Diagnosis and Treatment of Lumbar Disc Herniation with Radiculopathy

Total Page:16

File Type:pdf, Size:1020Kb

Diagnosis and Treatment of Lumbar Disc Herniation with Radiculopathy Y Lumbar Disc Herniation with Radiculopathy | NASS Clinical Guidelines 1 G Evidence-Based Clinical Guidelines for Multidisciplinary ETHODOLO Spine Care M NE I DEL I U /G ON Diagnosis and Treatment of I NTRODUCT Lumbar Disc I Herniation with Radiculopathy NASS Evidence-Based Clinical Guidelines Committee D. Scott Kreiner, MD Paul Dougherty, II, DC Committee Chair, Natural History Chair Robert Fernand, MD Gary Ghiselli, MD Steven Hwang, MD Amgad S. Hanna, MD Diagnosis/Imaging Chair Tim Lamer, MD Anthony J. Lisi, DC John Easa, MD Daniel J. Mazanec, MD Medical/Interventional Treatment Chair Richard J. Meagher, MD Robert C. Nucci, MD Daniel K .Resnick, MD Rakesh D. Patel, MD Surgical Treatment Chair Jonathan N. Sembrano, MD Anil K. Sharma, MD Jamie Baisden, MD Jeffrey T. Summers, MD Shay Bess, MD Christopher K. Taleghani, MD Charles H. Cho, MD, MBA William L. Tontz, Jr., MD Michael J. DePalma, MD John F. Toton, MD This clinical guideline should not be construed as including all proper methods of care or excluding or other acceptable methods of care reason- ably directed to obtaining the same results. The ultimate judgment regarding any specific procedure or treatment is to be made by the physi- cian and patient in light of all circumstances presented by the patient and the needs and resources particular to the locality or institution. I NTRODUCT 2 Lumbar Disc Herniation with Radiculopathy | NASS Clinical Guidelines I ON Financial Statement This clinical guideline was developed and funded in its entirety by the North American Spine Society (NASS). All participating /G authors have disclosed potential conflicts of interest consistent with NASS’ disclosure policy. Disclosures are listed below: U I DEL D. Scott Kreiner, MD Nothing to disclose. (8/14/12) I NE Steven Hwang, MD Nothing to disclose. (4/22/12) M John Easa, MD Stock Ownership: Janus Biotherapeutics (100000, 3, Janus Biotherapeutics is an auto-immunity com- ETHODOLO pany, Paid directly to institution/employer). (11/11/11) Daniel K .Resnick, MD Board of Directors: Congress of Neurological Surgeons (Nonfinancial); Scientific Advisory Board: Neu- rosurgical Research Foundation (Nonfinancial); Grants: AANS Spine Section (Level D, research grant through AANS, Paid directly to institution/employer). (2/10/12) G Y Jamie Baisden, MD Nothing to disclose. (8/14/12) Shay Bess, MD Royalties: Pioneer (Level B); Consulting: Allosource, DePuy Spine (Level B), Medtronic (Level B); Speak- ing and/or teaching arrangements: DePuy Spine (Level B); Trips/Travel: DePuy Spine (Level B), Medtron- ic (Level A); Scientific Advisory Board: Allosource (Level B); Research Support (Investigator Salary): DePuy Spine (Level B); Grants: Orthopedic Research and Education Foundation (Level C). (12/11/11) Charles H. Cho, MD, MBA Other Office:American Society of Spine Radiology (Nonfinancial, Executive Committee (March 2012 - February 2013). (3/31/12) Michael J. DePalma, MD Consulting: Vertiflex, Inc (Financial, Hourly consultant, Paid directly to institution/employer); Board of Directors: International Spine Intervention Society (Financial, Only reimbursed for Board related travel., Paid directly to institution/employer), Virginia Spine Research Institute, Inc. (Financial, Salaried position as President; Director of Research, Paid directly to institution/employer); Other Office: Re- search Committee Vice-Chair, International Spine Intervention Society (Nonfinancial, My registration fee for the 2012 ISIS Annual Scientific Meeting was waived); Research Support (Investigator Salary): Spinal Restoration, Inc. (Level B, Clinical effort covered by this grant as a co-investigator on intradiscal fibrin sealant clinical trial., Paid directly to institution/employer), Mesoblast, Inc. (Level B, Clinical effort covered by this grant as a co-investigator on intradiscal stem cell clinical trial., Paid directly to institu- tion/employer); Grants: Spinal Restoration, Inc. (Level D, Coverage of expenses related to patient en- rollment., Paid directly to institution/employer), Mesoblast, Inc. (Level D, Coverage of expenses related to patient enrollment and study start up., Paid directly to institution/employer), St. June Medical (Level C, Coverage of expenses related to retrospective chart review, Paid directly to institution/employer); Relationships Outside the One Year Requirement: AOI Medical (Upcoming Committee Meeting [Clinical Guidelines; Nominating], 03/2010, Consulting, 0), Stryker Interventional Spine (NASS Annual Meeting, 03/2010, Consulting, Level B), St. Jude Medical (NASS Annual Meeting, 03/2010, Consulting), Stryker Biotech (NASS Annual Meeting, 6/2011, Grant, 0), ATRM (NASS Annual Meeting, 6/2011, Grant, 0). (10/1/12) Paul Dougherty, II, DC Nothing to disclose. (8/24/12) Robert Fernand, MD Nothing to disclose. (11/15/11) Gary Ghiselli, MD Royalties: Zimmer Spine (Level D, I am not sure of the exact amount); Stock Ownership: Mesoblast (6500, 0, Publically traded company); Private Investments: DiFusion (100000, 9); Consulting: Biomet (Level B for product development and teaching); Scientific Advisory Board: DiFusion (Nonfinancial, Stock options in company). (8/18/11) Amgad S. Hanna, MD Trips/Travel: Medtronic (Nonfinancial, domestic roundtrip flight, and one hotel night). (4/27/12) Tim Lamer, MD Nothing to disclose. (5/9/12) Anthony J. Lisi, DC Nothing to disclose. (8/22/12) Daniel J. Mazanec, MD Nothing to disclose. (4/20/12) Richard J. Meagher, MD Nothing to disclose. (8/27/12) Robert C. Nucci, MD Nothing to disclose. (5/8/12) Rakesh D. Patel, MD Nothing to disclose. (9/20/11) Jonathan N. Sembrano, MD Trips/Travel: NuVasive, Inc. (Nonfinancial, Hotel accommodations (2 nights) to attend annual research meeting of SOLAS (Society of Lateral Access Surgeons) in May 2012. (approximately Level A); Scien- tific Advisory Board: SOLAS (Society of Lateral Access Surgeons) (Nonfinancial); Research Support (Staff/Materials): NuVasive (0, Study site for a multicenter RCT of XLIF vs. MIS TLIF for degenerative spondylolisthesis. Approved January 2010. Four patients enrolled thus far. Approximate value Level B. This would be spent for services of a part-time study coordinator. No investigator remuneration/sal- ary., Paid directly to institution/employer). (8/14/12) Anil K. Sharma, MD Nothing to disclose. (4/22/12) This clinical guideline should not be construed as including all proper methods of care or excluding or other acceptable methods of care reason- ably directed to obtaining the same results. The ultimate judgment regarding any specific procedure or treatment is to be made by the physi- cian and patient in light of all circumstances presented by the patient and the needs and resources particular to the locality or institution. Y Lumbar Disc Herniation with Radiculopathy | NASS Clinical Guidelines 3 G Jeffrey T. Summers, MD Private Investments: Morris Innovative (2000, 1, The company makes vascular catheters, which are not used for any spine related treatment, or in pain management, and therefore have no potential influence on my practice); Board of Directors: First Choice Insurance (Nonfinancial, I did not accept ETHODOLO a further appointment to this board, effective 6/2012), International Spine Intervention Society (ISIS) M NE (Nonfinancial, I am on the ISIS Board of Directors. I also serve as Vice President. Travel expenses I (airfare, hotel and parking) are provided when traveling to a Board meeting (official business only). DEL I (8/14/12) U Christopher K. Taleghani, MD Royalties: Seaspine (Level C); Speaking and/or teaching arrangements: Medtron (Level B for teaching a /G course), Globus (Level B for teaching a course). (4/30/12) ON I William L. Tontz, Jr., MD Stock Ownership: Phygen (1, 6, Physician owned implant company involved in development and distri- bution of spinal implants., Paid directly to institution/employer); Other Office: Board of Managers (Paid Level B for board of manager term from 2009-2010). (5/9/12) John F. Toton, MD Nothing to disclose. (4/22/12) NTRODUCT I Range Key: Level A. $100 to $1,000 Level B. $1,001 to $10,000 Level C. $10,001 to $25,000 Level D. $25,001 to $50,000 Level E. $50,001 to $100,000 Level F. $100,001 to $500,000 Level G. $500,001 to $1M Level H. $1,000,001 to $2.5M Level I. Greater than $2.5M Comments Comments regarding the guideline may be submitted to the North American Spine Society and will be considered in develop- ment of future revisions of the work. North American Spine Society Clinical Guidelines for Multidisciplinary Spine Care Diagnosis and Treatment of Lumbar Disc Herniation with Radiculopathy Copyright © 2012 North American Spine Society 7075 Veterans Boulevard Burr Ridge, IL 60527 USA 630.230.3600 www.spine.org ISBN 1-929988-32-X This clinical guideline should not be construed as including all proper methods of care or excluding or other acceptable methods of care reason- ably directed to obtaining the same results. The ultimate judgment regarding any specific procedure or treatment is to be made by the physi- cian and patient in light of all circumstances presented by the patient and the needs and resources particular to the locality or institution. I NTRODUCT 4 Lumbar Disc Herniation with Radiculopathy | NASS Clinical Guidelines I ON Table of Contents /G U I DEL I NE I. Introduction ...................................................................5 M ETHODOLO II. Guideline Development Methodology ..............................................6 III. Natural History of Lumbar Disc Herniation with Radiculopathy..........................9 G Y IV. Recommendations
Recommended publications
  • Download the Herniated Disc Brochure
    AN INTRODUCTION TO HERNIATED DISCS This booklet provides general information on herniated discs. It is not meant to replace any personal conversations that you might wish to have with your physician or other member of your healthcare team. Not all the information here will apply to your individual treatment or its outcome. About the Spine CERVICAL The human spine is comprised 24 bones or vertebrae in the cervical (neck) spine, the thoracic (chest) spine, and the lumbar (lower back) THORACIC spine, plus the sacral bones. Vertebrae are connected by several joints, which allow you to bend, twist, and carry loads. The main joint LUMBAR between two vertebrae is called an intervertebral disc. The disc is comprised of two parts, a tough and fibrous outer layer (annulus fibrosis) SACRUM and a soft, gelatinous center (nucleus pulposus). These two parts work in conjunction to allow the spine to move, and also provide shock absorption. INTERVERTEBRAL ANNULUS DISC FIBROSIS SPINAL NERVES NUCLEUS PULPOSUS Each vertebrae has an opening (vertebral foramen) through which a tubular bundle of spinal nerves and VERTEBRAL spinal nerve roots travel. FORAMEN From the cervical spine to the mid-lumbar spine this bundle of nerves is called the spinal cord. The bundle is then referred to as the cauda equina through the bottom of the spine. At each level of the spine, spinal nerves exit the spinal cord and cauda equina to both the left and right sides. This enables movement and feeling throughout the body. What is a Herniated Disc? When the gelatinous center of the intervertebral disc pushes out through a tear in the fibrous wall, the disc herniates.
    [Show full text]
  • Vertebral Column and Thorax
    Introduction to Human Osteology Chapter 4: Vertebral Column and Thorax Roberta Hall Kenneth Beals Holm Neumann Georg Neumann Gwyn Madden Revised in 1978, 1984, and 2008 The Vertebral Column and Thorax Sternum Manubrium – bone that is trapezoidal in shape, makes up the superior aspect of the sternum. Jugular notch – concave notches on either side of the superior aspect of the manubrium, for articulation with the clavicles. Corpus or body – flat, rectangular bone making up the major portion of the sternum. The lateral aspects contain the notches for the true ribs, called the costal notches. Xiphoid process – variably shaped bone found at the inferior aspect of the corpus. Process may fuse late in life to the corpus. Clavicle Sternal end – rounded end, articulates with manubrium. Acromial end – flat end, articulates with scapula. Conoid tuberosity – muscle attachment located on the inferior aspect of the shaft, pointing posteriorly. Ribs Scapulae Head Ventral surface Neck Dorsal surface Tubercle Spine Shaft Coracoid process Costal groove Acromion Glenoid fossa Axillary margin Medial angle Vertebral margin Manubrium. Left anterior aspect, right posterior aspect. Sternum and Xyphoid Process. Left anterior aspect, right posterior aspect. Clavicle. Left side. Top superior and bottom inferior. First Rib. Left superior and right inferior. Second Rib. Left inferior and right superior. Typical Rib. Left inferior and right superior. Eleventh Rib. Left posterior view and left superior view. Twelfth Rib. Top shows anterior view and bottom shows posterior view. Scapula. Left side. Top anterior and bottom posterior. Scapula. Top lateral and bottom superior. Clavicle Sternum Scapula Ribs Vertebrae Body - Development of the vertebrae can be used in aging of individuals.
    [Show full text]
  • Anterior Reconstruction Techniques for Cervical Spine Deformity
    Neurospine 2020;17(3):534-542. Neurospine https://doi.org/10.14245/ns.2040380.190 pISSN 2586-6583 eISSN 2586-6591 Review Article Anterior Reconstruction Techniques Corresponding Author for Cervical Spine Deformity Samuel K. Cho 1,2 1 1 1 https://orcid.org/0000-0001-7511-2486 Murray Echt , Christopher Mikhail , Steven J. Girdler , Samuel K. Cho 1Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA Department of Orthopaedics, Icahn 2 Department of Neurological Surgery, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, School of Medicine at Mount Sinai, 425 NY, USA West 59th Street, 5th Floor, New York, NY, USA E-mail: [email protected] Cervical spine deformity is an uncommon yet severely debilitating condition marked by its heterogeneity. Anterior reconstruction techniques represent a familiar approach with a range Received: June 24, 2020 of invasiveness and correction potential—including global or focal realignment in the sagit- Revised: August 5, 2020 tal and coronal planes. Meticulous preoperative planning is required to improve or prevent Accepted: August 17, 2020 neurologic deterioration and obtain satisfactory global spinal harmony. The ability to per- form anterior only reconstruction requires mobility of the opposite column to achieve cor- rection, unless a combined approach is planned. Anterior cervical discectomy and fusion has limited focal correction, but when applied over multiple levels there is a cumulative ef- fect with a correction of approximately 6° per level. Partial or complete corpectomy has the ability to correct sagittal deformity as well as decompress the spinal canal when there is an- terior compression behind the vertebral body.
    [Show full text]
  • Lower Back Pain in Athletes EXPERT CONSULTANTS: Timothy Hosea, MD, Monica Arnold, DO
    SPORTS TIP Lower Back Pain in Athletes EXPERT CONSULTANTS: Timothy Hosea, MD, Monica Arnold, DO How common is low back pain? What structures of the back Low back pain is a very common can cause pain? problem in industrialized countries, Low back pain can come from all the affecting over 70 percent of the working spinal structures. The bony elements population. Back pain is also common of the spine can develop stress fractures, in such sports as football, soccer, or in the older athlete, arthritic changes golf, rowing, and gymnastics. which may pinch the nerve roots. The annulus has a large number of pain What are the structures fibers, and any injury to this structure, of the back? such as a sprain, bulging disc, or disc The spine is composed of three regions herniation will result in pain. Finally, the from your neck to the lower back. surrounding muscles and ligaments may The cervical region corresponds also suffer an injury, leading to pain. to your neck, the thoracic region is the mid-back (or back of the chest), How is the lower back injured? and the lumbar area is the lower back. Injuries to the lower back can be the The lumbar area provides the most result of improper conditioning and motion and works the hardest in warm-up, repetitive loading patterns, supporting your weight, and enables excessive sudden loads, and twisting you to bend, twist, and lift. activities. Proper body mechanics and flexibility are essential for all activities. Each area of the spine is composed To prevent injury, it is important to learn of stacked bony vertebral bodies with the proper technique in any sporting interposed cushioning pads called discs.
    [Show full text]
  • Spinal Interventional Pain Management and Lumbar Spine Surgery
    Spinal Interventional Pain Management and Lumbar Spine Surgery Policy Number: Original Effective Date: MM.06.024 01/01/2014 Line(s) of Business: Current Effective Date: HMO; PPO; QUEST Integration 12/15/2017 Section: Surgery; Medicine Place(s) of Service: Office; Outpatient; Inpatient I. Description The following spinal interventional pain management and lumbar spine surgery procedures require precertification through Magellan Hawaii, formally known as National Imaging Associates, Inc. (NIA): A. Spinal Epidural Injections B. Paravertebral Facet Joint Denervation (radiofrequency neurolysis) C. Paravertebral Facet Joint Injections or Blocks D. Sacroiliac joint injections E. Lumbar Spinal Fusion Surgery II. Administrative Guidelines A. The ordering physician can obtain precertification or consult with Magellan Hawaii by accessing their website at http://www.radmd.com/ or by calling 1 (866) 306-9729, from 6 a.m. to 6 p.m., weekdays, Hawaii Time. Refer to the e-library for instructions on navigating the radmd.com website (RadMD Get Started) and requesting precertification/checking the status of a request (RadMD QuickStart). B. For access to the latest clinical guidelines used for precertification, go to www.radmd.com and click on the link entitled View Clinical Guidelines. C. For interventional pain management procedures (epidural injections, facet joint denervation neurolysis, facet joint injections and sacroiliac joint injections), if more than one procedure is planned, a separate precertification number must be obtained for each procedure planned. D. For spinal surgeries (lumbar fusions, lumbar decompressions, and lumbar microdiscectomy), one precertification number should be obtained for the most invasive surgery to be performed. E. Precertification requirements for injection procedures apply only to office and outpatient services (POS 11, 22, or 24).
    [Show full text]
  • Guidline for the Evidence-Informed Primary Care Management of Low Back Pain
    Guideline for the Evidence-Informed Primary Care Management of Low Back Pain 2nd Edition These recommendations are systematically developed statements to assist practitioner and patient decisions about appropriate health care for specific clinical circumstances. They should be used as an adjunct to sound clinical decision making. Guideline Disease/Condition(s) Targeted Specifications Acute and sub-acute low back pain Chronic low back pain Acute and sub-acute sciatica/radiculopathy Chronic sciatica/radiculopathy Category Prevention Diagnosis Evaluation Management Treatment Intended Users Primary health care providers, for example: family physicians, osteopathic physicians, chiro- practors, physical therapists, occupational therapists, nurses, pharmacists, psychologists. Purpose To help Alberta clinicians make evidence-informed decisions about care of patients with non- specific low back pain. Objectives • To increase the use of evidence-informed conservative approaches to the prevention, assessment, diagnosis, and treatment in primary care patients with low back pain • To promote appropriate specialist referrals and use of diagnostic tests in patients with low back pain • To encourage patients to engage in appropriate self-care activities Target Population Adult patients 18 years or older in primary care settings. Exclusions: pregnant women; patients under the age of 18 years; diagnosis or treatment of specific causes of low back pain such as: inpatient treatments (surgical treatments); referred pain (from abdomen, kidney, ovary, pelvis,
    [Show full text]
  • Inflammatory Back Pain in Patients Treated with Isotretinoin Although 3 NSAID Were Administered, Her Complaints Did Not Improve
    Inflammatory Back Pain in Patients Treated with Isotretinoin Although 3 NSAID were administered, her complaints did not improve. She discontinued isotretinoin in the third month. Over 20 days her com- To the Editor: plaints gradually resolved. Despite the positive effects of isotretinoin on a number of cancers and In the literature, there are reports of different mechanisms and path- severe skin conditions, several disorders of the musculoskeletal system ways indicating that isotretinoin causes immune dysfunction and leads to have been reported in patients who are treated with it. Reactive seronega- arthritis and vasculitis. Because of its detergent-like effects, isotretinoin tive arthritis and sacroiliitis are very rare side effects1,2,3. We describe 4 induces some alterations in the lysosomal membrane structure of the cells, cases of inflammatory back pain without sacroiliitis after a month of and this predisposes to a degeneration process in the synovial cells. It is isotretinoin therapy. We observed that after termination of the isotretinoin thought that isotretinoin treatment may render cells vulnerable to mild trau- therapy, patients’ complaints completely resolved. mas that normally would not cause injury4. Musculoskeletal system side effects reported from isotretinoin treat- Activation of an infection trigger by isotretinoin therapy is complicat- ment include skeletal hyperostosis, calcification of tendons and ligaments, ed5. According to the Naranjo Probability Scale, there is a potential rela- premature epiphyseal closure, decreases in bone mineral density, back tionship between isotretinoin therapy and bilateral sacroiliitis6. It is thought pain, myalgia and arthralgia, transient pain in the chest, arthritis, tendonitis, that patients who are HLA-B27-positive could be more prone to develop- other types of bone abnormalities, elevations of creatine phosphokinase, ing sacroiliitis and back pain after treatment with isotretinoin, or that and rare reports of rhabdomyolysis.
    [Show full text]
  • Case Report Spinal Gout with Lumbar Spondylolisthesis: Case Report and Review of the Literature
    Int J Clin Exp Med 2017;10(3):5493-5496 www.ijcem.com /ISSN:1940-5901/IJCEM0043949 Case Report Spinal gout with lumbar spondylolisthesis: case report and review of the literature Hui Zhang, Wenhao Zheng, Naifeng Tian, Xiangyang Wang, Yan Lin, Yaosen Wu Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China Received November 9, 2016; Accepted December 30, 2016; Epub March 15, 2017; Published March 30, 2017 Abstract: Gout, a metabolic disorder, is commonly accepted as a peripheral joint disease of the appendicular skel- eton by the deposition of monosodium urate crystals. Gouty involvement of the spinal column is rare. In this paper, we report a case of spinal gout with spondylolisthesis, meanwhile, we review the clinical, radiological features, diagnosis and treatment of spinal gout in literature. The patient was 60-year-old with low back pain. Radiological examinations of the lumbar spine showed L4 spondylolisthesis with bone erosion in facet joints and lamina. The patient was treated by L4/5 transforaminal lumbar interbody fusion. The postoperative histological examination confirmed the diagnosis of spinal gout. Spinal gout is rare and can easily be underestimated. Clinician should keep in mind spinal gout as a differential diagnosis especially in patients with long history of gout and axial symptoms. Keywords: Spine, gout, low back pain, spondylolisthesis, cord compression, computed tomography Introduction treatment with enalapril and indapamide are used to control hypertension. However, there is Gout is a common metabolic disorder which is no effective treatment of gout. characterized by precipitation of urate crystals in joints and soft tissue.
    [Show full text]
  • Lumbar Spine Schmorl's Nodes; Prevalence in Adults with Back Pain, and Their Relation to Vertebral Endplate Degeneration Israa Mohammed Sadiq
    Sadiq Egyptian Journal of Radiology and Nuclear Medicine (2019) 50:65 Egyptian Journal of Radiology https://doi.org/10.1186/s43055-019-0069-9 and Nuclear Medicine RESEARCH Open Access Lumbar spine Schmorl's nodes; prevalence in adults with back pain, and their relation to vertebral endplate degeneration Israa Mohammed Sadiq Abstract Background: In 1927, Schmorl described a focal herniation of disc material into the adjacent vertebral body through a defect in the endplate, named as Schmorl’s node (SN). The aim of the study is to reveal the prevalence and distribution of Schmorl’s nodes (SNs) in the lumbar spine and their relation to disc degeneration disease in Kirkuk city population. Results: A cross-sectional analytic study was done for 324 adults (206 females and 118 males) with lower back pain evaluated as physician requests by lumbosacral MRI at the Azadi Teaching Hospital, Kirkuk city, Iraq. The demographic criteria of the study sample were 20–71 years old, 56–120 kg weight, and 150–181 cm height. SNs were seen in 72 patients (22%). Males were affected significantly more than the females (28.8% vs. 18.8%, P = 0.03). SNs were most significantly affecting older age groups. L1–L2 was the most affected disc level (23.6%) and the least was L5–S1 (8.3%). There was neither a significant relationship between SN and different disc degeneration scores (P = 0.76) nor with disc herniation (P = 0.62, OR = 1.4), but there was a significant relation (P = 0.00001, OR = 7.9) with MC. Conclusion: SN is a frequent finding in adults’ lumbar spine MRI, especially in males; it is related to vertebral endplate bony pathology rather than discal pathology.
    [Show full text]
  • Automated Percutaneous and Endoscopic Discectomy
    Corporate Medical Policy Automated Percutaneous and Endoscopic Discectomy File Name: percutaneous_discectomy Origination: 9/1991 Last CAP Review: 5/2021 Next CAP Review: 5/2022 Last Review: 5/2021 Description of Procedure or Service Surgical management of herniated intervertebral discs most commonly involves discectomy or microdiscectomy, performed manually through an open incision. Automated percutaneous discectomy involves placement of a probe within the intervertebral disc under image guidance with aspiration of disc material using a suction cutting device. Removal of disc herniations under endoscopic visualization is also being investigated. Endoscopic discectomy involves the percutaneous placement of a working channel under image guidance, followed by visualization of the working space and instruments through an endoscope, and aspiration of disc material. Back pain or radiculopathy related to herniated discs is an extremely common condition and a frequent cause of chronic disability. Although many cases of acute low back pain and radiculopathy will resolve with conservative care, a surgical decompression is often considered when the pain is unimproved after several months and is clearly neuropathic in origin, resulting from irritation of the nerve roots. Open surgical treatment typically consists of discectomy, in which the extruding disc material is excised. When performed with an operating microscope the procedure is known as microdiscectomy. Minimally invasive options have also been researched, in which some portion of the disc is removed or ablated, although these techniques are not precisely targeted at the offending extruding disc material. Ablative techniques include laser discectomy and radiofrequency (RF) decompression. In addition, intradiscal electrothermal annuloplasty is another minimally invasive approach to low back pain.
    [Show full text]
  • 5. Vertebral Column
    5. Vertebral Column. Human beings belong to a vast group animals, the vertebrates. In simple terms we say that vertebrates are animals with a backbone. This statement barely touches the surface of the issue. Vertebrates are animals with a bony internal skeleton. Besides, all vertebrates have a fundamental common body plan. The central nervous system is closer to the back than it is to the belly, the digestive tube in the middle and the heart is ventral. The body is made of many segments (slices) built to a common plan, but specialised in different regions of the body. A “coelomic cavity” with its own special plan is seen in the trunk region and has a characteristic relationship with the organs in the trunk. This is by no means a complete list of vertebrate characteristics. Moreover, some of these features may be shared by other animal groups in a different manner. Such a study is beyond the scope of this unit. Vertebrates belong to an even wider group of animals, chordates. It may be difficult to imagine that we human beings are in fact related to some the earlier chordates! However, we do share, at least during embryonic development, an important anatomical structure with all chordates. This structure is the notochord. The notochord is the first stiff, internal support that appeared during the evolutionary story. As we have seen in early embryology, it also defines the axis of the body. The vertebral column evolved around the notochord and the neural tube, and we see a reflection of this fact during our embryonic development.
    [Show full text]
  • Lumbar Spinal Stenosis a Patient's Guide to Lumbar Spinal Stenosis
    Lumbar Spinal Stenosis A Patient's Guide to Lumbar Spinal Stenosis See a Washington Post story about a woman whose worsening pain stumped specialist after specialist for five years until she saw UM spine surgeon Steven Ludwig, who diagnosed the cause as spinal stenosis and performed successful surgery. Introduction Spinal stenosis is term commonly used to describe a narrowing of the spinal canal. This problem is much more common in people over the age of 60. However, it can occur in younger people who have abnormally small spinal canals as a type of birth defect. The problem usually causes back pain and leg pain that comes and goes with activities such as walking. The purpose of this information is to help you understand: • The anatomy of the spine relating to spinal stenosis • The signs and symptoms of lumbar spinal stenosis • How the condition is diagnosed • The treatments available for the condition Anatomy In order to understand your symptoms and treatment choices, you should start with some understanding of the general anatomy of your lumbar spine (lower back). This includes becoming familiar with the various parts that make up the spine and how these parts work together. Please review the document entitled: • Anatomy and Function of the Spine Causes Although there is some space between the spinal cord and the edges of the spinal canal, this space can be reduced by many conditions. Bone and tough ligaments surround the spinal canal. This tube cannot expand if the spinal cord or nerves require more space. If anything begins to narrow the spinal canal, the risk of irritation and injury of the spinal cord or nerves increases.
    [Show full text]