes involved in skeletal system morphogenesis were present. Searching for methylation-silenced genes by expression microarray screening of two OS cell lines after 5-aza-dC treatment revealed that multiple tumor-suppressor and osteo/chondrogenesis-related genes were re-activated by 5-aza-dC treatment of OS cells. Simultaneous activation of multiple genes related to osteogenesis and cell proliferation, namely epigenetic reprogramming, was considered to underlie the efcacy of DNA demethylation therapy in OS. Osteosarcoma (OS) is the most common malignant tumor of the bone in children and adolescents1. -
Association of PD-1/PD-L Axis Expression with Cytolytic Activity
Association of PD-1/PD-L axis expression with cytolytic PNAS PLUS activity, mutational load, and prognosis in melanoma and other solid tumors Ludmila Danilovaa,b,c, Hao Wanga, Joel Sunshined, Genevieve J. Kaunitzd, Tricia R. Cottrelle, Haiying Xud, Jessica Esandriod, Robert A. Andersa,c,e, Leslie Copea,c, Drew M. Pardolla,c, Charles G. Drakea,c,f, and Janis M. Taubea,c,d,e,1 aDepartment of Oncology, The Johns Hopkins University School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287; bVavilov Institute of General Genetics, Russian Academy of Science, Moscow, Russia, 119333; cThe Bloomberg-Kimmel Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21287; dDepartment of Dermatology, The Johns Hopkins University School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287; eDepartment of Pathology, The Johns Hopkins University School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287; and fThe Brady Urological Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21287 Edited by Antoni Ribas, Ronald Reagan University of California, Los Angeles Medical Center, Los Angeles, CA, and accepted by Editorial Board Member Tak W. Mak October 8, 2016 (received for review June 3, 2016) Programmed cell death protein-1 (PD-1)/programmed death ligand-1 infiltration and improved overall patient survival (14). Mutational (PD-L1) checkpoint blockade has led to remarkable and durable burden has also recently been demonstrated to predict response to objective responses in a number of different tumor types. A better anti–PD-1 therapy in patients with nonsmall cell lung carcinoma understanding of factors associated with the PD-1/PD-L axis expres- (NSCLC) (15). -
Evaluating the Potential for B7-H4 As an Immunoregulatory Target
Author Manuscript Published OnlineFirst on March 21, 2017; DOI: 10.1158/1078-0432.CCR-15-2440 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. 1 2 Molecular Pathways: Evaluating the Potential for B7-H4 as an Immunoregulatory Target 3 Heather L. MacGregor1,2 and Pamela S. Ohashi1-3* 4 5 6 7 1Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, 8 Toronto, Ontario, Canada 9 2Department of Immunology, University of Toronto, Toronto, Ontario, Canada 10 3Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada 11 12 13 Running Title: Evaluating B7-H4 as a Potential Immunoregulatory Target 14 Keywords: B7-H4; immunosuppression; co-inhibitory molecule; immunotherapy; tumor 15 microenvironment 16 17 Funding sources: This work was supported by grants from the Canadian Institute for Health 18 Research awarded to P.S. Ohashi. 19 20 *Corresponding Author: Pamela S. Ohashi, Princess Margaret Cancer Centre, 610 University 21 Avenue, Suite 8-407, Toronto, Ontario M5G 2M9, Canada. Phone: 416-946-2357; Fax: 416-204- 22 2276; e-mail: [email protected] 23 Disclosures: The authors have no financial conflicts of interest. 1 Downloaded from clincancerres.aacrjournals.org on September 27, 2021. © 2017 American Association for Cancer Research. Author Manuscript Published OnlineFirst on March 21, 2017; DOI: 10.1158/1078-0432.CCR-15-2440 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. 24 (Abstract: 152 words; Body: 2937 words; 2 figures, 1 table) 25 Abstract: With the clinical success of CTLA-4 and PD-1 blockade in treating malignancies, 26 there is tremendous interest in finding new ways to augment anti-tumor responses by targeting 27 other inhibitory molecules. -
Evaluating the Potential for B7-H4 As an Immunoregulatory Target Heather L
Published OnlineFirst March 21, 2017; DOI: 10.1158/1078-0432.CCR-15-2440 Molecular Pathways Clinical Cancer Research Molecular Pathways: Evaluating the Potential for B7-H4 as an Immunoregulatory Target Heather L. MacGregor1,2 and Pamela S. Ohashi1,2,3 Abstract With the clinical success of CTLA-4 and PD-1 blockade in malignancies. This high expression by tumors in combination treating malignancies, there is tremendous interest in finding with its low or absent protein expression in normal tissues new ways to augment antitumor responses by targeting other makes B7-H4 an attractive immunotherapeutic target. Preclin- inhibitory molecules. In this review, we describe one such ical investigation into B7-H4–specific chimeric antigen receptor molecule. B7-H4, a member of the B7 family of immunoreg- (CAR) T cells, antibody-mediated blockade of B7-H4, and anti– ulatory proteins, inhibits T cell proliferation and cytokine pro- B7-H4 drug conjugates has shown antitumor efficacy in mouse duction through ligation of an unknown receptor expressed by models. The first clinical trials have been completed to assess the activated T cells. Notably, B7-H4 protein expression is observed safety and efficacy of a B7-H4 fusion protein in ameliorating in a high proportion of patients' tumors across a wide variety of rheumatoid arthritis. Clin Cancer Res; 23(12); 2934–41. Ó2017 AACR. Background Expression and function of B7-H4 B7-H4 transcripts have been detected in a wide variety of tissues The B7 family of immunoregulatory proteins is composed (2, 7, 8), whereas B7-H4 protein expression is tightly regulated of 10 members—B7-1 (CD80), B7-2 (CD86), PD-L1 (B7-H1, and shows limited expression in most normal tissues (3, 7, 9–14). -
Sex-Differential DNA Methylation and Associated Regulation Networks in Human Brain Implicated in the Sex-Biased Risks of Psychiatric Disorders
Molecular Psychiatry https://doi.org/10.1038/s41380-019-0416-2 ARTICLE Sex-differential DNA methylation and associated regulation networks in human brain implicated in the sex-biased risks of psychiatric disorders 1,2 1,2 1 2 3 4 4 4 Yan Xia ● Rujia Dai ● Kangli Wang ● Chuan Jiao ● Chunling Zhang ● Yuchen Xu ● Honglei Li ● Xi Jing ● 1 1,5 2 6 1,2,7 1,2,8 Yu Chen ● Yi Jiang ● Richard F. Kopp ● Gina Giase ● Chao Chen ● Chunyu Liu Received: 8 November 2018 / Revised: 18 March 2019 / Accepted: 22 March 2019 © Springer Nature Limited 2019 Abstract Many psychiatric disorders are characterized by a strong sex difference, but the mechanisms behind sex-bias are not fully understood. DNA methylation plays important roles in regulating gene expression, ultimately impacting sexually different characteristics of the human brain. Most previous literature focused on DNA methylation alone without considering the regulatory network and its contribution to sex-bias of psychiatric disorders. Since DNA methylation acts in a complex regulatory network to connect genetic and environmental factors with high-order brain functions, we investigated the 1234567890();,: 1234567890();,: regulatory networks associated with different DNA methylation and assessed their contribution to the risks of psychiatric disorders. We compiled data from 1408 postmortem brain samples in 3 collections to identify sex-differentially methylated positions (DMPs) and regions (DMRs). We identified and replicated thousands of DMPs and DMRs. The DMR genes were enriched in neuronal related pathways. We extended the regulatory networks related to sex-differential methylation and psychiatric disorders by integrating methylation quantitative trait loci (meQTLs), gene expression, and protein–protein interaction data. -
Gene Silencing of TSPYL5 Mediated by Aberrant Promoter Methylation in Gastric Cancers Yeonjoo Jung1, Jinah Park1, Yung-Jue Bang1,2 and Tae-You Kim1,2
Laboratory Investigation (2008) 88, 153–160 & 2008 USCAP, Inc All rights reserved 0023-6837/08 $30.00 Gene silencing of TSPYL5 mediated by aberrant promoter methylation in gastric cancers Yeonjoo Jung1, Jinah Park1, Yung-Jue Bang1,2 and Tae-You Kim1,2 DNA methylation is crucial for normal development, but gene expression altered by DNA hypermethylation is often associated with human diseases, especially cancers. The gene TSPYL5, encoding testis-specific Y-like protein, was pre- viously identified in microarray screens for genes induced by the inhibition of DNA methylation and histone deacetylation in glioma cell lines. The TSPYL5 showed a high frequency of DNA methylation-mediated silencing in both glioma cell lines and primary glial tumors. We now report that TSPYL5 is also inactivated by DNA methylation and could be a putative epigenetic target gene in gastric cancers. We found that the expression of TSPYL5 mRNA was frequently downregulated and inversely correlated with DNA methylation in seven out of nine gastric cancer cell lines. TSPYL5 mRNA expression was also restored after treating with a DNA methyltransferase inhibitor. In primary gastric tumors, methylation-specific PCR results in 23 of the 36 (63.9%) cases revealed that the hypermethylation at CpG islands of the TSPYL5 was detectable at a high frequency. Furthermore, TSPYL5 suppressed the growth of gastric cancer cells as demonstrated by a colony for- mation assay. Thus, strong associations between TSPYL5 expression and hypermethylation were observed, and aberrant methylation at a CpG island of TSPYL5 may play an important role in development of gastric cancers. Laboratory Investigation (2008) 88, 153–160; doi:10.1038/labinvest.3700706; published online 3 December 2007 KEYWORDS: DNMT inhibitor; gastric cancer; NAP domain; promoter hypermethylation; TSPYL5 Epigenetic events are heritable modifications that regulate TSPYL6. -
Rna-Sequencing Applications: Gene Expression Quantification and Methylator Phenotype Identification
The Texas Medical Center Library DigitalCommons@TMC The University of Texas MD Anderson Cancer Center UTHealth Graduate School of The University of Texas MD Anderson Cancer Biomedical Sciences Dissertations and Theses Center UTHealth Graduate School of (Open Access) Biomedical Sciences 8-2013 RNA-SEQUENCING APPLICATIONS: GENE EXPRESSION QUANTIFICATION AND METHYLATOR PHENOTYPE IDENTIFICATION Guoshuai Cai Follow this and additional works at: https://digitalcommons.library.tmc.edu/utgsbs_dissertations Part of the Bioinformatics Commons, Computational Biology Commons, and the Medicine and Health Sciences Commons Recommended Citation Cai, Guoshuai, "RNA-SEQUENCING APPLICATIONS: GENE EXPRESSION QUANTIFICATION AND METHYLATOR PHENOTYPE IDENTIFICATION" (2013). The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access). 386. https://digitalcommons.library.tmc.edu/utgsbs_dissertations/386 This Dissertation (PhD) is brought to you for free and open access by the The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences at DigitalCommons@TMC. It has been accepted for inclusion in The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access) by an authorized administrator of DigitalCommons@TMC. For more information, please contact [email protected]. RNA-SEQUENCING APPLICATIONS: GENE EXPRESSION QUANTIFICATION AND METHYLATOR PHENOTYPE IDENTIFICATION -
Single-Nucleotide Polymorphisms in the TSPYL-4 and NT5DC1 Genes Are Associated with Susceptibility to Chronic Obstructive Pulmonary Disease
MOLECULAR MEDICINE REPORTS 6: 631-638, 2012 Single-nucleotide polymorphisms in the TSPYL-4 and NT5DC1 genes are associated with susceptibility to chronic obstructive pulmonary disease YI GUO1*, YI GONG2*, GUOCHAO SHI1, KUN YANG1, CHUNMING PAN3, MIN LI1, QINGYUN LI1, QIJIAN CHENG1, RANRAN DAI1, LIANG FAN1 and HUANYING WAN1 1Department of Respiratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University (SJTU), School of Medicine; 2Department of Respiratory Medicine, Huashan Hospital, Fudan University; 3Ruijin Hospital, State Key Laboratory of Medical Genomics, Molecular Medicine Center, Shanghai Jiao Tong University (SJTU), School of Medicine, Shanghai 200025, P.R. China Received February 12, 2012; Accepted June 18, 2012 DOI: 10.3892/mmr.2012.964 Abstract. The risk of developing chronic obstructive pulmo- block. We constructed the TSPYL-4 and NT5DC1 haplo- nary disease (COPD) is partially determined by genetic types of the cases and controls, but no significant difference and environmental factors. Many published candidate gene between the two groups was found. rs3749893 A allele of studies show conflicting results due to ethnic differences TSPYL-4 and rs1052443 C allele of NT5DC1 were associated and sample sizes. The number of these studies carried out in with a protective effect against the deterioration of pulmonary Chinese populations is small. To investigate candidate genes function. In conclusion, TSPYL-4 and NT5DC1 gene poly- and haplotypes for susceptibility to COPD in a southern morphisms are associated with susceptibility to COPD and Han Chinese population, we performed genotyping of DNA pulmonary function. samples in 200 COPD patients and 250 control subjects by analyzing 54 single-nucleotide polymorphisms (SNPs) in Introduction 23 genes associated with the development of COPD and/or pulmonary function identified by genome-wide association Chronic obstructive pulmonary disease (COPD) is expected studies (GWAS). -
Pan-Cancer Transcriptome Analysis Reveals a Gene Expression
Modern Pathology (2016) 29, 546–556 546 © 2016 USCAP, Inc All rights reserved 0893-3952/16 $32.00 Pan-cancer transcriptome analysis reveals a gene expression signature for the identification of tumor tissue origin Qinghua Xu1,6, Jinying Chen1,6, Shujuan Ni2,3,4,6, Cong Tan2,3,4,6, Midie Xu2,3,4, Lei Dong2,3,4, Lin Yuan5, Qifeng Wang2,3,4 and Xiang Du2,3,4 1Canhelp Genomics, Hangzhou, Zhejiang, China; 2Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; 3Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China; 4Institute of Pathology, Fudan University, Shanghai, China and 5Pathology Center, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China Carcinoma of unknown primary, wherein metastatic disease is present without an identifiable primary site, accounts for ~ 3–5% of all cancer diagnoses. Despite the development of multiple diagnostic workups, the success rate of primary site identification remains low. Determining the origin of tumor tissue is, thus, an important clinical application of molecular diagnostics. Previous studies have paved the way for gene expression-based tumor type classification. In this study, we have established a comprehensive database integrating microarray- and sequencing-based gene expression profiles of 16 674 tumor samples covering 22 common human tumor types. From this pan-cancer transcriptome database, we identified a 154-gene expression signature that discriminated the origin of tumor tissue with an overall leave-one-out cross-validation accuracy of 96.5%. The 154-gene expression signature was first validated on an independent test set consisting of 9626 primary tumors, of which 97.1% of cases were correctly classified. -
Evaluating the Role of B7-H4 As a Suppressor of Tumor Infiltrating Lymphocytes and a Target for Immunotherapy in Breast Cancer Elizabeth C
Evaluating the role of B7-H4 as a suppressor of tumor infiltrating lymphocytes and a target for immunotherapy in breast cancer Elizabeth C. Wescott1,3, Paula I. Gonzalez-Ericcson, M.D.3, Violeta Sanchez3, Justin M. Balko, Pharm D, Ph.D.1,2,3 Departments of Pathology, Microbiology, and Immunology1, Medicine2, Vanderbilt University Medical Center, Nashville, TN; Breast Cancer Research Program3, Vanderbilt-Ingram Cancer Center; Vanderbilt University [email protected] Abstract B7-H4 is expressed on EpCAM+ murine mammary cancer cells • Immunotherapy has seen broad success across cancer types and has become a key aspect of TNBC treatment, but some patients fail to respond A B7-H4+ Murine Cell Lines B • B7-H4 (VTCN1) is an alternative immune checkpoint ligand in the CD28/B7 family of 2500 molecules, like PD-L1 2000 • We observed both high and low B7-H4 expression on several mammary cancer cell 1500 1000 lines B7-H4 MFI • B7-H4 is exclusively expressed on cells bearing epithelial markers 500 • mRNA expression data from a variety of human breast cancer cell lines corroborate this 0 4T1 strong positive correlation of B7-H4 expression on epithelial cells E0771 EMT6 PyMT-B6 • B7-H4 may act as an alternative mechanism of immunologic escape in breast cancer. MMTV-NeuMMTV-NIC (A) We screened a panel of murine mammary cancer cell lines and found both high and low Background expression of B7-H4. (B) Those cells that were B7-H4+ were also EpCAM+ in multiple cell lines. Vtcn1 expression A A B C 4 3 2 1 0 Relative Normalized Expression Normalized Relative EMT6 MMTV-Neu MMTV-Neu Epithelial MMTV-Neu Mesenchymal B B7H4 high B7H4 low (A) The MMTV-Neu cell line consists of epithelial and mesenchymal cell phenotypes.