(Never) Mind Your P's and Q's: Von Neumann Versus Jordan on the Foundations of Quantum Theory

Total Page:16

File Type:pdf, Size:1020Kb

(Never) Mind Your P's and Q's: Von Neumann Versus Jordan on the Foundations of Quantum Theory (Never) Mind your p’s and q’s: Von Neumann versus Jordan on the Foundations of Quantum Theory. a b, Anthony Duncan , Michel Janssen ∗ aDepartment of Physics and Astronomy, University of Pittsburgh bProgram in the History of Science, Technology, and Medicine, University of Minnesota Abstract In two papers entitled “On a new foundation [Neue Begr¨undung] of quantum me- chanics,” Pascual Jordan (1927b,g) presented his version of what came to be known as the Dirac-Jordan statistical transformation theory. As an alternative that avoids the mathematical difficulties facing the approach of Jordan and Paul A. M. Dirac (1927), John von Neumann (1927a) developed the modern Hilbert space formalism of quantum mechanics. In this paper, we focus on Jordan and von Neumann. Cen- tral to the formalisms of both are expressions for conditional probabilities of finding some value for one quantity given the value of another. Beyond that Jordan and von Neumann had very different views about the appropriate formulation of prob- lems in quantum mechanics. For Jordan, unable to let go of the analogy to classical mechanics, the solution of such problems required the identification of sets of canon- ically conjugate variables, i.e., p’s and q’s. For von Neumann, not constrained by the analogy to classical mechanics, it required only the identification of a maximal set of commuting operators with simultaneous eigenstates. He had no need for p’s and q’s. Jordan and von Neumann also stated the characteristic new rules for prob- abilities in quantum mechanics somewhat differently. Jordan (1927b) was the first to state those rules in full generality. Von Neumann (1927a) rephrased them and, arXiv:1204.6511v2 [physics.hist-ph] 31 Aug 2012 in a subsequent paper (von Neumann, 1927b), sought to derive them from more basic considerations. In this paper we reconstruct the central arguments of these 1927 papers by Jordan and von Neumann and of a paper on Jordan’s approach by Hilbert, von Neumann, and Nordheim (1928). We highlight those elements in these papers that bring out the gradual loosening of the ties between the new quantum formalism and classical mechanics. Key words: Pascual Jordan, John von Neumann, transformation theory, probability amplitudes, canonical transformations, Hilbert space, spectral theorem Preprint submitted to The European Physical Journal H 3 September 2012 1 Introduction 1.1 The Dirac-Jordan statistical transformation theory On Christmas Eve 1926, Paul A. M. Dirac, on an extended visit to Niels Bohr’s institute in Copenhagen, wrote to Pascual Jordan, assistant to Max Born in G¨ottingen: 1 Dr. Heisenberg has shown me the work you sent him, and as far as I can see it is equivalent to my own work in all essential points. The way of obtaining the results may be rather different though . I hope you do not mind the fact that I have obtained the same results as you, at (I believe) the same time as you. Also, the Royal Society publishes papers more quickly than the Zeits. f. Phys., and I think my paper will appear in their January issue. I am expecting to go to G¨ottingen at the beginning of February, and I am looking forward very much to meeting you and Prof. Born there (Dirac to Jordan, December 24, 1916, AHQP). 2 Dirac’s paper, “The physical interpretation of the quantum dynamics” (Dirac, 1927), had been received by the Royal Society on December 2. Zeitschrift f¨ur Physik had received Jordan’s paper, “On a new foundation [Neue Begr¨un- dung] of quantum mechanics” (Jordan, 1927b), on December 18. 3 In both ⋆ This paper was written as part of a joint project in the history of quantum physics of the Max Planck Institut f¨ur Wissenschaftsgeschichte and the Fritz-Haber-Institut in Berlin. ∗ Corresponding author. Address: Tate Laboratory of Physics, 116 Church St. SE, Minneapolis, MN 55455, USA, Email: [email protected] 1 Reminiscing about the early days of quantum mechanics, Jordan (1955) painted an idyllic picture of G¨ottingen during this period, both of the town itself and of its academic life. J. Robert Oppenheimer, who spent a year there in 1926–1927, also remembered a darker side: “[A]lthough this society was extremely rich and warm and helpful to me, it was parked there in a very very miserable German mood which probably in Thuringia was not as horrible as a little bit further east; G¨ottingen is not in Thuringia —not as bad as in Thuringia—but it was close enough to Thuringia to be bitter, sullen, and, I would say, discontent and angry and loaded with all those ingredients which were later to produce a major disaster” (Interview with Oppenheimer for the Archive for History of Quantum Physics [AHQP], session 2, p. 5; quoted in part by Bird and Sherwin, 2005, pp. 57–58). For detailed references to material in the AHQP, see Kuhn et al. (1967). 2 This letter is quoted almost in its entirety (cf. note 42) and with extensive com- mentary by Mehra and Rechenberg (2000–2001, p. 72, pp. 83–87). 3 We will refer to this paper as Neue Begr¨undung I to distinguish it from Neue Begr¨undung II, submitted June 3, 1927 to the same journal, a sequel in which Jordan tried both to simplify and generalize his theory (Jordan, 1927g). A short 2 cases it took a month for the paper to get published: Dirac’s appeared Jan- uary 1, Jordan’s January 18. 4 What Dirac and Jordan, independently of one another, had worked out and presented in these papers has come to be known as the Dirac-Jordan (statistical) transformation theory. 5 As Jordan wrote in a volume in honor of Dirac’s 70th birthday: After Schr¨odinger’s beautiful papers [Schr¨odinger, 1926a], I formulated what I like to call the statistical transformation theory of quantum mechanical systems, answering generally the question concerning the probability of find- ing by measurement of the observable b the eigenvalue b′, if a former mea- surement of another observable a had given the eigenvalue a′. The same answer in the same generality was developed in a wonderful manner by Dirac (Jordan, 1973, p. 296; emphasis in original). In our paper, we focus on Jordan’s version of the theory and discuss Dirac’s version only to indicate how it differs from Jordan’s. 6 Exactly one month before Dirac’s letter to Jordan, Werner Heisenberg, Bohr’s assistant in the years 1926–1927, had already warned Jordan that he was about to be scooped. In reply to a letter, apparently no longer extant, in which Jordan must have given a preview of Neue Begr¨undung I, he wrote: I hope that what’s in your paper isn’t exactly the same as what’s in a paper Dirac did here. Dirac’s basic idea is that the physical meaning of Sαβ, given in my note on fluctuations, can greatly be generalized, so much so that it covers all physical applications of quantum mechanics there have been so far, and, according to Dirac, all there ever will be (Heisenberg to Jordan, November 24, 1926, AHQP). 7 The “note on fluctuations” is a short paper received by Zeitschrift f¨ur Physik on November 6 but not published until December 20. In this note, Heisenberg (1926b), drawing on the technical apparatus of an earlier paper on resonance version of Neue Begr¨undung I was presented to the G¨ottingen Academy by Born on behalf of Jordan in the session of January 14, 1927 (Jordan, 1927c). 4 The extensive bibliography of Mehra and Rechenberg (2000–2001) gives the dates papers were received and published for all the primary literature it lists. 5 The term ‘transformation theory’—and even the term ‘statistical transformation theory’—is sometimes used more broadly (see cf. note 50). 6 For discussions of Dirac’s version, see, e.g., Jammer (1966, pp. 302–305), Kragh (1990, pp. 39–43), Darrigol (1992, pp. 337–345), Mehra and Rechenberg (2000–2001, 72–89), and Rechenberg (2010, 543–548). 7 Mehra and Rechenberg (2000–2001, p. 72) quote more extensively from this let- ter. They also quote and discuss (ibid., p. 78) a similar remark in a letter from Heisenberg to Wolfgang Pauli, November 23, 1926 (Pauli, 1979, Doc. 148, p. 357). In this letter, Heisenberg talks about Dirac’s “extraordinary grandiose [großz¨ugige] generalization” (quoted by Kragh, 1990, p. 39). 3 phenomena (Heisenberg, 1926a), analyzed a simple system of a pair of iden- tical two-state atoms perturbed by a small interaction to allow for the flow- ing back and forth of the amount of energy separating the two states of the 8 atoms. The Sαβ’s are the elements of a matrix S implementing a canonical 1 transformation, f ′ = S− fS, from a quantum-mechanical quantity f for the unperturbed atom to the corresponding quantity f ′ for the perturbed one. The discrete two-valued indices α and β label the perturbed and unperturbed states, respectively. Heisenberg proposed the following interpretation of these matrix elements: 2 If the perturbed system is in a state α, then Sαβ gives the probability that (because of collision processes, because the perturbation| | suddenly stops, etc.) the system is found to be in state β (Heisenberg, 1926b, p. 505; emphasis in the original). Heisenberg (1926b, pp. 504–505) emphasized that the same analysis applies to fluctuations of other quantities (e.g., angular momentum) and to other quantum systems with two or more not necessarily identical components as long as their spectra all share the same energy gap. In the introduction of his paper on transformation theory, Dirac (1927, p.
Recommended publications
  • Physics of the Twentieth Century
    Keep Your Card in This Pocket Books will be issued only on presentation of proper library cards. Unless labeled otherwise, books may be retained for two weeks. Borrowers finding books marked, de faced or mutilated are expected to report same at library desk; otherwise the last borrower will be held responsible for all imperfections discovered. The card holder is responsible for all books drawn on this card. Penalty for over-due books 2c a day plus cost of notices. Lost cards and change of residence must be re ported promptly. Public Library Kansas City, Mo., TENSION gNVCtOPI CORP. KANSAS CITY. MO PUBUf 1 HfUM> DOD1 /'A- PHYSICS OF THE TWENTIETH CENTURY PHYSICS of the 20 TH CENTURY By PASCUAL JORDAN Translated by ELEANOR OSHRT PHILOSOPHICAL LIBRARY NEW YOBK Copyright 1944 By Philosophical Library, lac, 15 East 40th Street, New York, N. Y. Printed in the United States of America by R Hubner & Co., Inc. New York, N. Y. CONTENTS ;?>; PAGE Preface ............................. ...... vii Chapter I Classical Mechanics ...................... 1 Chapter II Modern Electrodynamics . ............... 24 Chapter III The Reality of Atoms .................... 51 Chapter IV The Paradoxes of Quantum Phenomena .... 83 Chapter V The Quantum Theory Description of Nature. Ill Chapter VI Physics and World Observation .......... 139 Appendix I Cosmic Radiation .......... , ............ 166 Appendix II The Age of the World ............ .' ...... 173 PREFACE This book tries to present the concepts of modern physics in a systematic, complete review. The reader will be burdened as little with details of experimental techniques as with mathematical formulations of theory. Without becoming too deeply absorbed in the many, noteworthy details, we shall direct our attention toward the decisive facts and views, toward the guiding viewpoints of research and toward the enlistment of the spirit, which gives modern physics its particular phil osophical character, and which made the achieve ment of its revolutionary perception possible.
    [Show full text]
  • Each Scientific Tradition Develops Its Own Views About the Nature Of
    Chapter 15 Physical Objects, Retrodiction, Holism and Entanglement 15.1 Physical Objects In the eyes of most of the founders of quantum mechanics and of their immediate students, the new physics represented a radical departure from tradition in making measurement central not merely at the experimental but at the conceptual level. In their view, Plank’s quantum of action makes it impossible to speak about the quantum world without explicitly referring to the experimental setup and, for some, ultimately to one’s experiences. Consequently, to the extent they believed quantum mechanics to be complete, many of the founders felt justified in drawing general anti-realist and anti- materialist conclusions from what they took to be the only possible interpretation of the new physics. Often their views were far from restrained and initiated a trend that continued at least into the 1970’s. 15.2 Jordan Pascual Jordan, the author with Heisenberg and Born of one of the fundamental articles in quantum mechanics, was prepared to get quite an amount of mileage from the alleged centrality of measurement. He saw in it the proof that positivism is essentially correct. Quantum mechanics simply connects different experiences (experimental results), telling us nothing about what happens, as it were, in-between measurements: “physical research aims not at disclosing a ‘real existence’of things from ‘behind’ the appearance world, but rather at developing thought systems for the control of the appearance world.” (Jordan, P., (1944): 149). In fact, talk of what is ‘behind’ appearances is bad metaphysics. He also heralded the new physics as the discipline that 347 had brought about the “liquidation” of materialism and the destruction of determinism, thus opening the doors for the possibility of free will and religion not to conflict with science (Jordan, P., (1944): 144; 148-49; 152; 155, 160).
    [Show full text]
  • Spin-Or, Actually: Spin and Quantum Statistics
    S´eminaire Poincar´eXI (2007) 1 – 50 S´eminaire Poincar´e SPIN OR, ACTUALLY: SPIN AND QUANTUM STATISTICS∗ J¨urg Fr¨ohlich Theoretical Physics ETH Z¨urich and IHES´ † Abstract. The history of the discovery of electron spin and the Pauli principle and the mathematics of spin and quantum statistics are reviewed. Pauli’s theory of the spinning electron and some of its many applications in mathematics and physics are considered in more detail. The role of the fact that the tree-level gyromagnetic factor of the electron has the value ge = 2 in an analysis of stability (and instability) of matter in arbitrary external magnetic fields is highlighted. Radiative corrections and precision measurements of ge are reviewed. The general connection between spin and statistics, the CPT theorem and the theory of braid statistics, relevant in the theory of the quantum Hall effect, are described. “He who is deficient in the art of selection may, by showing nothing but the truth, produce all the effects of the grossest falsehoods. It perpetually happens that one writer tells less truth than another, merely because he tells more ‘truth’.” (T. Macauley, ‘History’, in Essays, Vol. 1, p 387, Sheldon, NY 1860) Dedicated to the memory of M. Fierz, R. Jost, L. Michel and V. Telegdi, teachers, colleagues, friends. arXiv:0801.2724v3 [math-ph] 29 Feb 2008 ∗Notes prepared with efficient help by K. Schnelli and E. Szabo †Louis-Michel visiting professor at IHES´ / email: [email protected] 2 J. Fr¨ohlich S´eminaire Poincar´e Contents 1 Introduction to ‘Spin’ 3 2 The Discovery of Spin and of Pauli’s Exclusion Principle, Historically Speaking 6 2.1 Zeeman, Thomson and others, and the discovery of the electron.......
    [Show full text]
  • Pascual Jordan, His Contributions to Quantum Mechanics and His Legacy in Contemporary Local Quantum Physics Bert Schroer
    CBPF-NF-018/03 Pascual Jordan, his contributions to quantum mechanics and his legacy in contemporary local quantum physics Bert Schroer present address: CBPF, Rua Dr. Xavier Sigaud 150, 22290-180 Rio de Janeiro, Brazil email [email protected] permanent address: Institut fr Theoretische Physik FU-Berlin, Arnimallee 14, 14195 Berlin, Germany May 2003 Abstract After recalling episodes from Pascual Jordan’s biography including his pivotal role in the shaping of quantum field theory and his much criticized conduct during the NS regime, I draw attention to his presentation of the first phase of development of quantum field theory in a talk presented at the 1929 Kharkov conference. He starts by giving a comprehensive account of the beginnings of quantum theory, emphasising that particle-like properties arise as a consequence of treating wave-motions quantum-mechanically. He then goes on to his recent discovery of quantization of “wave fields” and problems of gauge invariance. The most surprising aspect of Jordan’s presentation is however his strong belief that his field quantization is a transitory not yet optimal formulation of the principles underlying causal, local quantum physics. The expectation of a future more radical change coming from the main architect of field quantization already shortly after his discovery is certainly quite startling. I try to answer the question to what extent Jordan’s 1929 expectations have been vindicated. The larger part of the present essay consists in arguing that Jordan’s plea for a formulation with- out “classical correspondence crutches”, i.e. for an intrinsic approach (which avoids classical fields altogether), is successfully addressed in past and recent publications on local quantum physics.
    [Show full text]
  • DERIVATIONS Introduction to Non-Associative
    DERIVATIONS Introduction to non-associative algebra OR Playing havoc with the product rule? PART I—ALGEBRAS BERNARD RUSSO University of California, Irvine UNDERGRADUATE COLLOQUIUM UCI Anteater Mathematics Club event MAY 2, 2011 (5:30 PM) PART II—TRIPLE SYSTEMS 2011-2012 (DATE AND TIME TBA) PART I—ALGEBRAS Sophus Lie (1842–1899) Marius Sophus Lie was a Norwegian mathematician. He largely created the theory of continuous symmetry, and applied it to the study of geometry and differential equations. Pascual Jordan (1902–1980) Pascual Jordan was a German theoretical and mathematical physicist who made significant contributions to quantum mechanics and quantum field theory. THE DERIVATIVE f(x + h) − f(x) f 0(x) = lim h→0 h DIFFERENTIATION IS A LINEAR PROCESS (f + g)0 = f 0 + g0 (cf)0 = cf 0 THE SET OF DIFFERENTIABLE FUNCTIONS FORMS AN ALGEBRA D (fg)0 = fg0 + f 0g (product rule) HEROS OF CALCULUS #1 Sir Isaac Newton (1642-1727) Isaac Newton was an English physicist, mathematician, astronomer, natural philosopher, alchemist, and theologian, and is considered by many scholars and members of the general public to be one of the most influential people in human history. LEIBNIZ RULE (fg)0 = f 0g + fg0 (order changed) ************************************ (fgh)0 = f 0gh + fg0h + fgh0 ************************************ 0 0 0 (f1f2 ··· fn) = f1f2 ··· fn + ··· + f1f2 ··· fn The chain rule, (f ◦ g)0(x) = f 0(g(x))g0(x) plays no role in this talk Neither does the quotient rule gf 0 − fg0 (f/g)0 = g2 #2 Gottfried Wilhelm Leibniz (1646-1716) Gottfried Wilhelm Leibniz was a German mathematician and philosopher.
    [Show full text]
  • Pascual Jordan's Resolution of the Conundrum of the Wave-Particle
    Pascual Jordan’s resolution of the conundrum of the wave-particle duality of light. ⋆ Anthony Duncan a, Michel Janssen b,∗ aDepartment of Physics and Astronomy, University of Pittsburgh bProgram in the History of Science, Technology, and Medicine, University of Minnesota Abstract In 1909, Einstein derived a formula for the mean square energy fluctuation in a subvolume of a box filled with black-body radiation. This formula is the sum of a wave term and a particle term. Einstein concluded that a satisfactory theory of light would have to combine aspects of a wave theory and a particle theory. In a key contribution to the 1925 Dreim¨annerarbeit with Born and Heisenberg, Jordan used Heisenberg’s new Umdeutung procedure to quantize the modes of a string and argued that in a small segment of the string, a simple model for a subvolume of a box with black-body radiation, the mean square energy fluctuation is described by a formula of the form given by Einstein. The two terms thus no longer require separate mechanisms, one involving particles and one involving waves. Both terms arise from a single consistent dynamical framework. Jordan’s derivation was later criticized by Heisenberg and others and the lingering impression in the subsequent literature is that infinities of one kind or another largely invalidate Jordan’s conclusions. In this paper, we carefully reconstruct Jordan’s derivation and reexamine some of the objections raised against it. Jordan could certainly have presented his argument more clearly. His notation, for instance, fails to bring out that various sums over modes of the string need to be restricted to a finite frequency range for the final result to be finite.
    [Show full text]
  • Are Information , Cognition and the Principle of Existence Intrinsically
    Are Information, Cognition and the Principle of Existence Intrinsically Structured in the Quantum Model of Reality? Elio Conte School of International Advanced Studies on Theoretical and non Linear Methodologies of Physics – Bari- Italy and Department of Neurosciences and Sense Organs, University of Bari “Aldo Moro” Bari-Italy Abstract: The thesis of this paper is that Information, Cognition and a Principle of Existence are intrinsically structured in the quantum model of reality. We reach such evidence by using the Clifford algebra. We analyze quantization in some traditional cases of quantum mechanics and, in particular in quantum harmonic oscillator, orbital angular momentum and hydrogen atom. Keywords: information, quantum cognition, principle of existence, quantum mechanics, quantization, Clifford algebra. Corresponding author : [email protected] Introduction The earliest versions of quantum mechanics were formulated in the first decade of the 20th century following about the same time the basic discoveries of physics as the atomic theory and the corpuscular theory of light that was basically updated by Einstein. Early quantum theory was significantly reformulated in the mid-1920s by Werner Heisenberg, Max Born and Pascual Jordan, who created matrix mechanics, Louis de Broglie and Erwin Schrodinger who introduced wave mechanics, and Wolfgang Pauli and Satyendra Nath Bose who introduced the statistics of subatomic particles. Finally, the Copenhagen interpretation became widely accepted but with profound reservations of some distinguished scientists and, in particular, A. Einstein who prospected the general and alternative view point of the hidden variables, originating a large debate about the conceptual foundations of the theory that has received in the past years renewed strengthening with Bell theorem [1], and still continues in the present days.
    [Show full text]
  • Pascual Jordan's Resolution of the Conundrum of the Wave-Particle
    Jordan’s resolution of the wave-particle conundrum of light HQ1, Max Planck Institute for History of Science, Berlin, July 2–6, 2007 Pascual Jordan’s resolution of the conundrum of the wave-particle duality of light Anthony Duncan Michel Janssen Department of Program in the History Physics and Astronomy, of Science, Technology, and Medicine University of Pittsburgh University of Minnesota In 1909, Einstein derived a formula for the mean square energy fluctuation in a small subvolume of a box filled with black-body radiation. This formula is the sum of a wave term and a particle term. Einstein concluded that a satisfactory theory of light would thus have to combine aspects of a wave theory and a particle theory. In the following decade, various attempts were made to recover this formula without Einstein’s light quanta. In a key contribution to the 1925 Dreimännerarbeit with Born and Heisenberg, Jordan showed that a straightforward application of Heisenberg’s Umdeutung procedure, which forms the core of the new matrix mechanics, to a system of waves reproduces both terms of Einstein’s fluctuation formula. Jordan thus showed that these two terms do not require separate mechanisms, one involving particles and one involving waves. In matrix mechanics, both terms arise from a single consistent dynamical framework. 1 HQ1, MPIWG, Berlin, July 2-6, 2007 Jordan’s resolution of the wave-particle conundrum of light Pascual Jordan’s resolution of the conundrum of the wave-particle duality of light Outline Einstein, fluctuations, light quanta, and wave-particle
    [Show full text]
  • The Development of Quantum Mechanics
    A Brief History of Science Part 13: The Development of Quantum Mechanics Soumitro Banerjee∗ Introduction the time cannot explain the material world came mainly with two discoveries: black- Y THE 1890s, the pillars of physics — body radiation and radioactivity. We have Bthe Newtonian theory of gravity and discussed the former in the last issue. So dynamics that explained the motion of bod- let us start with radioactivity on our way to ies, Maxwell’s theory of electromagnetism quantum mechanics. that explained all electrical and magnetic phenomena including the nature of light, Radioactivity and thermodynamics which explained the phenomena resulting from exchange of heat In 1895, Wilhelm Conrad Roentgen discov- — were on firm footing. Physicists grew ered the x-ray, and captured the image complacent and believed that there was of the bones of his hand on photographic nothing more to be done in this field. plates. To publicize the event, he mailed the “All that remains is to dot a few i’s and photographs to a few eminent scientists. cross a few t’s”, commented the physicist That created a sensation, and within three John Trowbridge of Harvard University. weeks the new technique of x-ray was being Albert Michelson of Chicago University (a used by medical practitioners to set broken future Nobel Laureate) said in a lecture, bones. “The future truths of physics are to be Becquerel knew about the phenomenon looked for in the sixth place of decimals.” of phosphorescence, that some materials Yet in the next 30 years physics saw glow in the dark after absorbing energy a revolution that completely changed our from the sun during daytime.
    [Show full text]
  • Notas De Física CBPF-NF-008/10 February 2010
    ISSN 0029-3865 CBPF - CENTRO BRASILEIRO DE PESQUISAS FíSICAS Rio de Janeiro Notas de Física CBPF-NF-008/10 February 2010 Pascual Jordan's legacy and the ongoing research in quantum field theory Bert Schroer Ministét"io da Ciência e Tecnologia Pascual Jordan’s legacy and the ongoing research in quantum field theory to be published in EPJH - Historical Perspectives on Contemporary Physics Bert Schroer present address: CBPF, Rua Dr. Xavier Sigaud 150, 22290-180 Rio de Janeiro, Brazil email [email protected] permanent address: Institut f¨urTheoretische Physik FU-Berlin, Arnimallee 14, 14195 Berlin, Germany December 2009 Abstract After recalling Pascual Jordan’s pathbreaking work in shaping quantum mechan- ics I explain his role as the protagonist of quantum field theory (QFT). Particular emphasis is given to the 1929 Kharkov conference where Jordan not only presents a quite modern looking panorama about the state of art, but were some of his ideas already preempt an intrinsic point of view about a future QFT liberated from the classical parallelism and quantum field theory, a new approach for which the conceptional basis began to emerge ony 30 years later. Two quite profound subjects in which Jordan was far ahead of his contempo- raries will be presented in separate sections: ”Bosonization and Re-fermionization instead of Neutrino theory of Light” and ”Nonlocal gauge invariants and an alge- braic monopole quantization”. The last section contains scientific episodes mixed with biographical details. It includes remarks about his much criticized conduct during the NS regime. Without knowing about his entanglement with the Nazis it is not possible to understand that such a giant of particle physics dies without having received a Nobel prize.
    [Show full text]
  • Another Dirac Jeremy Bernstein Stevens Institute of Technology
    Another Dirac Jeremy Bernstein Stevens Institute of Technology “A description of the proposed formulation of quantum mechanics might best begin by recalling some remarks made by Dirac concerning the analogue of the Lagrangian and the action in quantum mechanics. These remarks bear so directly on what is to follow and are so necessary for an understanding of it, that it is thought best to quote them in full even though it results in a rather long quotation.” Richard Feynman1 “This note is concerned with methods of separating isotopes which depend on subjecting the mixture of isotopes, in liquid or gaseous form, to physical conditions which tend to cause a gradient in the concentration of an isotope. The most useful examples of such physical conditions are the presence of a field of centrifugal force or of a temperature gradient. There is a general theory governing the performance of a separator which employs such a method. It puts an upper limit to the output of the apparatus and shows what running conditions one should strive to attain in order to approach the theoretical limit in practice.” P.A.M. Dirac2 I: Paths I would imagine that if the average physicist was asked to list Dirac’s achievements in physics he or she would say “the Dirac equation.” A few might say “the Dirac delta function” but this is a mathematical convenience and not exactly a discovery in physics.3 Some might also say 1 Feynman’s Thesis; A New Approach to Quantum Theory, edited by Laurie M. Brown, World Scientific, New Jersey,2005, p.26 2 This paper, “The Theory of the Separation of Isotopes by Statistical Methods,” was never published by Dirac but is held in the Public Records Office in Kew, London.
    [Show full text]
  • A Clifford Algebraic Analysis Gives Mathematical Explanation Of
    World Journal of Neuroscience, 2013, 3, 157-170 WJNS http://dx.doi.org/10.4236/wjns.2013.33021 Published Online August 2013 (http://www.scirp.org/journal/wjns/) A Clifford algebraic analysis gives mathematical explanation of quantization of quantum theory and delineates a model of quantum reality in which information, primitive cognition entities and a principle of existence are * intrinsically represented ab initio Elio Conte1,2 1School of International Advanced Studies on Applied Theoretical and Non Linear Methodologies of Physics, Bari, Italy 2Department of Neurosciences and Sense Organs, University of Bari “Aldo Moro”, Bari, Italy Email: [email protected] Received 7 April 2013; revised 20 May 2013; accepted 24 June 2013 Copyright © 2013 Elio Conte. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. ABSTRACT tistics of subatomic particles. Finally, the Copenhagen interpretation became widely accepted but with profound The thesis of this paper is that Information, Cognition reservations of some distinguished scientists and, in par- and a Principle of Existence are intrinsically struc- ticular, A. Einstein who prospected the general and al- tured in the quantum model of reality. We reach such ternative view point of the hidden variables, originating a evidence by using the Clifford algebra. We analyze quantization in some traditional cases of quantum large debate about the conceptual foundations of the the- mechanics and, in particular in quantum harmonic ory that has received in the past years renewed strength- oscillator, orbital angular momentum and hydrogen ening with Bell theorem [1], and still continues in the atom.
    [Show full text]