Distributed Cloud Computing and Parallel Processing -Part 1

Total Page:16

File Type:pdf, Size:1020Kb

Distributed Cloud Computing and Parallel Processing -Part 1 Distributed Cloud Computing and Parallel Processing -Part 1 Reference: Distributed and Cloud Computing From Parallel Processing to the Internet of Things, Kai Hwang Geoffrey C. Fox, and Jack J. Dongarra, Morgan Kaufmann © 2012 Elsevier, Inc. All rights reserved. 1 Scalable Computing Over the Internet • Over the past 60 years, computing technology has undergone a series of platform and environment changes. • This section assess evolutionary changes in machine architecture, operating system platform, network connectivity, and application workload. • Instead of using a centralized computer to solve computational problems, a parallel and distributed computing system uses multiple computers to solve large-scale problems over the Internet. • Thus, distributed computing becomes data-intensive and network-centric. 2 The Age of Internet Computing • Billions of people use the Internet every day. • As a result, supercomputer sites and large data centers must provide high-performance computing services to huge numbers of Internet users concurrently. • Because of this high demand, the Linpack Benchmark for high-performance computing (HPC) applications is no longer optimal for measuring system performance. • The emergence of computing clouds instead demands high-throughput computing (HTC) systems built with parallel and distributed computing technologies. 3 The Platform Evolution • From 1970 to 1990, we saw widespread use of personal computers built with VLSI microprocessors. • From 1980 to 2000, massive numbers of portable computers and pervasive devices appeared in both wired and wireless applications. • Since 1990, the use of both HPC and HTC systems hidden in clusters, grids, or Internet clouds has proliferated. • These systems are employed by both consumers and high-end web-scale computing and information services. 4 The Platform Evolution • The general computing trend is to leverage shared web resources and massive amounts of data over the Internet. • Figure 1.1 illustrates the evolution of HPC and HTC systems. • On the HPC side, supercomputers (massively parallel processors or MPPs) are gradually replaced by clusters of cooperative computers out of a desire to share computing resources. • The cluster is often a collection of homogeneous computing nodes that are physically connected in close range to one another. 5 The Platform Evolution 6 The Platform Evolution • On the HTC side, peer-to-peer (P2P) networks are formed for distributed file sharing and content delivery applications. • A P2P system is built over many client machines. – Peer machines are globally distributed in nature. • P2P, cloud computing, and web service platforms are more focused on HTC applications than on HPC applications. • Clustering and P2P technologies lead to the development of computational grids or data grids. 7 High-Performance Computing • For many years, HPC systems emphasize the raw speed performance. The speed of HPC systems has increased from Gflops in the early 1990s to now Pflops in 2010. – This improvement was driven mainly by the demands from scientific, engineering, and manufacturing communities. – For example, the Top 500 most powerful computer systems in the world are measured by floating-point speed in Linpack benchmark results. • However, the number of supercomputer users is limited to less than 10% of all computer users. • Today, the majority of computer users are using desktop computers or large servers when they conduct Internet searches and market-driven computing tasks. 8 High-Throughput Computing • The development of market-oriented high-end computing systems is undergoing a strategic change from an HPC paradigm to an HTC paradigm. • This HTC paradigm pays more attention to high-flux computing. The main application for high-flux computing is in Internet searches and web services by millions or more users simultaneously. – The performance goal thus shifts to measure high throughput or the number of tasks completed per unit of time. • HTC technology needs to not only improve in terms of batch processing speed, but also address the acute problems of cost, energy savings, security, and reliability at many data and enterprise computing centers. 9 Computing Paradigm Distinctions • The high-technology community has argued for many years about the precise definitions of centralized computing, parallel computing, distributed computing, and cloud computing. • In general, distributed computing is the opposite of centralized computing. • The field of parallel computing overlaps with distributed computing to a great extent, and cloud computing overlaps with distributed, centralized, and parallel computing. 10 Computing Paradigm Distinctions • Centralized computing: – This is a computing paradigm by which all computer resources are centralized in one physical system. – All resources (processors, memory, and storage) are fully shared and tightly coupled within one integrated OS. – Many data centers and supercomputers are centralized systems, but they are used in parallel, distributed, and cloud computing applications. 11 Computing Paradigm Distinctions • Parallel computing: – In parallel computing, all processors are either tightly coupled with centralized shared memory or loosely coupled with distributed memory. – Some authors refer to this discipline as parallel processing. – Inter-processor communication is accomplished through shared memory or via message passing. – A computer system capable of parallel computing is commonly known as a parallel computer. – Programs running in a parallel computer are called parallel programs. – The process of writing parallel programs is often referred to as parallel programming. 12 Computing Paradigm Distinctions • Distributed computing: – This is a field of computer science/engineering that studies distributed systems. – A distributed system consists of multiple autonomous computers, each having its own private memory, communicating through a computer network. – Information exchange in a distributed system is accomplished through message passing. – A computer program that runs in a distributed system is known as a distributed program. – The process of writing distributed programs is referred to as distributed programming. 13 Computing Paradigm Distinctions • Cloud computing: – An internet cloud of resources can be either a centralized or a distributed computing system. – The cloud applies parallel or distributed computing, or both. – Clouds can be built with physical or virtualized resources over large data centers that are centralized or distributed. – Some authors consider cloud computing to be a form of utility computing or service computing. 14 Computing Paradigm Distinctions • As an alternative to the preceding terms, some in the high-tech community prefer the term concurrent computing or concurrent programming. • These terms typically refer to the union of parallel computing and distributing computing, although biased practitioners may interpret them differently. • Ubiquitous computing refers to computing with pervasive devices at any place and time using wired or wireless communication. 15 Computing Paradigm Distinctions • The Internet of Things (IoT) is a networked connection of everyday objects including computers, sensors, humans, etc. • The IoT is supported by Internet clouds to achieve ubiquitous computing with any object at any place and time. • Finally, the term Internet computing is even broader and covers all computing paradigms over the Internet. 16 Computing Paradigm Distinctions • In the future, both HPC and HTC systems will demand multicore or many-core processors that can handle large numbers of computing threads per core. • Both HPC and HTC systems emphasize parallelism and distributed computing. • Future HPC and HTC systems must be able to satisfy this huge demand in computing power in terms of throughput, efficiency, scalability, and reliability. • The system efficiency is decided by speed, programming, and energy factors (i.e., throughput per watt of energy consumed). 17 Computing Paradigm Distinctions • Meeting these goals requires to yield the following design objectives: – Efficiency measures the utilization rate of resources in an execution model by exploiting massive parallelism in HPC. For HTC, efficiency is more closely related to job throughput, data access, storage, and power efficiency. – Dependability measures the reliability and self-management from the chip to the system and application levels. The purpose is to provide high- throughput service with Quality of Service (QoS) assurance, even under failure conditions. – Adaptation in the programming model measures the ability to support billions of job requests over massive data sets and virtualized cloud resources under various workload and service models. – Flexibility in application deployment measures the ability of distributed systems to run well in both HPC (science and engineering) and HTC (business) applications. 18 Scalable Computing Trends and New Paradigms • Degrees of Parallelism (DoP): – Fifty years ago, when hardware was bulky and expensive, most computers were designed in a bit-serial fashion. In this scenario, bit-level parallelism (BLP) converts bit-serial processing to word-level processing gradually. – Over the years, users graduated from 4-bit microprocessors to 8-, 16-, 32-, and 64-bit CPUs. – This led us to the next wave of improvement, known as instruction-level parallelism (ILP), in which the processor executes multiple instructions simultaneously rather than only one instruction at a time. – For
Recommended publications
  • Cloud Computing and Internet of Things: Issues and Developments
    Proceedings of the World Congress on Engineering 2018 Vol I WCE 2018, July 4-6, 2018, London, U.K. Cloud Computing and Internet of Things: Issues and Developments Isaac Odun-Ayo, Member, IAENG, Chinonso Okereke, and Hope Orovwode Abstract—Cloud computing is a pervasive paradigm that is allows access to recent technologies and it enables growing by the day. Various service types are gaining increased enterprises to focus on core activities, instead programming importance. Internet of things is a technology that is and infrastructure. The services provided include Software- developing. It allows connectivity of both smart and dumb as-a-Service (SaaS), Platform-as–a–Service (PaaS) and systems over the internet. Cloud computing will continue to be Infrastructure–as–a–Services (IaaS). SaaS provides software relevant to IoT because of scalable services available on the cloud. Cloud computing is the need for users to procure servers, applications over the Internet and it is also known as web storage, and applications. These services can be paid for and service [2]. utilized using the various cloud service providers. Clearly, IoT Cloud users can access such applications anytime, which is expected to connect everything to everyone, requires anywhere either on their personal computers or on mobile not only connectivity but large storage that can be made systems. In PaaS, the cloud service provider makes it available either through on-premise or off-premise cloud possible for users to deploy applications using application facility. On the other hand, events in the cloud and IoT are programming interfaces (APIs), web portals or gateways dynamic.
    [Show full text]
  • Overview of Cloud Storage Allan Liu, Ting Yu
    Overview of Cloud Storage Allan Liu, Ting Yu To cite this version: Allan Liu, Ting Yu. Overview of Cloud Storage. International Journal of Scientific & Technology Research, 2018. hal-02889947 HAL Id: hal-02889947 https://hal.archives-ouvertes.fr/hal-02889947 Submitted on 6 Jul 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Overview of Cloud Storage Allan Liu, Ting Yu Department of Computer Science and Engineering Shanghai Jiao Tong University, Shanghai Abstract— Cloud computing is an emerging service and computing platform and it has taken commercial computing by storm. Through web services, the cloud computing platform provides easy access to the organization’s storage infrastructure and high-performance computing. Cloud computing is also an emerging business paradigm. Cloud computing provides the facility of huge scalability, high performance, reliability at very low cost compared to the dedicated storage systems. This article provides an introduction to cloud computing and cloud storage and different deployment modules. The general architecture of the cloud storage is also discussed along with its advantages and disadvantages for the organizations. Index Terms— Cloud Storage, Emerging Technology, Cloud Computing, Secure Storage, Cloud Storage Models —————————— u —————————— 1 INTRODUCTION n this era of technological advancements, Cloud computing Ihas played a very vital role in changing the way of storing 2 CLOUD STORAGE information and run applications.
    [Show full text]
  • Enhancing Bittorrent-Like Peer-To-Peer Content Distribution with Cloud Computing
    ENHANCING BITTORRENT-LIKE PEER-TO-PEER CONTENT DISTRIBUTION WITH CLOUD COMPUTING A THESIS SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA BY Zhiyuan Peng IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE Haiyang Wang November 2018 © Zhiyuan Peng 2018 Abstract BitTorrent is the most popular P2P file sharing and distribution application. However, the classic BitTorrent protocol favors peers with large upload bandwidth. Certain peers may experience poor download performance due to the disparity between users’ upload/download bandwidth. The major objective of this study is to improve the download performance of BitTorrent users who have limited upload bandwidth. To achieve this goal, a modified peer selection algorithm and a cloud assisted P2P network system is proposed in this study. In this system, we dynamically create additional peers on cloud that are dedicated to boost the download speed of the requested user. i Contents Abstract ............................................................................................................................................. i List of Figures ................................................................................................................................ iv 1 Introduction .............................................................................................................................. 1 2 Background .............................................................................................................................
    [Show full text]
  • Tensorflow and Serverless Machine Learning with Google Cloud Platform
    TensorFlow and Serverless Machine Learning with Google Cloud Platform Date: Out of 133 million new jobs to be created by 2022, the top ones will be in the areas of machine learning, artificial intelligence, and data science. Employees in these roles can command an annual salary of over $125,000. This full-day workshop will Friday, April 26, 2019 advance your existing skills in programming, SQL, and Linux and get you started on a portfolio project you can use in discussions with employers about job opportunities in Time : these high demand careers. 8:30 AM—5:30 PM Presented by Location: Carl Osipov, Co-Founder & CTO, Counter Factual .AI Volusia County Business Incubator Powered by UCF Workshop Objectives: Learn how to: 601 Innovation Way Identify business use cases for machine learning Daytona Beach, FL Build a machine learning model using TensorFlow, Python, and SQL 32114 Scale and deploy machine learning models using Google Cloud MLE RSVP: Productionize trained machine learning models as web services [email protected] Materials you will need in advance: The workshop will be conducted on Price: Google Cloud Platform (GCP) and will use GCP's infrastructure to run Ten- Incubator Clients: and sorFlow. All you will need is a reasonably powerful laptop running an up-to- Graduates Free date browser (preferably Chrome). Make sure that the laptop is well charged sponsored by Career in advance! Source Please call Kathy at: (386) 561-9750 Skills Prerequisites: You must have beginner level experience with pro- All Others: gramming using Python and SQL. You should also be comfortable with com- $295 mon Linux/UNIX shell commands.
    [Show full text]
  • Cluster, Grid and Cloud Computing: a Detailed Comparison
    The 6th International Conference on Computer Science & Education (ICCSE 2011) August 3-5, 2011. SuperStar Virgo, Singapore ThC 3.33 Cluster, Grid and Cloud Computing: A Detailed Comparison Naidila Sadashiv S. M Dilip Kumar Dept. of Computer Science and Engineering Dept. of Computer Science and Engineering Acharya Institute of Technology University Visvesvaraya College of Engineering (UVCE) Bangalore, India Bangalore, India [email protected] [email protected] Abstract—Cloud computing is rapidly growing as an alterna- with out any prior reservation and hence eliminates over- tive to conventional computing. However, it is based on models provisioning and improves resource utilization. like cluster computing, distributed computing, utility computing To the best of our knowledge, in the literature, only a few and grid computing in general. This paper presents an end-to- end comparison between Cluster Computing, Grid Computing comparisons have been appeared in the field of computing. and Cloud Computing, along with the challenges they face. This In this paper we bring out a complete comparison of the could help in better understanding these models and to know three computing models. Rest of the paper is organized as how they differ from its related concepts, all in one go. It also follows. The cluster computing, grid computing and cloud discusses the ongoing projects and different applications that use computing models are briefly explained in Section II. Issues these computing models as a platform for execution. An insight into some of the tools which can be used in the three computing and challenges related to these computing models are listed models to design and develop applications is given.
    [Show full text]
  • Security of Cloud Computing in the Iot Era
    future internet Article Cyber-Storms Come from Clouds: Security of Cloud Computing in the IoT Era Michele De Donno 1 , Alberto Giaretta 2, Nicola Dragoni 1,2 and Antonio Bucchiarone 3,∗ and Manuel Mazzara 4,∗ 1 DTU Compute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; [email protected] (M.D.D.); [email protected] (N.D.) 2 Centre for Applied Autonomous Sensor Systems Orebro University, 701 82 Orebro, Sweden; [email protected] 3 Fondazione Bruno Kessler, Via Sommarive 18, 38123 Trento, Italy 4 Institute of Software Development and Engineering, Innopolis University, Universitetskaya St, 1, 420500 Innopolis, Russian Federation * Correspondence: [email protected] (A.B.); [email protected] (M.M.) Received: 28 January 2019; Accepted: 30 May 2019; Published: 4 June 2019 Abstract: The Internet of Things (IoT) is rapidly changing our society to a world where every “thing” is connected to the Internet, making computing pervasive like never before. This tsunami of connectivity and data collection relies more and more on the Cloud, where data analytics and intelligence actually reside. Cloud computing has indeed revolutionized the way computational resources and services can be used and accessed, implementing the concept of utility computing whose advantages are undeniable for every business. However, despite the benefits in terms of flexibility, economic savings, and support of new services, its widespread adoption is hindered by the security issues arising with its usage. From a security perspective, the technological revolution introduced by IoT and Cloud computing can represent a disaster, as each object might become inherently remotely hackable and, as a consequence, controllable by malicious actors.
    [Show full text]
  • 5 Steps to Prepare Your Network for Cloud Computing
    VIAVI Solutions White Paper 5 Steps to Prepare Your Network for Cloud Computing To the novice IT manager, a shift to cloud computing may appear to offer great relief. No longer will their team have to worry as much about large infrastructure deployments, complex server configurations, and troubleshooting complex delivery on internally-hosted applications. But, diving a little deeper reveals that cloud computing also delivers a host of new challenges. Through cloud computing, organizations perform tasks While providing increased IT flexibility and potentially or use applications that harness massive third-party lowering costs, cloud computing shifts IT management computing and processing power via the Internet priorities from the network core to the WAN/Internet cloud. This allows them to quickly scale services and connection. Cloud computing extends the organization’s applications to meet changing user demand and avoid network via the Internet, tying into other networks to purchasing network assets for infrequent, intensive access services, applications and data. Understanding computing tasks. this shift, IT teams must adequately prepare the network, and adjust management styles to realize the promise of cloud computing. Shift in Management Focus With internal hosting, management LAN Switch focuses on the connection between Server Farm Client the LAN and Server Farm. Embracing cloud computing shifts the focus toward the WAN connection. WAN/Internet Internal Hosting Cloud Computing Cloud Provider Cloud computing shifts IT management significantly impact the decisions you make from whether your monitoring tools adequately track priorities from the network core WAN performance to the personnel and resources to the WAN/Internet connection. you devote to managing WAN-related issues.
    [Show full text]
  • Cloud Computing Over Cluster, Grid Computing: a Comparative Analysis
    Journal of Grid and Distributed Computing Volume 1, Issue 1, 2011, pp-01-04 Available online at: http://www.bioinfo.in/contents.php?id=92 Cloud Computing Over Cluster, Grid Computing: a Comparative Analysis 1Indu Gandotra, 2Pawanesh Abrol, 3 Pooja Gupta, 3Rohit Uppal and 3Sandeep Singh 1Department of MCA, MIET, Jammu 2Department of Computer Science & IT, Jammu Univ, Jammu 3Department of MCA, MIET, Jammu e-mail: [email protected], [email protected], [email protected], [email protected], [email protected] Abstract—There are dozens of definitions for cloud Virtualization is a technology that enables sharing of computing and through each definition we can get the cloud resources. Cloud computing platform can become different idea about what a cloud computing exacting is? more flexible, extensible and reusable by adopting the Cloud computing is not a very new concept because it is concept of service oriented architecture [5].We will not connected to grid computing paradigm whose concept came need to unwrap the shrink wrapped software and install. into existence thirteen years ago. Cloud computing is not only related to Grid Computing but also to Utility computing The cloud is really very easier, just to install single as well as Cluster computing. Cloud computing is a software in the centralized facility and cover all the computing platform for sharing resources that include requirements of the company’s users [1]. software’s, business process, infrastructures and applications. Cloud computing also relies on the technology II. CLUSTER COMPUTING of virtualization. In this paper, we will discuss about Grid computing, Cluster computing and Cloud computing i.e.
    [Show full text]
  • GPU Based Cloud Computing
    GPU based cloud computing Dairsie Latimer, Petapath, UK Petapath © NVIDIA Corporation 2010 About Petapath Petapath ! " Founded in 2008 to focus on delivering innovative hardware and software solutions into the high performance computing (HPC) markets ! " Partnered with HP and SGI to deliverer two Petascale prototype systems as part of the PRACE WP8 programme ! " The system is a testbed for new ideas in usability, scalability and efficiency of large computer installations ! " Active in exploiting emerging standards for acceleration technologies and are members of Khronos group and sit on the OpenCL working committee ! " We also provide consulting expertise for companies wishing to explore the advantages offered by heterogeneous systems © NVIDIA Corporation 2010 What is Heterogeneous or GPU Computing? x86 PCIe bus GPU Computing with CPU + GPU Heterogeneous Computing © NVIDIA Corporation 2010 Low Latency or High Throughput? CPU GPU ! " Optimised for low-latency ! " Optimised for data-parallel, access to cached data sets throughput computation ! " Control logic for out-of-order ! " Architecture tolerant of and speculative execution memory latency ! " More transistors dedicated to computation © NVIDIA Corporation 2010 NVIDIA GPU Computing Ecosystem ISV CUDA CUDA TPP / OEM Training Development Company Specialist Hardware GPU Architecture Architect VAR CUDA SDK & Tools Customer Application Customer NVIDIA Hardware Requirements Solutions Hardware Architecture © NVIDIA Corporation 2010 Deployment Science is Desperate for Throughput Gigaflops 1,000,000,000
    [Show full text]
  • Economic and Social Impacts of Google Cloud September 2018 Economic and Social Impacts of Google Cloud |
    Economic and social impacts of Google Cloud September 2018 Economic and social impacts of Google Cloud | Contents Executive Summary 03 Introduction 10 Productivity impacts 15 Social and other impacts 29 Barriers to Cloud adoption and use 38 Policy actions to support Cloud adoption 42 Appendix 1. Country Sections 48 Appendix 2. Methodology 105 This final report (the “Final Report”) has been prepared by Deloitte Financial Advisory, S.L.U. (“Deloitte”) for Google in accordance with the contract with them dated 23rd February 2018 (“the Contract”) and on the basis of the scope and limitations set out below. The Final Report has been prepared solely for the purposes of assessment of the economic and social impacts of Google Cloud as set out in the Contract. It should not be used for any other purposes or in any other context, and Deloitte accepts no responsibility for its use in either regard. The Final Report is provided exclusively for Google’s use under the terms of the Contract. No party other than Google is entitled to rely on the Final Report for any purpose whatsoever and Deloitte accepts no responsibility or liability or duty of care to any party other than Google in respect of the Final Report and any of its contents. As set out in the Contract, the scope of our work has been limited by the time, information and explanations made available to us. The information contained in the Final Report has been obtained from Google and third party sources that are clearly referenced in the appropriate sections of the Final Report.
    [Show full text]
  • Introduction to Openstack
    Introduction to OpenStack Nabil Abdennadher [email protected] • 1 What is OpenStack ? • Free and open-source cloud-computing software platform • Provides services for managing a Cloud environment on the fly. • Consists of a group of interrelated projects that control pools of processing, storage, and networking resources • Provides users methods and support to deploy virtual machines in a remote environment. • State in OpenStack is maintained in centrally managed relational database (MySQL or MariaDB). • OpenStack provides all the services for an IaaS. • 2 • OpenStack (Kilo) • hepiaCloud (Kilo) • SWITCHEngines (Juno) • 3 OpenStack forum • 4 OpenStack releases Series Status Releases dates Austin Deprecated Oct. 2010 Baxer Deprecated Feb. 2011 Cactus Deprecated Apr. 2011 Diablo End Of Life (EOL) Sept 2011, Janv. 2012 Essex EOL Apr. 2012 … Oct. 2012 Folsom EOL Sept. 2012 …Apr. 2013 Grizzly EOL Apr. 2013 … Mar. 2014 Havana EOL Oct. 2013 … Apr. 2014 Icehouse EOL Apr. 2014 … Jun. 2015 Juno Security supported Oct. 2014 … Apr. 2015 Kilo Current stable release, Apr. 2015 ... Jul. 2015 security supoorted Liberty Under development Oct. 2015 • 5 OpenStack components • OpenStack identifies nine key components... • Nova: cloud computing fabric controller, main part of an IaaS system. It is designed to manage and automate pools of computer resources • 6 OpenStack components • Keystone: provides identity services for OpenStack. A central list of users/permissions mapped against OpenStack services. Provides multiple means of access. • Glance: provides image services to OpenStack. "images" refers to images (or virtual copies) of hard disks. Used as templates for deploying new VMs. • Neutron: provides the networking capability for OpenStack. • Horizon: The dashboard behind OpenStack.
    [Show full text]
  • A Survey on Cloud Storage
    1764 JOURNAL OF COMPUTERS, VOL. 6, NO. 8, AUGUST 2011 A Survey on Cloud Storage Jiehui JU1,4 1.School of Information and Electronic Engineering, Zhejiang University of Science and Technology,Hangzhou,China Email: [email protected] Jiyi WU2,3, Jianqing FU3, Zhijie LIN1,3, Jianlin ZHANG2 2. Key Lab of E-Business and Information Security, Hangzhou Normal University, Hangzhou,China 3.School of Computer Science and Technology, Zhejiang University,Hangzhou,China 4.Key Lab of E-business Market Application Technology of Guangdong Province, Guangdong University of Business Studies, Guangzhou 510320, China Email: [email protected]; [email protected]; [email protected]; [email protected] Abstract— Cloud storage is a new concept come into being simultaneously with cloud computing, and can be divided into public cloud storage, private cloud storage and hybrid cloud storage. This article gives a quick introduction to cloud storage. It covers the key technologies in Cloud Computing and Cloud Storage. Google GFS massive data storage system and the popular open source Hadoop HDFS were detailed introduced to analyze the principle of Cloud Storage technology. As an important technology area and research direction, cloud storage is becoming a hot research for both academia and industry session. The future valuable research works were summarized at the end. Index Terms—Cloud Storage, Distributed File System, Research Status, survey I. INTRODUCTION As we all known disk storage is one of the largest expenditure in IT projects. ComputerWorld estimates that storage is responsible for almost 30% of capital expenditures as the average growth of data approaches Figure 1.
    [Show full text]