The Lower Actinopterygian Fauna from the Lower Carboniferous Albert
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Table S1.Xlsx
Bone type Bone type Taxonomy Order/series Family Valid binomial Outdated binomial Notes Reference(s) (skeletal bone) (scales) Actinopterygii Incertae sedis Incertae sedis Incertae sedis †Birgeria stensioei cellular this study †Birgeria groenlandica cellular Ørvig, 1978 †Eurynotus crenatus cellular Goodrich, 1907; Schultze, 2016 †Mimipiscis toombsi †Mimia toombsi cellular Richter & Smith, 1995 †Moythomasia sp. cellular cellular Sire et al., 2009; Schultze, 2016 †Cheirolepidiformes †Cheirolepididae †Cheirolepis canadensis cellular cellular Goodrich, 1907; Sire et al., 2009; Zylberberg et al., 2016; Meunier et al. 2018a; this study Cladistia Polypteriformes Polypteridae †Bawitius sp. cellular Meunier et al., 2016 †Dajetella sudamericana cellular cellular Gayet & Meunier, 1992 Erpetoichthys calabaricus Calamoichthys sp. cellular Moss, 1961a; this study †Pollia suarezi cellular cellular Meunier & Gayet, 1996 Polypterus bichir cellular cellular Kölliker, 1859; Stéphan, 1900; Goodrich, 1907; Ørvig, 1978 Polypterus delhezi cellular this study Polypterus ornatipinnis cellular Totland et al., 2011 Polypterus senegalus cellular Sire et al., 2009 Polypterus sp. cellular Moss, 1961a †Scanilepis sp. cellular Sire et al., 2009 †Scanilepis dubia cellular cellular Ørvig, 1978 †Saurichthyiformes †Saurichthyidae †Saurichthys sp. cellular Scheyer et al., 2014 Chondrostei †Chondrosteiformes †Chondrosteidae †Chondrosteus acipenseroides cellular this study Acipenseriformes Acipenseridae Acipenser baerii cellular Leprévost et al., 2017 Acipenser gueldenstaedtii -
A Late Permian Ichthyofauna from the Zechstein Basin, Lithuania-Latvia Region
bioRxiv preprint doi: https://doi.org/10.1101/554998; this version posted February 20, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 A late Permian ichthyofauna from the Zechstein Basin, Lithuania-Latvia Region 2 3 Darja Dankina-Beyer1*, Andrej Spiridonov1,4, Ģirts Stinkulis2, Esther Manzanares3, 4 Sigitas Radzevičius1 5 6 1 Department of Geology and Mineralogy, Vilnius University, Vilnius, Lithuania 7 2 Chairman of Bedrock Geology, Faculty of Geography and Earth Sciences, University 8 of Latvia, Riga, Latvia 9 3 Department of Botany and Geology, University of Valencia, Valencia, Spain 10 4 Laboratory of Bedrock Geology, Nature Research Centre, Vilnius, Lithuania 11 12 *[email protected] (DD-B) 13 14 Abstract 15 The late Permian is a transformative time, which ended in one of the most 16 significant extinction events in Earth’s history. Fish assemblages are a major 17 component of marine foods webs. The macroevolution and biogeographic patterns of 18 late Permian fish are currently insufficiently known. In this contribution, the late Permian 19 fish fauna from Kūmas quarry (southern Latvia) is described for the first time. As a 20 result, the studied late Permian Latvian assemblage consisted of isolated 21 chondrichthyan teeth of Helodus sp., ?Acrodus sp., ?Omanoselache sp. and 22 euselachian type dermal denticles as well as many osteichthyan scales of the 23 Haplolepidae and Elonichthydae; numerous teeth of Palaeoniscus, rare teeth findings of 1 bioRxiv preprint doi: https://doi.org/10.1101/554998; this version posted February 20, 2019. -
Lecture 6 – Integument ‐ Scale • a Scale Is a Small Rigid Plate That Grows out of an Animal’ S Skin to Provide Protection
Lecture 6 – Integument ‐ Scale • A scale is a small rigid plate that grows out of an animal’s skin to provide protection. • Scales are quite common and have evolved multiple times with varying structure and function. • Scales are generally classified as part of an organism's integumentary system. • There are various types of scales according to shape and to class of animal. • Although the meat and organs of some species of fish are edible by humans, the scales are usually not eaten. Scale structure • Fish scales Fish scales are dermally derived, specifically in the mesoderm. This fact distinguishes them from reptile scales paleontologically. Genetically, the same genes involved in tooth and hair development in mammals are also involved in scale development. Earliest scales – heavily armoured thought to be like Chondrichthyans • Fossil fishes • ion reservoir • osmotic control • protection • Weighting Scale function • Primary function is protection (armor plating) • Hydrodynamics Scales are composed of four basic compounds: ((gmoving from inside to outside in that order) • Lamellar bone • Vascular or spongy bone • Dentine (dermis) and is always associated with enamel. • Acellular enamel (epidermis) • The scales of fish lie in pockets in the dermis and are embeded in connective tissue. • Scales do not stick out of a fish but are covered by the Epithelial layer. • The scales overlap and so form a protective flexible armor capable of withstanding blows and bumping. • In some catfishes and seahorses, scales are replaced by bony plates. • In some other species there are no scales at all. Evolution of scales Placoid scale – (Chondricthyes – cartilagenous fishes) develop in dermis but protrude through epidermis. -
Geological Survey of Ohio
GEOLOGICAL SURVEY OF OHIO. VOL. I.—PART II. PALÆONTOLOGY. SECTION II. DESCRIPTIONS OF FOSSIL FISHES. BY J. S. NEWBERRY. Digital version copyrighted ©2012 by Don Chesnut. THE CLASSIFICATION AND GEOLOGICAL DISTRIBUTION OF OUR FOSSIL FISHES. So little is generally known in regard to American fossil fishes, that I have thought the notes which I now give upon some of them would be more interesting and intelligible if those into whose hands they will fall could have a more comprehensive view of this branch of palæontology than they afford. I shall therefore preface the descriptions which follow with a few words on the geological distribution of our Palæozoic fishes, and on the relations which they sustain to fossil forms found in other countries, and to living fishes. This seems the more necessary, as no summary of what is known of our fossil fishes has ever been given, and the literature of the subject is so scattered through scientific journals and the proceedings of learned societies, as to be practically inaccessible to most of those who will be readers of this report. I. THE ZOOLOGICAL RELATIONS OF OUR FOSSIL FISHES. To the common observer, the class of Fishes seems to be well defined and quite distin ct from all the other groups o f vertebrate animals; but the comparative anatomist finds in certain unusual and aberrant forms peculiarities of structure which link the Fishes to the Invertebrates below and Amphibians above, in such a way as to render it difficult, if not impossible, to draw the lines sharply between these great groups. -
The Early Triassic Jurong Fish Fauna, South China Age, Anatomy, Taphonomy, and Global Correlation
Global and Planetary Change 180 (2019) 33–50 Contents lists available at ScienceDirect Global and Planetary Change journal homepage: www.elsevier.com/locate/gloplacha Research article The Early Triassic Jurong fish fauna, South China: Age, anatomy, T taphonomy, and global correlation ⁎ Xincheng Qiua, Yaling Xua, Zhong-Qiang Chena, , Michael J. Bentonb, Wen Wenc, Yuangeng Huanga, Siqi Wua a State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Wuhan), Wuhan 430074, China b School of Earth Sciences, University of Bristol, BS8 1QU, UK c Chengdu Center of China Geological Survey, Chengdu 610081, China ARTICLE INFO ABSTRACT Keywords: As the higher trophic guilds in marine food chains, top predators such as larger fishes and reptiles are important Lower Triassic indicators that a marine ecosystem has recovered following a crisis. Early Triassic marine fishes and reptiles Fish nodule therefore are key proxies in reconstructing the ecosystem recovery process after the end-Permian mass extinc- Redox condition tion. In South China, the Early Triassic Jurong fish fauna is the earliest marine vertebrate assemblage inthe Ecosystem recovery period. It is constrained as mid-late Smithian in age based on both conodont biostratigraphy and carbon Taphonomy isotopic correlations. The Jurong fishes are all preserved in calcareous nodules embedded in black shaleofthe Lower Triassic Lower Qinglong Formation, and the fauna comprises at least three genera of Paraseminotidae and Perleididae. The phosphatic fish bodies often show exceptionally preserved interior structures, including net- work structures of possible organ walls and cartilages. Microanalysis reveals the well-preserved micro-structures (i.e. collagen layers) of teleost scales and fish fins. -
Lombardy 2012 Part A
Pan-European Correlation of the Triassic 9th International Field Workshop September 1-5, 2012 The Middle-Late Triassic of Lombardy (I) and Canton Ticino (CH) By Flavio Jadoul and Andrea Tintori 2 This Field Trip had support from: Convenzione dei Comuni italiani del Monte San Giorgio/UNESCO Fondazione UNESCO- Monte San Giorgio Svizzera Comunità Montana della Valsassina, Valvarrone, Val d’Esino e Riviera Parco Regionale della Grigna Settentrionale 3 September 2, first day by Andrea Tintori and Markus Felber MONTE SAN GIORGIO IS UNESCO WORLD HERITAGE SITE Monte San Giorgio is among the most important fossil-bearing sites in the world, in particular concerning the middle Triassic fauna (245-230 million years ago). Following the UNESCO inscription of the Swiss side of the mountain in 2003, the Italian side has been inscribed in 2010, stating that: “Monte San Giorgio is the only and best known evidence of the marine Triassic life but also preserves some important remains of terrestrial organisms. The numerous and diverse fossil finds are exceptionally preserved and complete. The long history of the research and the controlled management of the paleontological resources have allowed thorough studies and the classification of exceptional specimens which are the basis for a rich scientific paper production. For all these reasons Monte San Giorgio represents the main reference in the world concerning the Triassic faunas.” 4 THE GEOLOGICAL HISTORY OF MONTE SAN GIORGIO Monte San Giorgio belongs to the broad tectonic feature named Sudalpino , which encompasses all the rock formations lying South of the Insubric Line. The oldest rocks of Monte San Giorgio outcrop in spots along the shores of the Ceresio Lake, between the Brusino Arsizio custom house and the built-up area of Porto Ceresio. -
Osteichthyes, Actinopterygii) from the Early Triassic of Northwestern Madagascar
Rivista Italiana di Paleontologia e Stratigrafia (Research in Paleontology and Stratigraphy) vol. 123(2): 219-242. July 2017 REDESCRIPTION OF ‘PERLEIDUS’ (OSTEICHTHYES, ACTINOPTERYGII) FROM THE EARLY TRIASSIC OF NORTHWESTERN MADAGASCAR GIUSEPPE MARRAMÀ1*, CRISTINA LOMBARDO2, ANDREA TINTORI2 & GIORGIO CARNEVALE3 1*Corresponding author. Department of Paleontology, University of Vienna, Geozentrum, Althanstrasse 14, 1090 Vienna, Austria. E-mail: [email protected] 2Dipartimento di Scienze della Terra, Università degli Studi di Milano, Via Mangiagalli 34, I-20133 Milano, Italy. E-mail: cristina.lombardo@ unimi.it; [email protected] 3Dipartimento di Scienze della Terra, Università degli Studi di Torino, Via Valperga Caluso 35, I-10125 Torino, Italy. E-mail: giorgio.carnevale@ unito.it To cite this article: Marramà G., Lombardo C., Tintori A. & Carnevale G. (2017) - Redescription of ‘Perleidus’ (Osteichthyes, Actinopterygii) from the Early Triassic of northwestern Madagascar . Riv. It. Paleontol. Strat., 123(2): 219-242. Keywords: Teffichthys gen. n.; TEFF; Ankitokazo basin; geometric morphometrics; intraspecific variation; basal actinopterygians. Abstract. The revision of the material from the Lower Triassic fossil-bearing-nodule levels from northwe- stern Madagascar supports the assumption that the genus Perleidus De Alessandri, 1910 is not present in the Early Triassic. In the past, the presence of this genus has been reported in the Early Triassic of Angola, Canada, China, Greenland, Madagascar and Spitsbergen. More recently, it has been pointed out that these taxa may not be ascri- bed to Perleidus owing to several anatomical differences. The morphometric, meristic and morphological analyses revealed a remarkable ontogenetic and individual intraspecific variation among dozens of specimens from the lower Triassic of Ankitokazo basin, northwestern Madagascar and allowed to consider the two Malagasyan species P. -
1 Lab External Morphology and Taxonomy
External Morphology Gross Anatomy: Fins Dorsal & Taxonomy Caudal Lab 1 Anal Pectoral Pelvic 1. Median fins (dorsal, anal, adipose, caudal) 2. Paired fins (pectoral and pelvic) – abdominal vs. thoracic placement 3. Fish use different fins for locomotion (wrasses use pectorals, triggerfish use median fins, tunas use caudal fins) 4. Fins are constructed of either radial cartilage (sharks) or bony rays (most fishes) Caudal Fin Shape Body Shape body shape can predict ecology: • fusiform tend to be fast swimming and inhabit the upper portions of the water column • compressed tend to be good maneuvers • elongate tend to be good accelerators Caudal fin shape can predict fish ecology (ambush • anguilliform and globiform tend to be poor swimmers and benthic predator, continuous swimmer, burst swimmer, benthic dweller, etc.) • depressed tend to be benthic Mouth Morphology Eyes Mouth morphology can be used to infer what types of prey are eaten (piscivores, planktivores, invertebrate eaters, herbivores, etc.) and where in the water column the prey are consumed Inferior Subterminal 1. placement and size may indicate something about the ecology of the fish 2. some fish (e.g., mudskippers) are adapted to see both in and outside of water 3. stalked eyes in deepwater fish are one adaptation to gather light Terminal Superior 1 Countershading Lateral Line • countershading is a feature common to most fish, especially those that inhabit the surface and midwater • fish are dark on the dorsal region and light on the ventral region • functions as camouflage in open water 1. lateral line extends along the midsection of the fish 2. can be continuous or broken 3. -
Threat-Protection Mechanics of an Armored Fish
JOURNALOFTHEMECHANICALBEHAVIOROFBIOMEDICALMATERIALS ( ) ± available at www.sciencedirect.com journal homepage: www.elsevier.com/locate/jmbbm Research paper Threat-protection mechanics of an armored fish Juha Songa, Christine Ortiza,∗, Mary C. Boyceb,∗ a Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, RM 134022, Cambridge, MA 02139, USA b Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA ARTICLEINFO ABSTRACT Article history: It has been hypothesized that predatory threats are a critical factor in the protective functional design of biological exoskeletons or “natural armor”, having arisen through evolutionary processes. Here, the mechanical interaction between the ganoid armor of the predatory fish Polypterus senegalus and one of its current most aggressive threats, a Keywords: toothed biting attack by a member of its own species (conspecific), is simulated and studied. Exoskeleton Finite element analysis models of the quadlayered mineralized scale and representative Polypterus senegalus teeth are constructed and virtual penetrating biting events simulated. Parametric studies Natural armor reveal the effects of tooth geometry, microstructure and mechanical properties on its ability Armored fish to effectively penetrate into the scale or to be defeated by the scale, in particular the Mechanical properties deformation of the tooth versus that of the scale during a biting attack. Simultaneously, the role of the microstructure of the scale in defeating threats as well as providing avenues of energy dissipation to withstand biting attacks is identified. Microstructural length scale and material property length scale matching between the threat and armor is observed. Based on these results, a summary of advantageous and disadvantageous design strategies for the offensive threat and defensive protection is formulated. -
Copyrighted Material
06_250317 part1-3.qxd 12/13/05 7:32 PM Page 15 Phylum Chordata Chordates are placed in the superphylum Deuterostomia. The possible rela- tionships of the chordates and deuterostomes to other metazoans are dis- cussed in Halanych (2004). He restricts the taxon of deuterostomes to the chordates and their proposed immediate sister group, a taxon comprising the hemichordates, echinoderms, and the wormlike Xenoturbella. The phylum Chordata has been used by most recent workers to encompass members of the subphyla Urochordata (tunicates or sea-squirts), Cephalochordata (lancelets), and Craniata (fishes, amphibians, reptiles, birds, and mammals). The Cephalochordata and Craniata form a mono- phyletic group (e.g., Cameron et al., 2000; Halanych, 2004). Much disagree- ment exists concerning the interrelationships and classification of the Chordata, and the inclusion of the urochordates as sister to the cephalochor- dates and craniates is not as broadly held as the sister-group relationship of cephalochordates and craniates (Halanych, 2004). Many excitingCOPYRIGHTED fossil finds in recent years MATERIAL reveal what the first fishes may have looked like, and these finds push the fossil record of fishes back into the early Cambrian, far further back than previously known. There is still much difference of opinion on the phylogenetic position of these new Cambrian species, and many new discoveries and changes in early fish systematics may be expected over the next decade. As noted by Halanych (2004), D.-G. (D.) Shu and collaborators have discovered fossil ascidians (e.g., Cheungkongella), cephalochordate-like yunnanozoans (Haikouella and Yunnanozoon), and jaw- less craniates (Myllokunmingia, and its junior synonym Haikouichthys) over the 15 06_250317 part1-3.qxd 12/13/05 7:32 PM Page 16 16 Fishes of the World last few years that push the origins of these three major taxa at least into the Lower Cambrian (approximately 530–540 million years ago). -
Quaderns De Natura PEIXOS ACTINOPTERIGIS DEL
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Revistes Catalanes amb Accés Obert Quaderns de Vilaniu, 35: 55-87 (1999) ^^ Quaderns de Natura PEIXOS ACTINOPTERIGIS DEL TRIÀSIC MITJÀ DE LA PEDRA D'ALCOVER * per Joan Cartanyà Martí Paraules clau: actinopterigis, sistemàtica, Ladinià superior. Unitat d'Alcover. Resum: Els fòssils de les dolmicrites d'Alcover es coneixen des del 1963. La Unitat de les Dolomies Taulejades d'Alcover (pedra d'Alcover) té una potència de 70-80 m, i es troba en depressions interesculls. Estratigràficament es situa al Ladinià superior (Triàsic mitjà). Durant la deposició de la Unitat d'Alcover es van desenvolupar condicions anòxiques i hipersalines d'una forma periòdica. Les fàcies més abundants són constituïdes per capes de dolmicrites massives (d'entre 1 i 10 cm de gruix) i dolmicrites laminades molt fines. Localment apareixen capes ondulades amb plegaments i cabussaments. L'associació fòssil és al·lòctona i composta per grups florístics i faunístics com: plantes terrestres, celenterats, braquiòpodes, mol·luscs, artròpodes, equinoderms, peixos i rèptils, però la reputació d'aquests jaciments rau en el fet que els fòssils s'han conservat en dolmicrites i en la seva diversitat ictiològica. La fauna de peixos d'Alcover es caracteritza bàsicament per individus de talla mitjana. Els Saurichtiformes i els Perleidiformes són els ordres més comuns. Mitjançant aquest estudi els actinopterigis es classifiquen bàsicament a nivell genèric, i en alguns casos només a nivell de família. D'aquesta manera, i fins avui, han sigut prèviament indentificats 15 gèneres pertanyents a 11 famílies i nou ordres: Plycholepis, IBoreosomiis, Sauriclitliys, Colobodiis, Perleidus, IClenognaliclilltys, Peltoperleidiis, ICleithrolepididae indet., Pelíopleurus, Peripeltopleurus, IPlatysiagiim, Liiganoia, Eosemionotiis, Archaeosemionotus, Allolepidotiis, Eoeugnathiis, ICaturus, lOphiopsis, IPholidophoridae indet. -
Actinopterygian Fishes (Osteichthyes, Actinopterygii) from the Kalkschieferzone (Uppermost Ladinian) Near Meride (Canton Ticino, Southern Switzerland)
Actinopterygian fishes (Osteichthyes, Actinopterygii) from the Kalkschieferzone (Uppermost Ladinian) near Meride (Canton Ticino, Southern Switzerland) Autor(en): Bürgin, Toni Objekttyp: Article Zeitschrift: Eclogae Geologicae Helvetiae Band (Jahr): 88 (1995) Heft 3 PDF erstellt am: 10.10.2021 Persistenter Link: http://doi.org/10.5169/seals-167705 Nutzungsbedingungen Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden. Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber. Haftungsausschluss Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind. Ein Dienst der ETH-Bibliothek ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch http://www.e-periodica.ch Eclogae geol. Helv. 88/3: 803-826 (1995) 0012-9402/95/030803-24 $1.50 + 0.20/0 Birkhäuser Verlag. Basel Actinopterygian fishes (Osteichthyes; Actinopterygii) from the Kalkschieferzone (Uppermost Ladinian) near Meride (Canton Ticino, Southern Switzerland) Tom Bürgin Key words: Kalkschieferzone. Middle Triassic. Monte San Giorgio, fossil Actinopterygii.