Intrapelvic Causes of Sciatica: a Systematic Review
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Femoral and Sciatic Nerve Blocks for Total Knee Replacement in an Obese Patient with a Previous History of Failed Endotracheal Intubation −A Case Report−
Anesth Pain Med 2011; 6: 270~274 ■Case Report■ Femoral and sciatic nerve blocks for total knee replacement in an obese patient with a previous history of failed endotracheal intubation −A case report− Department of Anesthesiology and Pain Medicine, School of Medicine, Catholic University of Daegu, Daegu, Korea Jong Hae Kim, Woon Seok Roh, Jin Yong Jung, Seok Young Song, Jung Eun Kim, and Baek Jin Kim Peripheral nerve block has frequently been used as an alternative are situations in which spinal or epidural anesthesia cannot be to epidural analgesia for postoperative pain control in patients conducted, such as coagulation disturbances, sepsis, local undergoing total knee replacement. However, there are few reports infection, immune deficiency, severe spinal deformity, severe demonstrating that the combination of femoral and sciatic nerve blocks (FSNBs) can provide adequate analgesia and muscle decompensated hypovolemia and shock. Moreover, factors relaxation during total knee replacement. We experienced a case associated with technically difficult neuraxial blocks influence of successful FSNBs for a total knee replacement in a 66 year-old the anesthesiologist’s decision to perform the procedure [1]. In female patient who had a previous cancelled surgery due to a failed tracheal intubation followed by a difficult mask ventilation for 50 these cases, peripheral nerve block can provide a good solution minutes, 3 days before these blocks. FSNBs were performed with for operations on a lower extremity. The combination of 50 ml of 1.5% mepivacaine because she had conditions precluding femoral and sciatic nerve blocks (FSNBs) has frequently been neuraxial blocks including a long distance from the skin to the used for postoperative pain control after total knee replacement epidural space related to a high body mass index and nonpalpable lumbar spinous processes. -
LECTURE (SACRAL PLEXUS, SCIATIC NERVE and FEMORAL NERVE) Done By: Manar Al-Eid Reviewed By: Abdullah Alanazi
CNS-432 LECTURE (SACRAL PLEXUS, SCIATIC NERVE AND FEMORAL NERVE) Done by: Manar Al-Eid Reviewed by: Abdullah Alanazi If there is any mistake please feel free to contact us: [email protected] Both - Black Male Notes - BLUE Female Notes - GREEN Explanation and additional notes - ORANGE Very Important note - Red CNS-432 Objectives: By the end of the lecture, students should be able to: . Describe the formation of sacral plexus (site & root value). List the main branches of sacral plexus. Describe the course of the femoral & the sciatic nerves . List the motor and sensory distribution of femoral & sciatic nerves. Describe the effects of lesion of the femoral & the sciatic nerves (motor & sensory). CNS-432 The Mind Maps Lumber Plexus 1 Branches Iliohypogastric - obturator ilioinguinal Femoral Cutaneous branches Muscular branches to abdomen and lower limb 2 Sacral Plexus Branches Pudendal nerve. Pelvic Splanchnic Sciatic nerve (largest nerves nerve), divides into: Tibial and divides Fibular and divides into : into: Medial and lateral Deep peroneal Superficial planter nerves . peroneal CNS-432 Remember !! gastrocnemius Planter flexion – knee flexion. soleus Planter flexion Iliacus –sartorius- pectineus – Hip flexion psoas major Quadriceps femoris Knee extension Hamstring muscles Knee flexion and hip extension gracilis Hip flexion and aids in knee flexion *popliteal fossa structures (superficial to deep): 1-tibial nerve 2-popliteal vein 3-popliteal artery. *foot drop : planter flexed position Common peroneal nerve injury leads to Equinovarus Tibial nerve injury leads to Calcaneovalgus CNS-432 Lumbar Plexus Formation Ventral (anterior) rami of the upper 4 lumbar spinal nerves (L1,2,3 and L4). Site Within the substance of the psoas major muscle. -
Hybrid Solution Combining Osteosynthesis and Endoprosthesis for Double Column Acetabular Fractures in the Elderly Provide More Stability with Finite Element Model
Eklem Hastalıkları ve Eklem Hastalik Cerrahisi Cerrahisi 2019;30(2):106-111 Joint Diseases and Related Surgery Original Article / Özgün Makale doi: 10.5606/ehc.2019.66592 Hybrid solution combining osteosynthesis and endoprosthesis for double column acetabular fractures in the elderly provide more stability with finite element model Yaşlılarda çift kolon asetabuler kırıklar için osteosentez ve endoprotez hibrid kombinasyonu “finite element” yöntemi ile daha çok stabilite sağlar András Kocsis, MD1, Károly Váradi, MD2, Gábor Szalai2, Tamás Kovács, MD1, Tamás Bodzay, MD, PhD1 1Jenő Manninger National Institute of Traumatology, Budapest, Hungary 2Budapest University of Technology and Economics, Faculty of Mechanical Engineering, Department of Machine and Product Design, Hungary ABSTRACT ÖZ Objectives: This study aims to compare mechanical Amaç: Bu çalışmada yaşlılarda çift kolon kırıklarında stability of osteosynthesis (plate and screw fixation) alone osteosenteze (plak ve vida tespiti) kıyasla kalça artroplastisi ile versus the same method supplemented with hip arthroplasty desteklenen aynı yöntemin (hibrid çözüm) mekanik stabilitesi (hybrid solution) for double column fractures in elderly. karşılaştırıldı. Patients and methods: Mechanical investigations were Hastalar ve yöntemler: Çift kolon kırıkları için geliştirilen performed on an advanced finite element pelvis model ileri sonlu eleman pelvis modelinde mekanik araştırmalar developed for double column fractures. The following yapıldı. İncelenen simüle edilen implant kombinasyonları simulated -
A Rare Bifurcation Pattern of the Sciatic Nerve
CASE REPORT Anatomy Journal of Africa. 2017. Vol 6 (3): 1011 - 1014 . A RARE BIFURCATION PATTERN OF THE SCIATIC NERVE Emranul Huq1, Paul Bailie2 1Assistant Professor (Anatomy), Faculty of Basic Sciences, Saint James School of Medicine – St. Vincent and the Grenadines campus. 2MD Candidate, Saint James School of Medicine – Anguilla campus. Correspondence to Prof. Emranul Huq, Saint James School of Medicine. PO Box 2336. Cane Hall, St. Vincent and the Grenadines. Phone: +1784-496-0236. Email: [email protected]. ABSTRACT Variations in branching patterns of the sciatic nerve are thought to be clinically significant because of the nerve’s extensive distribution area. Here we report a rare and unusual branching pattern of the sciatic nerve which was observed in a male cadaver. Sciatic nerve underwent a high division inside the pelvic cavity, and entered the gluteal region as separate tibial and common fibular nerves. Subsequent distal courses of both nerves into the leg were normal. Knowledge of sciatic nerve variations is useful in treating lower limb neuropathies, such as piriformis syndrome, which tends to be caused by the compression of the sciatic nerve by the piriformis muscle. Keywords: Sciatic nerve bifurcation; sciatic nerve anomalies; piriformis syndrome. INTRODUCTION The sciatic nerve is the largest nerve in the popliteal fossa, the two divisions of the sciatic human body (Williams et al., 1995). It is one nerve occasionally separate from one another of the terminal nerves emerging from the proximal to the apex of the popliteal fossa lumbosacral plexus, and is formed by the (Beaton and Anson, 1937; Williams et al., union of the ventral rami of L4-S3 spinal 1995; Fessler and Sekhar, 2006). -
Foot Drop Schema Script
CPS Foot Drop Schema Script Hi everyone - my name is Maniraj. I’m excited to narrate this Clinical Problem Solvers schema on foot drop. Foot drop is really a story about a weakness or paralysis in the muscles that dorsiflex the foot. A patient with foot drop will drag their toes while walking. To avoid tripping over their toes while walking, a patient will lift their foot higher off the ground. Since there is no dorsiflexion for a heel strike when bringing their foot down, the patient “overshoots” and slaps their foot on the ground. This is called a steppage gait. What muscles are we talking about? The main dorsiflexor muscles are the tibialis anterior and the extensors of the toes (extensor hallucis longus and extensor digitorum longus). All of these muscles are innervated by the deep peroneal nerve, which is a branch of the common peroneal nerve. The peroneal nerve itself is a terminal branch of the sciatic nerve; the other branch of the sciatic is the tibial nerve. To help anchor the nerve functions we’ll be talking about, I think it’d be beneficial to first review acronyms that can be used to memorize them. The peroneal nerve functions to evert and dorsiflex at the ankle, which can be remembered by the acronym PED. The tibial nerve functions to invert and plantarflex at the ankle, so that becomes TIP. Since the sciatic nerve is really just the bundle of peroneal & tibial nerves, you can remember the sciatic nerve functions as PED + TIP. The sciatic nerve also supplies the hamstrings, which flex the leg at the knee. -
Lumbar Spine Nerve Pain
Contact details Physiotherapy Department, Torbay Hospital, Newton Road, Torquay, Devon TQ2 7AA PATIENT INFORMATION ( 0300 456 8000 or 01803 614567 TorbayAndSouthDevonFT @TorbaySDevonNHS Lumbar Spine www.torbayandsouthdevon.nhs.uk/ Nerve Pain Useful Websites & References www.spinesurgeons.ac.uk British Association of Spinal Surgeons including useful patient information for common spinal treatments https://www.nice.org.uk/guidance/ng59 NICE Guidelines for assessment and management of low back pain and sciatica in over 16s http://videos.torbayandsouthdevon.nhs.uk/radiology Radiology TSDFT website https://www.torbayandsouthdevon.nhs.uk/services/pain- service/reconnect2life/ Pain Service Website Reconnect2Life For further assistance or to receive this information in a different format, please contact the department which created this leaflet. Working with you, for you 25633/Physiotherapy/V1/TSDFT/07.20/Review date 07.22 A Brief Lower Back Anatomy Treatment The normal lower back (lumbar spine) has 5 bones When the clinical diagnosis and MRI findings correlate, (vertebrae) and a collection of nerves which branch out in a target for injection treatment can be identified. This pairs at each level. In between each vertebra there is a disc is known as a nerve root injection, and can both which acts as a shock absorber and spacer. improve symptoms and aid diagnosis. The spinal nerves are like electrical wiring, providing Nerve root injections or ‘nerve root blocks’ are used to signals to areas within the leg. These control sensation and reduce pain in a particular area if you have lower limb pain movement but can cause pain when they are affected. such as sciatica. The injection is done in Radiology. -
Lumbar Disc Herniation
What is a disc herniation (herniated discs)? A disc herniation occurs when a full thickness tear in the outer part of the disc (tear in the dough of the jelly donut) allows the inner portion of the disc (the jelly inside the donut) to leak out of the tear. Because the nerve root lies right next to the intervertebral disc, it gets compressed by the leaked nucleus pulposus (leaked jelly from the donut). This compression of the nerve root can lead to pain, numbness, tingling, burning or the sensation of “pins and needles” that run down the arm or leg. It can also cause weakness in the arm or leg muscles and rarely may lead to loss of bowel or bladder control. MRI of the lumbar spine demonstrating a disc herniation on the right side. This particular patient had severe pain, numbness, tingling and weakness in the right leg. MRI of the neck demonstrating a LARGE disc herniation causing severe spinal cord compression. In a case like this, non-operative treatment is NOT amenable to relieving the pressure on the spinal cord and surgery is recommended as a first line of treatment. A B L4 L4 L5 L5 Herniated Disc C D E Figure. MRI of the lumbar spine demonstrating a disc herniation at L4-5 on the patient’s right side (arrows are pointing at the herniated disc in A, B, D and E). The picture marked C shows a normal part of the spine where there is no herniation. TREATMENT OPTIONS Disc herniations can be treated nonoperatively or may require surgery. -
Diagnosis and Treatment of Lumbar Disc Herniation with Radiculopathy
Y Lumbar Disc Herniation with Radiculopathy | NASS Clinical Guidelines 1 G Evidence-Based Clinical Guidelines for Multidisciplinary ETHODOLO Spine Care M NE I DEL I U /G ON Diagnosis and Treatment of I NTRODUCT Lumbar Disc I Herniation with Radiculopathy NASS Evidence-Based Clinical Guidelines Committee D. Scott Kreiner, MD Paul Dougherty, II, DC Committee Chair, Natural History Chair Robert Fernand, MD Gary Ghiselli, MD Steven Hwang, MD Amgad S. Hanna, MD Diagnosis/Imaging Chair Tim Lamer, MD Anthony J. Lisi, DC John Easa, MD Daniel J. Mazanec, MD Medical/Interventional Treatment Chair Richard J. Meagher, MD Robert C. Nucci, MD Daniel K .Resnick, MD Rakesh D. Patel, MD Surgical Treatment Chair Jonathan N. Sembrano, MD Anil K. Sharma, MD Jamie Baisden, MD Jeffrey T. Summers, MD Shay Bess, MD Christopher K. Taleghani, MD Charles H. Cho, MD, MBA William L. Tontz, Jr., MD Michael J. DePalma, MD John F. Toton, MD This clinical guideline should not be construed as including all proper methods of care or excluding or other acceptable methods of care reason- ably directed to obtaining the same results. The ultimate judgment regarding any specific procedure or treatment is to be made by the physi- cian and patient in light of all circumstances presented by the patient and the needs and resources particular to the locality or institution. I NTRODUCT 2 Lumbar Disc Herniation with Radiculopathy | NASS Clinical Guidelines I ON Financial Statement This clinical guideline was developed and funded in its entirety by the North American Spine Society (NASS). All participating /G authors have disclosed potential conflicts of interest consistent with NASS’ disclosure policy. -
Protection of L1 Nerve Roots in Vertebral Osteotomy for Severe Rigid Thoracolumbar Spine Deformity
Protection of L1 nerve roots in vertebral osteotomy for severe rigid thoracolumbar spine deformity Hang Liao Shenzhen University Houguang Miao Shenzhen University Peng Xie Shenzhen University Yueyue Wang Shenzhen University Ningdao Li Shenzhen University Guizhou Zheng Shenzhen University Xuedong Li Shenzhen University Shixin Du ( [email protected] ) Shenzhen University Research article Keywords: Thoracolumbar deformity, Nerve roots injury, L1 nerve roots, Parallel endplate osteotomy Posted Date: October 2nd, 2019 DOI: https://doi.org/10.21203/rs.2.15567/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/16 Abstract Background: This is a retrospective study of the use of parallel endplate osteotomy (PEO) for correction of severe rigid thoracolumbar spine deformity. Methods : From July 2016 to June 2017, 10 patients with severe rigid thoracolumbar spine deformity underwent PEO on T12 or L1 vertebrae were studied. Results : Following PEO performed at T12 or L1, the kyphosis and scoliosis correction rates reached averages of 77.4 ± 8.5% and 76.6 ± 6.8%, intraoperative bleeding 1990 ± 1010 ml, operation time 7.12 ± 3.88 h. One year after surgery, the SF-36 scores of physical function, role-physical, bodily pain, general health, vitality, social function, role-emotional and mental health from 60 ± 30, 47 ± 33, 44 ± 30, 32 ± 18, 50 ±30, 46 ± 29, 26 ± 40 and 52 ± 20 to 81 ± 16, 69 ± 19, 73 ± 11, 66 ± 21, 74 ± 16, 74 ± 24, 63 ± 37 and 76 ± 12, respectively (P < 0.01). Three patients had symptoms of L1 nerve root injury, as reected by knee extension and hip exion of lower limb weakness and inner thigh numbness, which further conrmed by electromyography. -
The Pelvis Structure the Pelvic Region Is the Lower Part of the Trunk
The pelvis Structure The pelvic region is the lower part of the trunk, between the abdomen and the thighs. It includes several structures: the bony pelvis (or pelvic skeleton) is the skeleton embedded in the pelvic region of the trunk, subdivided into: the pelvic girdle (i.e., the two hip bones, which are part of the appendicular skeleton), which connects the spine to the lower limbs, and the pelvic region of the spine (i.e., sacrum, and coccyx, which are part of the axial skeleton) the pelvic cavity, is defined as the whole space enclosed by the pelvic skeleton, subdivided into: the greater (or false) pelvis, above the pelvic brim , the lesser (or true) pelvis, below the pelvic brim delimited inferiorly by the pelvic floor(or pelvic diaphragm), which is composed of muscle fibers of the levator ani, the coccygeus muscle, and associated connective tissue which span the area underneath the pelvis. Pelvic floor separate the pelvic cavity above from the perineum below. The pelvic skeleton is formed posteriorly (in the area of the back), by the sacrum and the coccyx and laterally and anteriorly (forward and to the sides), by a pair of hip bones. Each hip bone consists of 3 sections, ilium, ischium, and pubis. During childhood, these sections are separate bones, joined by the triradiate hyaline cartilage. They join each other in a Y-shaped portion of cartilage in the acetabulum. By the end of puberty the three bones will have fused together, and by the age of 25 they will have ossified. The two hip bones join each other at the pubic symphysis. -
Fibrous Adhesive Entrapment of Lumbosacral Nerve Roots As a Cause of Sciatica
Spinal Cord 2001) 39, 269 ± 273 ã 2001 International Medical Society of Paraplegia All rights reserved 1362 ± 4393/01 $15.00 www.nature.com/sc Original Article Fibrous adhesive entrapment of lumbosacral nerve roots as a cause of sciatica K Ido*,1 and H Urushidani1 1Department of Orthopaedic Surgery, Kurashiki Central Hospital, Okayama, Japan Study design: Report of seven patients with ®brous adhesive entrapment of lumbosacral nerve roots as a cause of sciatica, whose radiographic ®ndings were negative and who experienced relief from sciatica immediately after the entrapment was released. Objectives: To describe a new clinical entity of ®brous adhesive entrapment of lumbosacral nerve roots with negative radiographic ®ndings. Setting: Orthopaedic department, Japan. Methods: Clinical evaluation and post-operative outcome in seven patients with entrapment of lumbosacral nerve roots because of ®brous adhesion con®rmed intraoperatively. Results: Radiographic examinations by magnetic resonance imaging &MRI), myelography, and computed tomographic &CT) myelography demonstrated neither disc herniations nor spinal stenosis in all seven patients, and dierential nerve root block was eective for relieving sciatica and low back pain.We con®rmed, intraoperatively, entrapment of the nerve root by ®brous adhesion, and all seven patients were relieved from sciatica and low back pain postoperatively. Conclusion: This study presented seven patients with sciatica caused by ®brous adhesive entrapment of lumbosacral nerve roots who underwent decompression and release of ®brous adhesion.Radiographic examinations, such as MRI, myelography and CT myelography, showed no compressive shadows and also dierential nerve root block was eective for its diagnosis.This study seems to be the ®rst report of patients with entrapment of lumbosacral nerve roots caused by ®brous adhesion, whose radiographic ®ndings were negative. -
HUMAN PELVIS HEIGHT IS ASSOCIATED with OTHER PELVIS MEASUREMENTS of OBSTETRIC VALUE Munabi Ian G
ORIGINAL COMMUNICATION Anatomy Journal of Africa. 2015. Vol 4 (1): 457 – 465 HUMAN PELVIS HEIGHT IS ASSOCIATED WITH OTHER PELVIS MEASUREMENTS OF OBSTETRIC VALUE Munabi Ian G. *, Mirembe Florence, Luboga Sam A *Corresponding author; Munabi Ian G, Department of Anatomy, School of Biomedical Sciences, Makerere University College of Health Sciences, P.O. Box 7072 Kampala Uganda East Africa Telephone: +256772485474 Email: [email protected] ABSTRACT In low resource settings, perinatal death remains a major challenge, yet some of the key anthropometric measures used for screening have been found to be inappropriate. These calls for additional anatomically related measurements to act as a basis for the design of: easy-to-use, low technology accurate tools to enhance obstetric care quality in these settings. This study set out to determine the associations between the various pelvis anthropometric measurements of obstetric importance with pelvis height. The study made use of 30 complete rearticulated Adult pelvic bonesets of known sex. The some of the thirteen measurements made on each boneset included: Pelvis height, Sacral Anterior Orientation (SAO), pubic bone length, total pelvis height and inlet medial-lateral diameter. All measurements were taken thrice and the average used for comparisons with pelvis height. The non-parametric Mann-Whitney test and multilevel regression analysis test to control for gender was used. Pelvis height had significant associations with SAO (-0.36, P<0.01), pubic bone length (0.41, P<0.01), total pelvis height (0.21, P=0.04) and inlet medial-lateral diameter (0.46, P=0.02). Additional significant associations were observed with the diameters of the mid and outlet diameters of the birth canal.