OCCT V.6.5.4 Release Notes

Total Page:16

File Type:pdf, Size:1020Kb

OCCT V.6.5.4 Release Notes Open CASCADE Technology & Products Products Version6. features, Highlights Technology CASCADE Open Overview , so applications linked against a previous version must berecompiled to run with this Version 6. Open CASCADE Technology & Products Technology Open CASCADE improvements and bug fixes over 6 Universal locale global current on independent made export / Import TKOpenGl libraries support plotter and viewer 2D obsolete of Removal Accelerated text visualization management texture of Redesign R and XCode Cocoa API with native visualization X, Mac OS On of support Official New automated testing system testing New automated and 3D graphics 2D both to way render unified the become input parameters and results and generation of data for bug rep bug for data of generation and results and parameters input . 0 efactored is binary incompatible withtheprevious versions CMake build scripts build CMake is nowis link Open CASCADE Open Boolean operations algorithm operations Boolean andProducts Mac OS X and Products Products and www. www. ed at build time, not at run time run at not time, build at ed opencascad Release Notes Notes Release opencascade M , Windows 8 and Visual Studio 2012 Studio Visual , and Windows 8 maintenance ; use of FTGL library is dropped FTGL of library ; use in version or e .co Release .org 6. m releas . Possibility to enable automatic check of of check automatic enable to Possibility . 6 . 0 ver. 6. ver. Technology is a Copyright © 2013 by OPEN CASCADE Page Copyright OPEN CASCADE 2013by © e 6. minor 5. 5 of . release, which includes 6 OpenCASCADE Technology . 0 4 project files files project ort . 3Dviewer over libraries 1 2 5 of 0 32 new 6 and and . 0 . Open CASCADE Technology & Products Porting to version 6.6.0 features New Supported Platformsand Pre Mo difications Products Documentation Installation Samples New automated testing sys testing automated New Building of OCCT with CMake Use of OCCTOS on Macwith X Cocoa Build Automatic check of BOP arguments and result and arguments BOP of check Automatic Environment Development WOK Shape Healing Shape Mesh Draw Data Exchange Data Visualization Algorithms Modeling Data Modeling Application Framework Application Classes Foundation Express Mesh Express Import ACIS Import DXF Advanced Samples Advanced Surfaces from scattered points scattered from Surfaces Open CASCADE Technology & Products Technology Open CASCADE www. www. tem - requisites opencascad opencascade Table ofContents e .co .org m Copyright © 2013 by OPEN CASCADE Page Copyright OPEN CASCADE 2013by © 2 of 32 27 27 27 28 26 28 26 25 25 29 29 29 28 29 24 30 29 22 21 32 21 19 17 12 7 6 6 3 3 Open CASCADE Technology & Products Foundation Classes Mod 22933 22898 22808 22980 22545 22506 23361 20523 ifications Open CASCADE Technology & Products Technology Open CASCADE The following improvements have been introduced to resolve localization issues: Summary: MAC OS X has been Compatibility issues within different compilers andsystems h Summary: The following improve Summary: The factor value has been corrected in Summary: casesin when both rotation and translation are involved. Method Summary: . of C subsystem; beenreplaced locale by removed immediately for display in the 3D viewer. #define always "C" locale); DRAW command Mutexes have been added to control multi in Equivalentsof C functions converting of strings to/from reals have beenadded only once to enable calling S OSD::Setsignal() /EHs structured exception (SE) translators. This OSD::SetSignal() Class Changes of global locale have been eliminated throughout the code. locale Calls to atof() In DRAW packages, calls to the same thread if the user calls to gp_Trsf::Multiply tatic variables Standard_CString Wrong factor for elapsed time measured IGES import fails German in environment Standard_Atomic.hxx Improved exception handling Bug in - OSD_Localizer or independent , . sprintf() . Draw::Atof() strtod() /EHa gp_Trsf::Multiply www. www. added. ments have been introduced in exception handling . opencascad have been removed wherever they used were to opencascade Consequently redundant dlocale , and Sprintf() has been d now alwayssets signal handlers, exception handlersand involving - has beenrepl independent has beenfixed to avoid incorrect result ofmultiplic .hxx *scanf() has and has been added to set and query t atof() e ::SetSignal() .co , providing locale compilers compatibility issues OSD_Timer::GetTickCount() .org switched handlers floating point have been replaced by call to , unlesstheconverted strings are used Draw::Atoi() ocumentation m Atof() and aced with involving floating point conversions have Copyright © 2013 by OPEN CASCADE Page Copyright OPEN CASCADE 2013by © - atoi() is threading in exception handlers. UseSETranslation() helpful and for other threads or even in fullin detail in Standard_CLocaleSentry - , . independent behavior (using Strtod() have bee instead ofsubstituting by if ave beenave fixed. the code is compiledcodeis with n replacedn direct by . .cdl he current locale on Windows . file. Support of have been set signals within ation 3 : . of 32 Open CASCADE Technology & Products Summary: OSD_PerfMeter reports wrong (zero) times The following modifications have been introduced in OSD_PerfMeter to provide correct work: . Static functions of OSD_Chronometer class have been implemented in 23237 OSD_PerfMeter for time measurements to avoid incorrect results on CentOS caused by wrong value of CLK_TCK; . OSD_PerfMeter.h has been fixed for building on Unix systems; . Platform-specific #defines have been removed . Duplicate package DebugTools has been removed. Summary: Using memcpy on class that contains a virtual method . Obsolete internal class _BaseElement has been removed from 23267 MMgt_StackManager.cxx. Redundant warning has been removed from _Element class. Summary: Using memcpy on class that contains a virtual method 23284 NCollection_BaseVector::MemBlock has been converted to POD structure: myAlloc field, destructor and custom constructors have been removed. Summary: Standard_Mutex behavior depends on platform Standard_Mutex thread-based implementation has been corrected to create a 23286 recursive mutex object aiming to achieve the behavior similar to the WinAPI-based implementation Summary: No IsEqual function for Handles IsEqual function has been implemented for Handle_Standard_Transient. 23310 Workarounds caused by its absence have been removed from TObj_Common AIS_NDataMapOfTransientIteratorOfListTransient and TopTools_MutexForShapeProvider. Summary: Irrelevances in comments for methods and classes 23329 Comments for Standard_Real::Epsilon function have been corrected. Summary: OSD_FontMgr cannot identify aspect for fonts with names dependent on system locale. The following improvements have been introduced to improve font management: . XLib connection is no more required to retrieve the list of fonts available locally. FreeType library used to identify the font file. 23415 . Font aliases mechanism now supersedes the logic previously implemented in OpenGl_FontMgr. Several fixes have been introduced in fonts.dir parser . Support for Mac OS X standard font paths has been added Summary: Use appropriate type for handling integer time Open Open CASCADE Technology & Products 23483 New cdl-friendly Standard_Time alias to time_t type has been introduced. www.opencascade.com Copyright © 2013 by OPEN CASCADE Page 4 of 32 www.opencascade.org Open CASCADE Technology & Products 23852 23818 23684 23672 23592 23569 23498 Open CASCADE Technology & Products Technology Open CASCADE obsolete option “ from “ Check for Summary: OSD_MemInfo::Update() newA counter been The Summary: reference instead of object copy. TCollection_HExtendedString::String() const reference Summary: MsgBox() Summary: envir macroOCCT_MMGT_OPT_DEFAULT, documentation See of MMGT_OPT Default Summary: memory allocator interface NCollection_IncAllocator boost::unordered_set The allocator can be NCollection_BaseAllocator New Summary: Methods Summary: Units_UnitsDictionary::Creates() N programheap size. h Collection_BaseAllocator ” .This option isnow reportingof the C heapstatus (the cu onment variable for the list of possible values OSD_WNT implemented allocator C++ standard compliant unc Comparison always true in OSD_Path Extend Eliminate obsolete functions in Enabling TBB allocator by default for OCC built with Add TCollection_HExtendedString::Str andseveral other obsolete Windows . path on Windowspath on has been adde NCollection_StdAllocator MemHeapUsage w for ”. www. www. OSD_MemInfo inclass OCCT interprets used with standard containers ( used in automatictests for memory leakscontrol instead ofthe opencascad opencascade , etc.) to take advantage, for instance, of myCounters[MemHeapUsage] OSD_MemInfo cannow chosenbe at function is called. U nits_Lexicon::Creates() unc , h . to report C heap statistics which implements pool allocator as been added to and its subclasses. e Standard::Allocate(),::Free() paths incorrectly .co Units_Lexicon::Creates() .org m OSD_WNT_1.cxx rrenttotal amountof allocated memory) has and DRAW command NCollection_StdAllocator have been refactored. Copyright © 2013 by OPEN CASCADE Page Copyright OPEN CASCADE 2013by © d in - specificfunctions have been removed buil OSD_Path methodnow returns constant OSD_MemInfo ing() d t std::vector, std::map,std::vector, i methrough defining compiler returnscopya insteadof . isrefilled whenever - HAVE_TBB meminfo , or central OCC class to examine withoption wraps and via 5 T of 32 Open CASCADE Technology & Products Modeling
Recommended publications
  • English Translation of the German by Tom Hammond
    Richard Strauss Susan Bullock Sally Burgess John Graham-Hall John Wegner Philharmonia Orchestra Sir Charles Mackerras CHAN 3157(2) (1864 –1949) © Lebrecht Music & Arts Library Photo Music © Lebrecht Richard Strauss Salome Opera in one act Libretto by the composer after Hedwig Lachmann’s German translation of Oscar Wilde’s play of the same name, English translation of the German by Tom Hammond Richard Strauss 3 Herod Antipas, Tetrarch of Judea John Graham-Hall tenor COMPACT DISC ONE Time Page Herodias, his wife Sally Burgess mezzo-soprano Salome, Herod’s stepdaughter Susan Bullock soprano Scene One Jokanaan (John the Baptist) John Wegner baritone 1 ‘How fair the royal Princess Salome looks tonight’ 2:43 [p. 94] Narraboth, Captain of the Guard Andrew Rees tenor Narraboth, Page, First Soldier, Second Soldier Herodias’s page Rebecca de Pont Davies mezzo-soprano 2 ‘After me shall come another’ 2:41 [p. 95] Jokanaan, Second Soldier, First Soldier, Cappadocian, Narraboth, Page First Jew Anton Rich tenor Second Jew Wynne Evans tenor Scene Two Third Jew Colin Judson tenor 3 ‘I will not stay there. I cannot stay there’ 2:09 [p. 96] Fourth Jew Alasdair Elliott tenor Salome, Page, Jokanaan Fifth Jew Jeremy White bass 4 ‘Who spoke then, who was that calling out?’ 3:51 [p. 96] First Nazarene Michael Druiett bass Salome, Second Soldier, Narraboth, Slave, First Soldier, Jokanaan, Page Second Nazarene Robert Parry tenor 5 ‘You will do this for me, Narraboth’ 3:21 [p. 98] First Soldier Graeme Broadbent bass Salome, Narraboth Second Soldier Alan Ewing bass Cappadocian Roger Begley bass Scene Three Slave Gerald Strainer tenor 6 ‘Where is he, he, whose sins are now without number?’ 5:07 [p.
    [Show full text]
  • Porting a Window Manager from Xlib to XCB
    Porting a Window Manager from Xlib to XCB Arnaud Fontaine (08090091) 16 May 2008 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.3 or any later version pub- lished by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License". Contents List of figures i List of listings ii Introduction 1 1 Backgrounds and Motivations 2 2 X Window System (X11) 6 2.1 Introduction . .6 2.2 History . .6 2.3 X Window Protocol . .7 2.3.1 Introduction . .7 2.3.2 Protocol overview . .8 2.3.3 Identifiers of resources . 10 2.3.4 Atoms . 10 2.3.5 Windows . 12 2.3.6 Pixmaps . 14 2.3.7 Events . 14 2.3.8 Keyboard and pointer . 15 2.3.9 Extensions . 17 2.4 X protocol client libraries . 18 2.4.1 Xlib . 18 2.4.1.1 Introduction . 18 2.4.1.2 Data types and functions . 18 2.4.1.3 Pros . 19 2.4.1.4 Cons . 19 2.4.1.5 Example . 20 2.4.2 XCB . 20 2.4.2.1 Introduction . 20 2.4.2.2 Data types and functions . 21 2.4.2.3 xcb-util library . 22 2.4.2.4 Pros . 22 2.4.2.5 Cons . 23 2.4.2.6 Example . 23 2.4.3 Xlib/XCB round-trip performance comparison .
    [Show full text]
  • Gtk Drawing Area Example C
    Gtk Drawing Area Example C Abyssinian Cary always Indianised his examination if Amadeus is lowest or marshalling skywards. Ornithischian Rudd overruled, his deportation backscatters remilitarizing proud. Zodiacal Udale alkalizing: he repay his ceorl jazzily and observantly. End angle bracket iter to indicates data to c gtk drawing area Programming with gtkmm 3. You should only grab from gtk drawing area widget draws with either create. These programmatically hidden from the properties are put there are created and executable program that all gtk app into boxes, i am doing. This locus the 'traits' of the GtkDrawingArea widget are inherited to this class. GtkDrawingArea gtk-30 Valadoc. M cm else return cm m xm def drawself ctx area tops the egg. Gmcs pkggtk-sharp-20 rusrlibmono20MonoCairodll simplecs Here saying how we compile the example DrawingArea darea new. This source code of examples have thrown me at least we will create a button click to retrieve them into those who must be updated. How to integrate those header-only libraries and uses Catch as an example. We just ugly cast. The error comes from C I over no danger about tablet to drift this drawingrb. Useful for detriment to extract multiple copies of chair same dialog. For example if most have created a dialog box for entering some personal information you. Drawing operation draws the examples are the interior of. Application runs the example draws some way to be used for single cell renderer to this will execute it! This is prominent example in object-oriented behavior enforced in C by GTK. GtkDrawingArea getDrawingAreaStructbool transferOwnership false.
    [Show full text]
  • Writing Applications with GTK+ 1 Introduction
    + Writing Applications with GTK Owen Taylor April Introduction Graphical user interfaces have b ecome almost universally familiar However it may b e worth saying a few words ab out how graphical user interfaces work in Linux and X from the p oint of view of the programmer The X server is resp onsible for only the simplest op erations of drawing graphics and text on the screen and for keeping track of the users mouse and keyboard actions Pro grams communicate with the server via the Xlib library However programming applications in straight Xlib would b e a tremendous chore Since Xlib provides only basic drawing commands each application would have to provide their own co de to user interface elements such as buttons or menus Such user interface elemenets are called widgets To avoid such a lab orious job and to provide consistancy b etween dierent applications the normal practice is to use a to olkit a library that builds on top of Xlib and handles the details of the user interface The traditional choices for such a to olkit have b een two libraries built up on X Intrinsics libXt library distributed with X the Athena Widgets which are distributed with X and Mo 1 tif However Xt is complicated to learn and use the Athena Widgets havent lo oked stylish since and Motif while somewhat more up to date is large slow has an app earance disliked by many p eople and most imp ortantly is a proprietary pro duct without freely available source co de For these reasons and others much recent development has fo cused on to olk its that build directly
    [Show full text]
  • Fundamentals of Xlib Programming by Examples
    Fundamentals of Xlib Programming by Examples by Ross Maloney Contents 1 Introduction 1 1.1 Critic of the available literature . 1 1.2 The Place of the X Protocol . 1 1.3 X Window Programming gotchas . 2 2 Getting started 4 2.1 Basic Xlib programming steps . 5 2.2 Creating a single window . 5 2.2.1 Open connection to the server . 6 2.2.2 Top-level window . 7 2.2.3 Exercises . 10 2.3 Smallest Xlib program to produce a window . 10 2.3.1 Exercises . 10 2.4 A simple but useful X Window program . 11 2.4.1 Exercises . 12 2.5 A moving window . 12 2.5.1 Exercises . 15 2.6 Parts of windows can disappear from view . 16 2.6.1 Testing overlay services available from an X server . 17 2.6.2 Consequences of no server overlay services . 17 2.6.3 Exercises . 23 2.7 Changing a window’s properties . 23 2.8 Content summary . 25 3 Windows and events produce menus 26 3.1 Colour . 26 3.1.1 Exercises . 27 i CONTENTS 3.2 A button to click . 29 3.3 Events . 33 3.3.1 Exercises . 37 3.4 Menus . 37 3.4.1 Text labelled menu buttons . 38 3.4.2 Exercises . 43 3.5 Some events of the mouse . 44 3.6 A mouse behaviour application . 55 3.6.1 Exercises . 58 3.7 Implementing hierarchical menus . 58 3.7.1 Exercises . 67 3.8 Content summary . 67 4 Pixmaps 68 4.1 The pixmap resource .
    [Show full text]
  • Optimization Design by Coupling Computational Fluid Dynamics and Genetic Algorithm 125
    DOI: 10.5772/intechopen.72316 Provisional chapter Chapter 5 Optimization Design by Coupling Computational Fluid OptimizationDynamics and Design Genetic by Algorithm Coupling Computational Fluid Dynamics and Genetic Algorithm Jong-Taek Oh and Nguyen Ba Chien Jong-TaekAdditional information Oh and is availableNguyen at Bathe endChien of the chapter Additional information is available at the end of the chapter http://dx.doi.org/10.5772/intechopen.72316 Abstract Nowadays, optimal design of equipment is one of the most practical issues in modem industry. Due to the requirements of deploying time, reliability, and design cost, bet- ter approaches than the conventional ones like experimental procedures are required. Moreover, the rapid development of computing power in recent decades opens a chance for researchers to employ calculation tools in complex configurations. In this chapter, we demonstrate a kind of modern optimization method by coupling computational fluid dynamics (CFD) and genetic algorithms (GAs). The brief introduction of GAs and CFD package OpenFOAM will be performed. The advantage of this approach as well as the difficulty that we must tackle will be analyzed. In addition, this chapter performs a study case in which an automated procedure to optimize the flow distribution in a manifold is established. The design point is accomplished by balancing the liquid-phase flow rate at each outlet, and the controlled parameter is a dimension of baffle between each chan- nel. Using this methodology, we finally find a set of results improving the distribution of flow. Keywords: computational fluid dynamics, VOF, optimization, OpenFOAM, genetic algorithm, open sourced 1. Introduction Computational fluid dynamics (CFD)-based optimization approach has been growing rap- idly in the past decades.
    [Show full text]
  • FLTK 1.1.8 Programming Manual Revision 8
    FLTK 1.1.8 Programming Manual Revision 8 Written by Michael Sweet, Craig P. Earls, Matthias Melcher, and Bill Spitzak Copyright 1998-2006 by Bill Spitzak and Others. FLTK 1.1.8 Programming Manual Table of Contents Preface..................................................................................................................................................................1 Organization.............................................................................................................................................1 Conventions.............................................................................................................................................2 Abbreviations...........................................................................................................................................2 Copyrights and Trademarks.....................................................................................................................2 1 - Introduction to FLTK...................................................................................................................................3 History of FLTK......................................................................................................................................3 Features....................................................................................................................................................4 Licensing..................................................................................................................................................5
    [Show full text]
  • Development of a Coupling Approach for Multi-Physics Analyses of Fusion Reactors
    Development of a coupling approach for multi-physics analyses of fusion reactors Zur Erlangung des akademischen Grades eines Doktors der Ingenieurwissenschaften (Dr.-Ing.) bei der Fakultat¨ fur¨ Maschinenbau des Karlsruher Instituts fur¨ Technologie (KIT) genehmigte DISSERTATION von Yuefeng Qiu Datum der mundlichen¨ Prufung:¨ 12. 05. 2016 Referent: Prof. Dr. Stieglitz Korreferent: Prof. Dr. Moslang¨ This document is licensed under the Creative Commons Attribution – Share Alike 3.0 DE License (CC BY-SA 3.0 DE): http://creativecommons.org/licenses/by-sa/3.0/de/ Abstract Fusion reactors are complex systems which are built of many complex components and sub-systems with irregular geometries. Their design involves many interdependent multi- physics problems which require coupled neutronic, thermal hydraulic (TH) and structural mechanical (SM) analyses. In this work, an integrated system has been developed to achieve coupled multi-physics analyses of complex fusion reactor systems. An advanced Monte Carlo (MC) modeling approach has been first developed for converting complex models to MC models with hybrid constructive solid and unstructured mesh geometries. A Tessellation-Tetrahedralization approach has been proposed for generating accurate and efficient unstructured meshes for describing MC models. For coupled multi-physics analyses, a high-fidelity coupling approach has been developed for the physical conservative data mapping from MC meshes to TH and SM meshes. Interfaces have been implemented for the MC codes MCNP5/6, TRIPOLI-4 and Geant4, the CFD codes CFX and Fluent, and the FE analysis platform ANSYS Workbench. Furthermore, these approaches have been implemented and integrated into the SALOME simulation platform. Therefore, a coupling system has been developed, which covers the entire analysis cycle of CAD design, neutronic, TH and SM analyses.
    [Show full text]
  • GPUSPH User Guide
    GPUSPH User Guide version 5.0 — October 2016 Contents 1 Introduction 2 2 Anatomy of a project apart from the use of SALOME 2 3 Setting up and running the simulation without using the user in- terface 3 3.1 Case Examples .............................. 6 3.1.1 Framework setup ......................... 8 3.1.2 Generic simulation parameters .................. 11 3.1.3 SPH parameters .......................... 12 3.1.4 Physical parameters ....................... 13 3.1.5 Results parameters ........................ 14 3.2 Building and initializing the particle system .............. 14 4 Running your simulation 18 5 Setting up and running the simulation with the SALOME user in- terface 18 5.1 Preparing the geometry in GEOM .................... 18 5.2 Generating the mesh (optional) ..................... 20 5.3 Generating particle files with the Particle preprocessor ........ 21 5.4 Setting up and running the simulation with the GPUSPH solver ... 21 6 Visualizing the results 22 1 1 Introduction There are two ways to set up cases for GPUSPH: coding a Case file, or using the SALOME module GPUSPH solver. When coding the case file, it is possible to create the geometrical elements using built-in functions of GPUSPH (only for particle-type boundary conditions at the moment) or to read particle files generated by the Particle Preprocessor module of SALOME. Creating a case by hand corresponds to the creation of a new cusource file, with the associated header (e.g. MyCase.cu and MyCase.h), placing them under src/problems/user. This folder does not exist by default in GPUSPH, but it is recognised as a place to be scanned for case sources.
    [Show full text]
  • Pygtk GUI Programming Pygtk GUI Programming Table of Contents Pygtk GUI Programming
    PyGTK GUI programming PyGTK GUI programming Table of Contents PyGTK GUI programming...............................................................................................................................1 Chapter 1. Introduzione....................................................................................................................................2 1.1. Primo approccio...............................................................................................................................2 1.2. Il toolkit PyGTK..............................................................................................................................2 1.3. PyGTK e Glade................................................................................................................................2 1.4. IDE o editor......................................................................................................................................4 1.5. Installazione.....................................................................................................................................6 1.5.1. Installazione su piattaforma GNU/Linux...............................................................................6 1.5.2. Installazione su piattaforma Windows...................................................................................6 1.6. Supporto e help................................................................................................................................6 Chapter 2. I Widget, le classi ed un
    [Show full text]
  • Multiplatformní GUI Toolkity GTK+ a Qt
    Multiplatformní GUI toolkity GTK+ a Qt Jan Outrata KATEDRA INFORMATIKY UNIVERZITA PALACKÉHO V OLOMOUCI GUI toolkit (widget toolkit) (1) = programová knihovna (nebo kolekce knihoven) implementující prvky GUI = widgety (tlačítka, seznamy, menu, posuvník, bary, dialog, okno atd.) a umožňující tvorbu GUI (grafického uživatelského rozhraní) aplikace vlastní jednotný nebo nativní (pro platformu/systém) vzhled widgetů, možnost stylování nízkoúrovňové (Xt a Xlib v X Windows System a libwayland ve Waylandu na unixových systémech, GDI Windows API, Quartz a Carbon v Apple Mac OS) a vysokoúrovňové (MFC, WTL, WPF a Windows Forms v MS Windows, Cocoa v Apple Mac OS X, Motif/Lesstif, Xaw a XForms na unixových systémech) multiplatformní = pro více platforem (MS Windows, GNU/Linux, Apple Mac OS X, mobilní) nebo platformově nezávislé (Java) – aplikace může být také (většinou) událostmi řízené programování (event-driven programming) – toolkit v hlavní smyčce zachytává události (uživatelské od myši nebo klávesnice, od časovače, systému, aplikace samotné atd.) a umožňuje implementaci vlastních obsluh (even handler, callback function), objektově orientované programování (objekty = widgety aj.) – nevyžaduje OO programovací jazyk! Jan Outrata (Univerzita Palackého v Olomouci) Multiplatformní GUI toolkity duben 2015 1 / 10 GUI toolkit (widget toolkit) (2) language binding = API (aplikační programové rozhraní) toolkitu v jiném prog. jazyce než původní API a toolkit samotný GUI designer/builder = WYSIWYG nástroj pro tvorbu GUI s využitím toolkitu, hierarchicky skládáním prvků, z uloženého XML pak generuje kód nebo GUI vytvoří za běhu aplikace nekomerční (GNU (L)GPL, MIT, open source) i komerční licence např. GTK+ (C), Qt (C++), wxWidgets (C++), FLTK (C++), CEGUI (C++), Swing/JFC (Java), SWT (Java), JavaFX (Java), Tcl/Tk (Tcl), XUL (XML) aj.
    [Show full text]
  • Pygtk 2.0 Tutorial
    PyGTK 2.0 Tutorial John Finlay October 7, 2012 PyGTK 2.0 Tutorial by John Finlay Published March 2, 2006 ii Contents 1 Introduction 1 1.1 Exploring PyGTK . .2 2 Getting Started 5 2.1 Hello World in PyGTK . .7 2.2 Theory of Signals and Callbacks . .9 2.3 Events . 10 2.4 Stepping Through Hello World . 11 3 Moving On 15 3.1 More on Signal Handlers . 15 3.2 An Upgraded Hello World . 15 4 Packing Widgets 19 4.1 Theory of Packing Boxes . 19 4.2 Details of Boxes . 20 4.3 Packing Demonstration Program . 22 4.4 Packing Using Tables . 27 4.5 Table Packing Example . 28 5 Widget Overview 31 5.1 Widget Hierarchy . 31 5.2 Widgets Without Windows . 34 6 The Button Widget 35 6.1 Normal Buttons . 35 6.2 Toggle Buttons . 38 6.3 Check Buttons . 40 6.4 Radio Buttons . 42 7 Adjustments 45 7.1 Creating an Adjustment . 45 7.2 Using Adjustments the Easy Way . 45 7.3 Adjustment Internals . 46 8 Range Widgets 49 8.1 Scrollbar Widgets . 49 8.2 Scale Widgets . 49 8.2.1 Creating a Scale Widget . 49 8.2.2 Methods and Signals (well, methods, at least) . 50 8.3 Common Range Methods . 50 8.3.1 Setting the Update Policy . 50 8.3.2 Getting and Setting Adjustments . 51 8.4 Key and Mouse Bindings . 51 8.5 Range Widget Example . 51 9 Miscellaneous Widgets 57 9.1 Labels . 57 9.2 Arrows . 60 9.3 The Tooltips Object .
    [Show full text]