2.2.20. Potentiometric Titration 2.2.21. Fluorimetry

Total Page:16

File Type:pdf, Size:1020Kb

2.2.20. Potentiometric Titration 2.2.21. Fluorimetry EUROPEAN PHARMACOPOEIA 5.0 2.2.22. Atomic emission spectrometry electrode or 2 indicator electrodes) immersed in the solution Method.Dissolvethesubstancetobeexaminedinthe to be examined and maintained at a constant potential solvent or mixture of solvents prescribed in the monograph, difference as a function of the quantity of titrant added. transferthesolutiontothecellorthetubeofthefluorimeter The potential of the measuring electrode is sufficient to and illuminate it with an excitant light beam of the ensure a diffusion current for the electroactive substance. wavelength prescribed in the monograph and as near as Apparatus. The apparatus comprises an adjustable voltage possible monochromatic. source and a sensitive microammeter; the detection system Measure the intensity of the emitted light at an angle of generally consists of an indicator electrode (for example, 90° to the excitant beam, after passing it through a filter a platinum electrode, a dropping-mercury electrode, a which transmits predominantly light of the wavelength of rotating-disc electrode or a carbon electrode) and a reference the fluorescence. Other types of apparatus may be used electrode (for example, a calomel electrode or a silver-silver provided that the results obtained are identical. chloride electrode). For quantitative determinations, first introduce into the A three-electrode apparatus is sometimes used, consisting of apparatus the solvent or mixture of solvents used to dissolve an indicator electrode, a reference electrode and a polarised the substance to be examined and set the instrument to zero. auxiliary electrode. Introduce the standard solution and adjust the sensitivity Method. Set the potential of the indicator electrode as of the instrument so that the reading is greater than 50. If prescribed and plot a graph of the initial current and the the second adjustment is made by altering the width of the values obtained during the titration as functions of the slits, a new zero setting must be made and the intensity of quantity of titrant added. Add the titrant in not fewer than the standard must be measured again. Finally introduce 3 successive quantities equal to a total of about 80 per cent the solution of unknown concentration and read the result of the theoretical volume corresponding to the presumed on the instrument. Calculate the concentration cx of the equivalence point. The 3 values must fall on a straight substance in the solution to be examined, using the formula: line. Continue adding the titrant beyond the presumed equivalence point in not fewer than 3 successive quantities. The values obtained must fall on a straight line. The point of intersection of the 2 lines represents the end-point of the c titration. x = concentration of the solution to be examined, For amperometric titration with 2 indicator electrodes, the cs = concentration of the standard solution, whole titration curve is recorded and used to determine the Ix = intensity of the light emitted by the solution to end-point. be examined, 01/2005:20220 Is = intensity of the light emitted by the standard solution. 2.2.20. POTENTIOMETRIC TITRATION Iftheintensityofthefluorescenceisnotstrictlyproportional to the concentration, the measurement may be effected using In a potentiometric titration the end-point of the titration a calibration curve. is determined by following the variation of the potential difference between 2 electrodes (either one indicator In some cases, measurement can be made with reference electrode and one reference electrode or 2 indicator to a fixed standard (for example a fluorescent glass or a electrodes) immersed in the solution to be examined as a solution of another fluorescent substance). In such cases, function of the quantity of titrant added. the concentration of the substance to be examined must be determined using a previously drawn calibration curve The potential is usually measured at zero or practically zero under the same conditions. current. Apparatus. The apparatus used (a simple potentiometer or electronic device) comprises a voltmeter allowing readings 01/2005:20222 to the nearest millivolt. The indicator electrode to be used depends on the substance 2.2.22. ATOMIC EMISSION to be determined and may be a glass or metal electrode (for SPECTROMETRY example, platinum, gold, silver or mercury). The reference electrode is generally a calomel or a silver-silver chloride Atomic emission spectrometry is a method for determining electrode. the concentration of an element in a substance by measuring For acid-base titrations and unless otherwise prescribed, the intensity of one of the emission lines of the atomic a glass-calomel or glass-silver-silver chloride electrode vapour of the element generated from the substance. The combination is used. determination is carried out at the wavelength corresponding to this emission line. Method. Plot a graph of the variation of potential difference as a function of the quantity of the titrant added, continuing Apparatus. This consists essentially of an atomic generator the addition of the titrant beyond the presumed equivalence of the element to be determined (flame, plasma, arc, etc.), point. The end-point corresponds to a sharp variation of a monochromator and a detector. If the generator is a potential difference. flame, water R is the solvent of choice for preparing test and reference solutions, although organic solvents may also be 01/2005:20221 used if precautions are taken to ensure that the solvent does not interfere with the stability of the flame. 2.2.21. FLUORIMETRY Method. Operate an atomic emission spectrometer in accordance with the manufacturer’s instructions at the Fluorimetry is a procedure which uses the measurement prescribed wavelength setting. Introduce a blank solution of the intensity of the fluorescent light emitted by the into the atomic generator and adjust the instrument reading substance to be examined in relation to that emitted by a to zero. Introduce the most concentrated reference solution given standard. and adjust the sensitivity to obtain a suitable reading. GeneralNotices(1)applytoallmonographsandothertexts 35 2.2.23. Atomic absorption spectrometry EUROPEAN PHARMACOPOEIA 5.0 Determinations are made by comparison with reference ensure that the solvent does not interfere with the stability solutions with known concentrations of the element to oftheflame.Whenafurnaceisused,substancesmaybe be determined either by the Method of Direct Calibration introduced dissolved in water R or an organic solvent, but (Method I) or the Method of Standard Additions (Method II). with this technique, solid sampling is also possible. METHOD I - DIRECT CALIBRATION The atomic vapour may also be generated outside the spectrometer, for example, the cold vapour method for Prepare the solution of the substance to be examined (test mercury or certain hydrides. For mercury, atoms are solution) as prescribed. Prepare not fewer than 3 reference generated by chemical reduction and the atomic vapour is solutions of the element to be determined the concentrations swept by a stream of an inert gas into an absorption cell of which span the expected value in the test solution. Any mounted in the optical path of the instrument. Hydrides are reagents used in the preparation of the test solution are either mixed with the gas feeding the burner or swept by added to the reference solutions at the same concentration. an inert gas into a heated cell in which they are dissociated Introduce the test solution and each reference solution into into atoms. the instrument at least 3 times and record the steady reading. Method. Operate an atomic absorption spectrometer in Rinse the apparatus with blank solution each time and accordance with the manufacturer’s instructions at the ascertain that the reading returns to its initial blank value. prescribed wavelength setting. Introduce a blank solution Prepare a calibration curve from the mean of the readings into the atomic generator and adjust the instrument reading obtained with the reference solutions and determine the so that it indicates maximum transmission. Introduce concentration of the element in the test solution from the the most concentrated reference solution and adjust the curve so obtained. sensitivity to obtain a suitable absorbance reading. METHOD II - STANDARD ADDITIONS Determinations are made by comparison with reference solutions with known concentrations of the element to Add to at least 3 similar volumetric flasks equal volumes be determined either by the Method of Direct Calibration of the solution of the substance to be examined (test (Method I) or the Method of Standard Additions (Method II). solution) prepared as prescribed. Add to all but one of the flasks progressively larger volumes of a reference solution METHOD I - DIRECT CALIBRATION containing a known concentration of the element to be Prepare the solution of the substance to be examined (test determined to produce a series of solutions containing solution) as prescribed. Prepare not fewer than 3 reference steadily increasing concentrations of that element known solutions of the element to be determined the concentrations to give responses in the linear part of the curve. Dilute the of which span the expected value in the test solution. Any contents of each flask to volume with solvent. reagents used in the preparation of the test solution are Introduce each of the solutions into the instrument at least added to the reference and blank solutions at the same 3 times and record the steady reading.
Recommended publications
  • Supplementary Information
    Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A This journal is © The Royal Society of Chemistry 2012 Supplementary Information 1. Synthesize the redox couples. The synthesis started commercially from available isothiocyanate which were transformed into the corresponding 1-ethyl-1H-tetrazole-5-thiol (ET) derivatives by cycloaddition reaction with sodium azide in refluxing ethanol according to the known procedures. Then the oxidized specie, bis(1-ethyltetrazol-5-yl) (BET) disulfides, was prepared by oxidation of the corresponding ET with hydrogen peroxide, and thiolate (ET-) form was obtained by deprotonation of the corresponding mercaptan (ET) with sodium bicarbonate. The structures of the above-mentioned redox couple was proved by the combination of 1HNMR spectroscopy, mass spectroscopy (ESI-MS) and elemental analyses. The NMR spectra were recorded at 298 K in CDCl3 at 300 MHz on a Varian Mercury-VX300 spectrometer. The chemical shifts were recorded in parts per million (ppm) with TMS as the internal reference. ESI mass spectra were determined using Finnigan LCQ Advantage mass spectrometer. Elemental analyses were performed with Thermo Quest Flash EA1112. The electrolyte consisted of 0.4 M of ET-, 0.05 M of BET, 0.4 M 18-crown-6 (18-C-6), 0.05 M LiClO4 and 0.5 M 4-tert-butylpyridine (TBP) in acetonitrile (ACN). 2. Preparation of electrodes. The NiS electrodes were electrodeposited onto a fluorine-doped tin oxide (FTO) glass substrate (13Ω/□) from an aqueous electrolyte consisting of 1M CH4N2S and 40mM NiCl2∙6H2O in a single-compartment glass cell with three-electrode configuration using electrochemical work station.
    [Show full text]
  • Physical and Analytical Electrochemistry: the Fundamental
    Electrochemical Systems The simplest and traditional electrochemical process occurring at the boundary between an electronically conducting phase (the electrode) and an ionically conducting phase (the electrolyte solution), is the heterogeneous electro-transfer step between the electrode and the electroactive species of interest present in the solution. An example is the plating of nickel. Ni2+ + 2e- → Ni Physical and Analytical The interface is where the action occurs but connected to that central event are various processes that can Electrochemistry: occur in parallel or series. Figure 2 demonstrates a more complex interface; it represents a molecular scale snapshot The Fundamental Core of an interface that exists in a fuel cell with a solid polymer (capable of conducting H+) as an electrolyte. of Electrochemistry However, there is more to an electrochemical system than a single by Tom Zawodzinski, Shelley Minteer, interface. An entire circuit must be made and Gessie Brisard for measurable current to flow. This circuit consists of the electrochemical cell plus external wiring and circuitry The common event for all electrochemical processes is that (power sources, measuring devices, of electron transfer between chemical species; or between an etc). The cell consists of (at least) electrode and a chemical species situated in the vicinity of the two electrodes separated by (at least) one electrolyte solution. Figure 3 is electrode, usually a pure metal or an alloy. The location where a schematic of a simple circuit. Each the electron transfer reactions take place is of fundamental electrode has an interface with a importance in electrochemistry because it regulates the solution. Electrons flow in the external behavior of most electrochemical systems.
    [Show full text]
  • University of Cincinnati
    UNIVERSITY OF CINCINNATI Date:___________________ I, _________________________________________________________, hereby submit this work as part of the requirements for the degree of: in: It is entitled: This work and its defense approved by: Chair: _______________________________ _______________________________ _______________________________ _______________________________ _______________________________ AMPEROMETRIC CHARACTERIZATION OF A NANO INTERDIGITATED ARRAY (nIDA) ELECTRODE AS AN ELECTROCHEMICAL SENSOR A thesis submitted to The Division of Research and Advanced Studies of the University of Cincinnati In partial fulfillment of the requirements for the degree of MASTER OF SCIENCE In the Department of Electrical and Computer Engineering and Computer Science of the College of Engineering August 1, 2006 By Ashwin Kumar Samarao B.E. (Hons.) Electrical and Electronics Birla Institute of Technology and Science, India, 2004 Committee chairman Dr.Chong H. Ahn ABSTRACT The main goal of this research is to amperometrically characterize a ring type nano interdigitated array (nIDA) electrode as an electrochemical sensor and to verify the enhancements in the sensitivity of such a sensor when compared to its micro counterparts. Each electrode was fabricated in gold with 275 fingers, each of width 100 nm and spacing 200 nm, using electron beam lithography and nano lift-off processes on a SiO2/Si wafer. The reference and counter electrodes were fabricated using electroplating. P – Aminophenol (PAP) was used as the redox species to be detected by the nano- IDA electrochemical sensor. Using Chronoamperometry, concentrations of PAP as low as 10 pM were successfully detected using the fabricated sensor. The current output by the sensor for such low concentrations was in the pico-ampere range and was measured using a very sensitive pico-ammeter.
    [Show full text]
  • And the Reference Electrode (Right)
    Development of an Electrochemical Sensor for Detection of 2,4-Dinitrotoluene A DISSERTATION SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA BY Eric James Olson IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Philippe Bühlmann, Adviser July 2012 © Eric J. Olson 2012 Acknowledgements During the course of my doctoral work, I have received the assistance and support from the following people: First and foremost, I am truly indebted to my adviser, Philippe Bühlmann. His undying dedication to science and insatiable thirst for knowledge has been an inspiration to me over the last five years. More than that, the guidance, support, and, most importantly, friendship that Phil has provided has greatly benefitted my development both as a person and as a scientist. I must give special thanks to Dr. Paul Boswell and Dr. Scott Thorgaard for helping me get started in the lab and teaching me best practices for performing electrochemistry experiments. I would also like to thank the following people for their specific contributions to the work described in this thesis: Our collaborator, Professor Andreas Stein, for the many hours that he has spent discussing our collaborative research. His insight and unique point of view has been extremely useful. Dr. Bradley Givot at the 3M Corporate Research Laboratory for measuring the dielectric spectra presented in Chapter 2. Dr. Letitia Yao of the University of Minnesota Chemistry NMR Lab for her assistance with measuring the self-diffusion coefficient of perfluoro(methylcyclohexane) in Chapter 2. Peter Ness of the University of Minnesota Physics Machine Shop for his assistance in designing the microcell described in Chapter 3.
    [Show full text]
  • Unit 1 Introduction to Electro- Analytical Methods
    Introduction to UNIT 1 INTRODUCTION TO ELECTRO- Electroanalytical ANALYTICAL METHODS Methods Structure 1.1 Introduction Objectives 1.2 Basic Concepts Electrical Units Basic Laws of Electrochemistry Electrode Potential Liquid-Junction Potentials Electrochemical Cells The Nernst Equation Cell Potential 1.3 Classification and an Overview of Electroanalytical Methods Potentiometry Voltammetry Polarography Amperometry Electrogravimetry and Coulometry Conductometry 1.4 Classification and Relationships of Electroanalytical Methods 1.5 Summary 1.6 Terminal Questions 1.7 Answers 1.1 INTRODUCTION This is the first unit of this course. This unit deals with the fundamentals of electrochemistry that are necessary for understanding the principles of electroanalytical methods discussed in this Unit 2 to 9. In this unit we have also classified of electroanalytical methods and briefly introduced of some important electroanalytical methods. More details of these elecroanalytical methods will be discussed in the consecutive units. Objectives After studying this unit, you will be able to: • name the different units of electrical quantities, • define the two basic laws of electrochemistry, • describe the single electrode potential and the potential of a galvanic cell, • derive the Nernst expression and give its applications, • calculate the electrode potentials and cell potentials using Nernst equation, • describe the basis for classification of the electroanalytical techniques, and • explain the basis principles and describe the essential conditions of the various electroanalytical techniques. 1.2 BASIC CONCEPTS Before going in detail of different electroanalytical techniques, let’s recapitulate some basic concepts which you have studied in your undergraduate classes. 7 Electroanalytical 1.2.1 Electrical Units Methods -I Ampere (A): Ampere is the unit of current.
    [Show full text]
  • Characterization of a Microfabricated Electrochemical Detector and Coupling
    UNIVERSITY OF CINCINNATI Date: 1-Oct-2009 I, Evan T Ogburn , hereby submit this original work as part of the requirements for the degree of: Master of Science in Chemistry It is entitled: Characterization of a Microfabricated Electrochemical Detector and Coupling with High Performance Liquid Chromatography Student Signature: Evan T Ogburn This work and its defense approved by: Committee Chair: William Heineman, PhD William Heineman, PhD Carl Seliskar, PhD Carl Seliskar, PhD 11/12/2009 288 Characterization of a Microfabricated Electrochemical Detector and Coupling with High Performance Liquid Chromatography A thesis submitted to the Division of Research & Advanced Studies of the University of Cincinnati In partial fulfillment of the requirements for the degree of Master of Science In the Department of Chemistry of the College of Arts and Sciences 2009 By Evan Ogburn B.A., Earlham College, 2005 Committee Chair: William R. Heineman, Ph.D. Abstract A disposable micro-fabricated electrochemical cell has been developed, characterized with multiple electrochemical systems, and coupled with high performance liquid chromatography to form a high performance liquid chromatography electrochemical detection (HPLC-ED) system. The detection system consisted of the micro-fabricated electrochemical detector, a flow-cell and a fixture mounted with electrical connections leading from the detector to the potentiostat. The detector is easy to fabricate, inexpensive, and maintains a high performance level which makes it a practical choice for electrochemical detection. The simplicity of the fabrication process for this detector allows it to be used as a disposable device that can be replaced easily if its performance degrades. Parameters for the optimization of the performance were studied in a three-electrode system with a special focus on HPLC-ED, using ascorbic acid, acetaminophen, and potassium ferricyanide as model compounds.
    [Show full text]
  • Thesis-1961-B586i.Pdf
    INVESTIGATION OF SOME POSSIBILITIES FOR AMPEROMETRIC TITRATION OF CERTAIN METAL IONS WITH OXINE By Donald George Biechler I I Bachelor of Science University of Wisconsin Madison, Wisconsin 1956 Submitted to the faculty of the Graduate School of the Oklahoma State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May, 1961 INVESTIGATION OF SOME POSSIBILITIES FOR AMPEROMEI'RIC TITRATION OF CERTAIN MEI'AL IONS WITH OXINE Thesis Approved: Thesis Adviser i i OKLAHOMA STATE UNIVERSITY llBRARY JAN 2 1962 PREFACE Oxine (8-hydroxyquinoline) is most generally used in analytical chemistry as a precipitant for metals and is known to form water- insoluble chelates with better than thirty metal ions (3). There exists in solutions of oxine a tautomeric equilibrium of the fol- lowing type: C C C C /~/'\ ,c/""/~ C C f ij 1 I II I C C C C C C ~/"'/C N ~/C "+/N r . _I I 0 H 0--------H Chelation of a metal ion involves replacement of the proton and for- mation of a coordinate bond with the nitrogen to form a stable 5 membered ring compound. Thus nickel, a bivalent cation, would form a compound with the following structure: 4810 90 iii iv The oxinates can be ignited and weighed as such or they may be further ignited to the metal oxides and then weighed. Alternately the oxinates may be dissolved in acid and quantitatively brominated (7)0 Considering the number of metal ions that are precipitated by oxine, it seemed that possibly more use could be made of the reagent in volumetric analysis.
    [Show full text]
  • Standard Methods for the Examination of Water and Wastewater
    Standard Methods for the Examination of Water and Wastewater Part 1000 INTRODUCTION 1010 INTRODUCTION 1010 A. Scope and Application of Methods The procedures described in these standards are intended for the examination of waters of a wide range of quality, including water suitable for domestic or industrial supplies, surface water, ground water, cooling or circulating water, boiler water, boiler feed water, treated and untreated municipal or industrial wastewater, and saline water. The unity of the fields of water supply, receiving water quality, and wastewater treatment and disposal is recognized by presenting methods of analysis for each constituent in a single section for all types of waters. An effort has been made to present methods that apply generally. Where alternative methods are necessary for samples of different composition, the basis for selecting the most appropriate method is presented as clearly as possible. However, samples with extreme concentrations or otherwise unusual compositions or characteristics may present difficulties that preclude the direct use of these methods. Hence, some modification of a procedure may be necessary in specific instances. Whenever a procedure is modified, the analyst should state plainly the nature of modification in the report of results. Certain procedures are intended for use with sludges and sediments. Here again, the effort has been to present methods of the widest possible application, but when chemical sludges or slurries or other samples of highly unusual composition are encountered, the methods of this manual may require modification or may be inappropriate. Most of the methods included here have been endorsed by regulatory agencies. Procedural modification without formal approval may be unacceptable to a regulatory body.
    [Show full text]
  • VAN BERKEL, 2005 BIEMANN MEDAL AWARDEE Expanded Use of a Battery-Powered Two-Electrode Emitter Cell for Electrospray Mass Spectrometry
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector FOCUS: VAN BERKEL, 2005 BIEMANN MEDAL AWARDEE Expanded Use of a Battery-Powered Two-Electrode Emitter Cell for Electrospray Mass Spectrometry Vilmos Kertesz and Gary J. Van Berkel Organic and Biological Mass Spectrometry Group, Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA A battery-powered, controlled-current, two-electrode electrochemical cell containing a porous flow-through working electrode with high surface area and multiple auxiliary electrodes with small total surface area was incorporated into the electrospray emitter circuit to control the electrochemical reactions of analytes in the electrospray emitter. This cell system provided the ability to control the extent of analyte oxidation in positive ion mode in the electrospray emitter by simply setting the magnitude and polarity of the current at the working electrode. In addition, this cell provided the ability to effectively reduce analytes in positive ion mode and oxidize analytes in negative ion mode. The small size, economics, and ease of use of such a battery-powered controlled-current emitter cell was demonstrated by powering a single resistor and switch circuit with a small-size, 3 V watch battery, all of which might be incorporated on the emitter cell. (J Am Soc Mass Spectrom 2006, 17, 953–961) © 2006 American Society for Mass Spectrometry lectrochemistry is an inherent part of the normal Basicprinciplesofelectrochemistrydictate[5]and
    [Show full text]
  • COULOMETRY for the DETERMINATION of URANIUM and PLUTONIUM: PAST and PRESENT by M.K
    BARC/2012/E/001 BARC/2012/E/001 COULOMETRY FOR THE DETERMINATION OF URANIUM AND PLUTONIUM: PAST AND PRESENT by M.K. Sharma, J.V. Kamat, A.S. Ambolikar, J.S. Pillai and S.K. Aggarwal Fuel Chemistry Division 2012 BARC/2012/E/001 GOVERNMENT OF INDIA ATOMIC ENERGY COMMISSION BARC/2012/E/001 COULOMETRY FOR THE DETERMINATION OF URANIUM AND PLUTONIUM: PAST AND PRESENT by M.K. Sharma, J.V. Kamat, A.S. Ambolikar, J.S. Pillai and S.K. Aggarwal Fuel Chemistry Division BHABHA ATOMIC RESEARCH CENTRE MUMBAI, INDIA 2012 BARC/2012/E/001 BIBLIOGRAPHIC DESCRIPTION SHEET FOR TECHNICAL REPORT (as per IS : 9400 - 1980) 01 Security classification : Unclassified 02 Distribution : External 03 Report status : New 04 Series : BARC External 05 Report type : Technical Report 06 Report No. : BARC/2012/E/001 07 Part No. or Volume No. : 08 Contract No. : 10 Title and subtitle : Coulometry for the determination of uranium and plutonium: past and present 11 Collation : 34 p., 2 figs., 7 tabs. 13 Project No. : 20 Personal author(s) : M.K. Sharma; J.V. Kamat; A.S. Ambolikar; J.S. Pillai; S.K. Aggarwal 21 Affiliation of author(s) : Fuel Chemistry Division, Bhabha Atomic Research Centre, Mumbai 22 Corporate author(s) : Bhabha Atomic Research Centre, Mumbai - 400 085 23 Originating unit : Fuel Chemistry Division, BARC, Mumbai 24 Sponsor(s) Name : Department of Atomic Energy Type : Government Contd... BARC/2012/E/001 30 Date of submission : December 2011 31 Publication/Issue date : January 2012 40 Publisher/Distributor : Head, Scientific Information Resource Division, Bhabha Atomic Research Centre, Mumbai 42 Form of distribution : Hard copy 50 Language of text : English 51 Language of summary : English, Hindi 52 No.
    [Show full text]
  • Computer-Aided Analytical Methods - a Review
    COMPUTER-AIDED ANALYTICAL METHODS - A REVIEW Läszlö Kekedy-Nagy Chair of Analytical Chemistry Faculty of Chemistry and Chemical Engineering Babe§-Bolyai University 3400 Cluj-Napoca, Romania INTRODUCTION Digital computers have become integral components of modern methods of analysis, influencing both instrument design and analytical methods. To understand the role of a computer in a specific instrumental method, it is necessary to consider the interaction among instrument, computer and analyst. Computers are being increasingly used in analytical work, but a survey of the literature shows that their potential has not yet been fully utilized. They offer enormous flexibility and sophistication in the execution and control of experiments, and their influence will doubtless be more and more widely felt. The following should be mentioned as main concerns: 1) Determination of the optimum analytical conditions, selecting the values of different parameters (e.g., the input signal) such that the best response is possible. In this respect, in order to avoid excessive experimental work and calculations and simplify operations, the mathematical modeling of the relations investi- gated is necessary. 2) Control of the measurement of analytical signals, used, e.g., to control the timing of different phases of the experiment, to prevent or warn against operator errors. 3) Data acquisition and storage of the analytical information. 4) Processing of analytical data is perhaps the main benefit that computers offer for analytical chemists. The computer makes it possible to qualify and classify the hidden information, using various chemometric methods including application of analytical intelligence, such as pattern recognition or expert control of chemical analysis systems.
    [Show full text]
  • The Application of Microelectrodes for Amperometric Titrations
    The application of microelectrodes for amperometric titrations H. HOFBAUEROVÁ, D. BUSTIN, Š. MESÁROŠ, and M. RIEVAJ Department of Analytical Chemistry, Faculty of Chemical Technology, Slovak Technical University, CS-81237 Bratislava Received 30 June 1989 The possibility of application of microelectrodes for the amperometric titrations with one or two indicating electrodes is described in this paper. Platinum and carbon microelectrodes with the radii 4 |im and 12.5 |im, respectively, have been used. The precision and accuracy of titrations of model samples are presented. Recently microelectrodes with characteristic radius of ca. 20|im are in­ troduced as a novel element of instrumentation for modern electrochemical measurements [1]. In comparison with the electrodes of conventional size these have a whole lot of advantages which were published e.g. by Dayton [2] and E wing [3]. From the viewpoint of electroanalytical chemistry the wave form of volt- ammograms following from the time independence of current also in nonstirred solutions may be considered to be the most advantageous property of microelec­ trodes. The time independence of current follows from the Cottrell equation corrected to the contribution of nonlinear diffusion , zFD]2Ac . z FDA с I = : \- к — = a + b 7г1/2/|/2 m1'2 where a is the contribution of linear and b is the contribution of nonlinear diffusion to the limiting current, z is the number of exchanged electrons per particle for the analytically used electrode reaction, F the Faraday constant (C mol-1), A electrode area (m2), с concentration of the determined component (mol m-3), D diffusion coefficient, r radius of disc electrode — of disc, sphere, cylinder, and к is the coefficient with the values я|/2 for spherical electrode [4, 5]; 0.5 for cylindrical electrode [6, 7].
    [Show full text]