Biotechnology

Total Page:16

File Type:pdf, Size:1020Kb

Biotechnology Paper No. : 11 Nanobiotechnology Module : 09 Design of Nanostructures from Nucleic Acids Principal Investigator: Dr Vibha Dhawan, Distinguished Fellow and Sr. Director The Energy and Resouurces Institute (TERI), New Delhi Co-Principal Investigator: Prof S K Jain, Professor, of Medical Biochemistry Jamia Hamdard University, New Delhi Paper Coordinator: Dr Minni Singh, Associate Professor, Punjabi University, Patiala, Punjab Patiala-147002 Punjab" Content Writer: Dr Asish Pal, Scientist - E, Associate Professor, Institute of Nano Science & Technology, Mohali, Punjab Content Reviewer: Dr Minni Singh, Associate Professor, Punjabi University, Patiala, Punjab Nanobiotechnology Biotechnology Design of Nanostructures from Nucleic Acids Description of Module Subject Name Biotechnology Paper Name Nanobiotechnology Module Name/Title Design of Nanostructures from Nucleic Acids Module Id 09 Pre-requisites Objectives Keywords DNA-2D lattice, DNA origami, Holliday Junction, RNA techtosquare Table of Contents 1. Learning objectives 2. Chemical toolbox for processing nucleic acids 3. Nanostructures from DNA 4. Nanostructures from RNA 5. Summary 1. Learning Objectives: This module is intended to apprise students about strategy to form nanostructures from nucleic acids. Students will also learn about various processing enzyme such as restriction enzymes, ligages, polymerase for cutting, joining nucleic acids at specific position. These strategies can generate linear or branch nucleic acids with sticky and blunt ends. Such motifs will be used for making various nanostructures such as DNA-2D lattice, DNA polyhedra, DNA origami and RNA techtosquare. Eventually, the module will demonstrate some applications of the defined DNA nanostructures towards drug delivery. 2. Chemical toolbox for processing nucleic acids: In bottom-up DNA nanotechnology, the base sequence of the strands are rationally designed in order to cause perfect hydrogen bonding mediated base-paring interaction and self- Nanobiotechnology Biotechnology Design of Nanostructures from Nucleic Acids assembly of the strands in desired conformation. As the matched base pairing is energetically favorable, the sequence of bases thus determines the pattern of binding making the overall structure easily controllable. In structural DNA nanotechnology, it is important to cut the double stranded DNA at a specific Cutting DNA double strands Ligation of sticky ends Figure 1. DNA processing strategies: Cutting DNA double strands using restriction enzymes (left) and Ligation of the join sticky ends of DNA (right). Figure 2. Palindromic sequences and cutting of DNA at specific position with various restriction enzymes. Nanobiotechnology Biotechnology Design of Nanostructures from Nucleic Acids sequence, which can be done by restriction enzymes (Figure 1). These sites are known as recognition sites and have palindromic sequences i.e., it reads the same on the reverse and forward strands, if they are read in the same direction. Figure 2 shows palindromic sequence [1-2] GAATTC which is identified by restriction enzyme EcoRI and it cuts the DNA strand (hydrolysis of phosphodiester bond) after guanine base. Similarly, there are different palindromic sequences, recognized by different restriction enzymes and cuts DNA strands at different locations. The sticky ends of the DNA fragments can be joined by reformation of hydrogen bonding interaction between opposite strands followed by formation of the phosphodiester bonds as marked in Figure 2 (right). The enzyme facilitating the process is known as DNA ligase. DNA fragments bind to the template strand through basepairing interaction and hydroxyl group of the sugar from 3’ end of one strand form the ester bond with the phosphate group from 5’ end of another strand in presence of ligase (Figure 3). [3-4] Figure 3. DNA ligase joining two single strands in double stranded DNA through formation of phophodiester bonds. Polymerase chain reaction is an important technique which has revolutionized the DNA nanotechnology because of its relative ease to copy and multiply a specific DNA fragment and is facilitated by DNA polymerase enzyme. It has three definite cycles and Nanobiotechnology Biotechnology Design of Nanostructures from Nucleic Acids mononucleotides, primers and DNA polymerase are integral part of the temperature variable process (Figure 4). In the first step, DNA duplex is denatured at temperature more than DNA melting point. In the second step, DNA sequence to be copied is made to form DNA duplex with a carefully Figure 4. Cycles of polymerase chain reaction (PCR) to amplify DNA fragments. Nanobiotechnology Biotechnology Design of Nanostructures from Nucleic Acids designed primar, which has complementary base sequence at a lower annealing temperature. In the final step of elongation, the temperature was elevated enough to facilitate DNA polymerase binding and elongation of the primer length with attachment of mononucleotides. The cycles are repeated and the number of product (daughter DNA strands) increases exponentially. Thus, after 2nd, 5th and 10th cycles, the number of DNA fragments are 22, 25 and 210. [5-6] 3. Nanostructures from DNA: In order to design nanostructures from DNA, one need to combine DNA motifs with sticky ends with base pairing interaction, that is the principle of structural DNA nanotechnology. The strategy to produce predefined and well structured DNA materials is an active and evolving research area since 1980s. The sticky ended cohesion is depicted in Figure 5, where two duplex DNAs have overhangs which are complementary. [7] Under ambient condition, the sticky ends can be ligated in a sequence–specific manner. DNA nanotechnologist depicts a DNA as a line motif. However, the line can also have kink and cohering such lines results branched DNA nanostructures. Thus, four double stranded DNA form branched structures, known as Holliday Nanobiotechnology Biotechnology Design of Nanostructures from Nucleic Acids Figure 5. Two duplex DNAs with complimentary sticky ends to form base pair and make continuous double stranded DNA. (Source: N. A. Seeman, Chemistry & Biology, 2003, 10, 1151-1159). junction named after molecular biologist, Robin Holliday. [8] As depicted in Figure 6, Holliday junction may exist in different conformational forms based on the base pairing Figure 6. Holiday junction from DNA sticky ends from four DNA strands (left), one of the possible conformational isomers among unstacked and coaxial stacked isomers. interaction in the arms of the strands. One of the conformations of the Holliday junction is demonstrated which lacks basepairing in the central part of the double helical region. Similarly, there are other conformers with different patterns of coaxial stacking among the four DNA strands. The Holliday junction is an important intermediate in genetic recombination process to increase diversity by shifting the genes between chromosomes. The modified Holliday junction of four strands of DNA, each having sticky ends can be programmed to design 4 x 4 tiles as depicted in Figure 7A. The complimentary sticky ends form DNA duplex and are depicted as rectangle, while the Holliday junction has four such rectangles to form extended 2-D lattice like DNA nanogrids (Figure 7B), as evident from the AFM images. Such nanogrid structures can further be programmed to design template for array of proteins or quantum dots for molecular device applications. [9] Highly selective binding in the complementary strands makes DNA motifs amenable for designing much complex 3-dimentional hierarchical nanostructures. Three types of DNA strands as depicted in Figure 8 can be combined to form three-point-star motif, which are Nanobiotechnology Biotechnology Design of Nanostructures from Nucleic Acids considered to be the primary building blocks for a concentration driven self-assembly to form DNA polyhedra. [10] Thus, 4, 20 and 60 three-point-star-tiles self-assemble to form tetrahedral (10 nm), dodecahedra (24 nm) and much larger buckyball (42 nm) respectively at A Figure 7. DNA nanostructures from (A) four strands of DNA with sticky ends to form 2-dimensional self-assembly, (B) design of extended lattice and AFM images of the lattice in amplitude mode and height mode. (Source: H. Yan Science 2003, 301, 1882-1884) different concentration regime of the building blocks. Single particle 3D construction from the TEM images shows a perfect matching of the calculated sizes with that from DLS, AFM and cryo-TEM. Thus, DNA can be programmed into well-defined synthetic 3D nanocontainer, which paved way for useful technology known as DNA origami. The basic principle is folding of DNA to create complex 2D and 3D shapes at nanoscale in the Nanobiotechnology Biotechnology Design of Nanostructures from Nucleic Acids following 5 steps. [11] Firstly, a geometrical model of DNA in the desired shape of the origami needs to be built with double helices considered as cylinder (Figure 9, Top panel). Secondly, single long DNA scaffold needs to be folded back and forth in raster progression involving cross-over involving Figure 8. Hierarchical self-assembly of DNA in various symmetric DNA polyhedra via combination of three-point-star motifs, which are constructed from seven DNA strands as denoted S, M and L/L’. AFM images of the polyhedral at different concentration regime of the three-point-star motifs with single particle 3D reconstruction molecular modeling based on cryo-TEM. (Source: Y. He Nature, 2008, 452,198-202) Nanobiotechnology Biotechnology Design of Nanostructures
Recommended publications
  • From Genes to Genomes
    From Genes to Genomes Third Edition Concepts and Applications of DNA Technology Jeremy W. Dale, Malcolm von Schantz and Nick Plant University of Surrey, UK ©WILEY-BLACKWELL A John Wiley & Sons, Ltd., Publication Preface xiii 1 From Genes to Genomes 1 1.1 Introduction 1 1.2 Bask molecular biology 4 1.2.1 The DNA backbone 4 1.2.2 The base pairs 6 1.2.3 RNA structure 10 1.2.4 Nucleic acid synthesis 11 1.2.5 Coiling and supercoilin 11 1.3 What is a gene? 13 1.4 Information flow: gene expression 15 1.4.1 Transcription 16 1.4.2 Translation 19 1.5 Gene structure and organisation 20 1.5.1 Operons 20 1.5.2 Exons and introns 21 1.6 Refinements of the model 22 2 How to Clone a Gene 25 2.1 What is cloning? 25 2.2 Overview of the procedures 26 2.3 Extraction and purification of nucleic acids 29 2.3.1 Breaking up cells and tissues 29 2.3.2 Alkaline denaturation 31 2.3.3 Column purification 31 2.4 Detection and quantitation of nucleic acids 32 2.5 Gel electrophoresis 33 2.5.1 Analytical gel electrophoresis 33 2.5.2 Preparative gel electrophoresis 36 vi CONTENTS 2.6 Restriction endonudeases 36 2.6.1 Specificity 37 2.6.2 Sticky and blunt ends 40 2.7 Ligation 42 2.7.1 Optimising Ligation conditions 44 2.7.2 Preventing unwanted Ligation: alkaline phosphatase and double digests 46 2.7.3 Other ways of joining DNA fragments 48 2.8 Modification of restriction fragment ends 49 2.8.1 Linkers and adaptors 50 2.8.2 Homopolymer tailing 52 2.9 Plasmid vectors 53 2.9.1 Plasmid replication 54 2.9.2 Cloning sites 55 2.9.3 Selectable markers 57 2.9.4 Insertional inactivation
    [Show full text]
  • Thermodynamics of DNA Binding and Break Repair by the Pol I DNA
    Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2011 Thermodynamics of DNA binding and break repair by the Pol I DNA polymerases from Escherichia coli and Thermus aquaticus Yanling Yang Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Recommended Citation Yang, Yanling, "Thermodynamics of DNA binding and break repair by the Pol I DNA polymerases from Escherichia coli and Thermus aquaticus" (2011). LSU Doctoral Dissertations. 3092. https://digitalcommons.lsu.edu/gradschool_dissertations/3092 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. THERMODYNAMICS OF DNA BINDING AND BREAK REPAIR BY THE POL I DNA POLYMERASES FROM ESCHERICHIA COLI AND THERMUS AQUATICUS A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Biological Sciences by Yanling Yang B.S., Qufu Normal University, 2001 M.S., Institute of Microbiology, Chinese Academy Sciences, 2004 M.S. in statistics, Louisiana State University, 2009 December 2011 ACKNOWLEDGMENTS I would like to express my sincere gratitude to some of the people without whose support and guidance none of this work would have been possible. I deeply thank my advisor, Dr. Vince J. LiCata. His guidance and suggestions have been critical to the completion of this research work and the writing of this dissertation.
    [Show full text]
  • Cloning of Gene Coding Glyceraldehyde-3-Phosphate Dehydrogenase Using Puc18 Vector
    Available online a t www.pelagiaresearchlibrary.com Pelagia Research Library European Journal of Experimental Biology, 2015, 5(3):52-57 ISSN: 2248 –9215 CODEN (USA): EJEBAU Cloning of gene coding glyceraldehyde-3-phosphate dehydrogenase using puc18 vector Manoj Kumar Dooda, Akhilesh Kushwaha *, Aquib Hasan and Manish Kushwaha Institute of Transgene Life Sciences, Lucknow (U.P), India _____________________________________________________________________________________________ ABSTRACT The term recombinant DNA technology, DNA cloning, molecular cloning, or gene cloning all refers to the same process. Gene cloning is a set of experimental methods in molecular biology and useful in many areas of research and for biomedical applications. It is the production of exact copies (clones) of a particular gene or DNA sequence using genetic engineering techniques. cDNA is synthesized by using template RNA isolated from blood sample (human). GAPDH (Glyceraldehyde 3-phosphate dehydrogenase) is one of the most commonly used housekeeping genes used in comparisons of gene expression data. Amplify the gene (GAPDH) using primer forward and reverse with the sequence of 5’-TGATGACATCAAGAAGGTGGTGAA-3’ and 5’-TCCTTGGAGGCCATGTGGGCCAT- 3’.pUC18 high copy cloning vector for replication in E. coli, suitable for “blue-white screening” technique and cleaved with the help of SmaI restriction enzyme. Modern cloning vectors include selectable markers (most frequently antibiotic resistant marker) that allow only cells in which the vector but necessarily the insert has been transfected to grow. Additionally the cloning vectors may contain color selection markers which provide blue/white screening (i.e. alpha complementation) on X- Gal and IPTG containing medium. Keywords: RNA isolation; TRIzol method; Gene cloning; Blue/white screening; Agarose gel electrophoresis.
    [Show full text]
  • An Interplay Between Nonsense-Mediated Decay and DNA Damage Response Pathways
    An interplay between nonsense-mediated decay and DNA damage response pathways Fatemeh Ghasemi Master Thesis Department of Biosciences Faculty of Mathematics and Natural Sciences UNIVERSITY OF OSLO June 2020 © Fatemeh Ghasemi June 2020 An interplay between nonsense-mediated decay and DNA damage response pathways Supervisor: Rafal Ciosk Co-supervisors: Pooja Kumari, Yanwu Guo http://www.duo.uio.no/ Trykk: Reprosentralen, Universitetet i Oslo II Acknowledgement The work presented in this master thesis was carried out at the Department of Biosciences, University of Oslo in the period between April 2019 to June 2020. First and foremost, I’d like to thank my supervisor Rafal Ciosk for giving me the opportunity to work in his group. Thank you for all your help and positivity. I greatly appreciate everything I learned in my time here. Second, I’d like to express my deep gratitude to my co-supervisor Pooja Kumari, without whom I couldn’t have done this. Thank you for your daily guidance and support in the lab, I truly appreciate all the advice you’ve given me. Further, I’d like to thank everyone else in the Ciosk group, especially Yanwu Guo, for all their practical help in the lab, and for writing this thesis. Your input and advice have been greatly appreciated. Divya and Melanie, thank you for cheering me up every single day. Thank you also to all my friends in the Falnes group who helped me out when I was wandering the hallway looking lost. Lastly, I would like to thank my parents for their unending love and support, and for believing in me.
    [Show full text]
  • Recombinant DNA Technology and Its Applications: a Review S
    International Journal of MediPharm Research ISSN:2395-423X www.medipharmsai.com Vol.04, No.02, pp 79-88, 2018 Recombinant DNA Technology and its Applications: A Review S. A. Shinde*, S. A. Chavhan, S. B.Sapkal, V. N. Shrikhande Dr. Rajendra Gode College of Pharmacy, Malkapur Dist- Buldana(MS), India Mob. No:-09890251512 Abstract: Biotechnology which is synonymous with genetic engineering or recombinant DNA (rDNA) is an industrial process that uses the scientific research on DNA for practical applications. rDNA is a form of artificial DNA that is made through the combination or insertion of one or more DNA strands,It offered new opportunities for innovations to produce a wide range of therapeutic products with immediate effect in the medical genetics and biomedicine by modifying microorganisms, animals, and plants to yield medically useful substances.Recombinant DNA technology is playing a vital role in improving health conditions by developing new vaccines and pharmaceuticals. This review gives brief introduction to rDNA and its applications in various fields. Key words: Chimeric DNA, restriction enzymes, Transgenic Plants, Gene Therapy. Introduction: Human life is greatly affected by three factors: deficiency of food, health problems, and environmental issues. Food and health are basic human requirements beside a clean and safe environment. With increasing world's population at a greater rate, human requirements for food are rapidly increasing. Humans require safe- food at reasonable price. Several human related health issues across the globe cause large number of deaths. Approximately 36 million people die each year from noncommunicable and communicable diseases, such as cardiovascular diseases, cancer, diabetes, AIDS/HIV, tuberculosis, malaria.
    [Show full text]
  • A Scientific Update
    Fall/Winter 2017 expressions a scientific update ® ! No witchcraft required in this issue – Clone with Confidence 2 Overcoming the challenges of applying target enrichment for translational research 5 Now available: the NEBNext Direct® BRCA1/BRCA2 Panel 6 NEBNext® Ultra™ II RNA Library Prep kits – Streamlined workflows for lower input amounts 8 No witchcraft required: Special Prices on all Restriction Enzymes and more! 14 Get free tube opener with NEB competent cells 16 New to Molecular Biology? Get your free NEB Starter Pack be INSPIRED drive DISCOVERY stay GENUINE FEATURE ARTICLE Overcoming the challenges of applying target enrichment for translational research by Andrew Barry, M.S., New England Biolabs, Inc. Target enrichment is used to describe a variety of strategies to selectively isolate specific genomic regions of interest for sequencing analysis. The wide array of approaches presents challenges in selecting the appropriate technology for the growing number of research and clinical applications to which the sequencing data will ultimately be applied. INTRODUCTION strates the practical need for continued use of Examples of these hybrid approaches include In recent years, several techniques have emerged target enrichment strategies across the gamut of multiplex extension ligation (3), molecular to enrich for specific genes of interest. When translational research activities. inversion probes (MIPS)/padlock probes (4), determining the appropriate target enrichment nested patch PCR (5), and selector probes (6). technology to use, one must first consider the TARGET ENRICHMENT These technologies can be broadly characterized primary goal of the study. For example, different APPROACHES as having more complex workflows, requiring approaches will be used if the aim is to identify splitting of samples into separate reactions, and known variants already shown to have clinical There are a number of different target enrich- creating challenges in target coverage uniformity.
    [Show full text]
  • GENETICS Chapter 15
    GENETICS Chapter 15 Memorise Understand Importance * Define: phenotype, genotype, gene, locus, * Importance of meiosis; compare/contrast with High level: 10% of GAMSAT Biology allele (single and multiple) mitosis * Homo/heterozygosity, wild type, * Segregation of genes, assortment, linkage, questions released by ACER are related to recessiveness, complete/co-dominance recombination content in this chapter (in our estimation). * Incomplete dominance, gene pool * Single/double crossovers * Note that approximately 75% of the * Sex-linked characteristics, sex determination * Hardy-Weinberg Principle questions in GAMSAT Biology are related * Test cross: back cross, concepts of parental, to just 7 chapters: 1, 2, 3, 4, 7, 12, and 15. F1 and F2 generations; evaluating a pedigree Introduction Genetics is the study of heredity and variation in organisms. The observations of Gregor Mendel in the mid- nineteenth century gave birth to the science which would reveal the physical basis for his conclusions – DNA – about 100 years later. This is the last of the 3 ‘high-level importance’ chapters. Approximately 45% of GAMSAT Biology questions among ACER’s official practice materials contain content related to 3 chapters: 1, 7 and 15, this chapter. Also, be forewarned: despite the fact that a dihybrid cross (BIO 15.3) is time consuming, it appears in 3 separate ACER GAMSAT practice booklets. Multimedia Resources at GAMSAT-Prep.com Open Discussion Boards Foundational Online Videos Flashcards Special Guest THE BIOLOGICAL SCIENCES BIO-267 15.1 Background Information Genetics is a branch of biology which environment. Consider a heterozygote that deals with the principles and mechanics of expressed one gene (dark hair) but not the heredity; in other words, the means by which other (light hair).
    [Show full text]
  • Molecular Cloning and Confirmation of MSH2, an Essential Gene of Human, Involved in DNA Mismatch Repair
    International Journal of Entomology Research www.entomologyjournals.com ISSN: 2455-4758 Received: 16-04-2021, Accepted: 05-05-2021, Published: 21-05-2021 Volume 6, Issue 3, 2021, Page No. 47-53 Molecular cloning and confirmation of MSH2, an essential gene of human, involved in DNA mismatch repair Sarita Kumari*, C Rajesh Department of Biotechnology, Sri Guru Granth Sahib University, Fatehgarh Sahib, Punjab, India Abstract Mismatch repair (MMR) is one such pathway that repair mismatches generated during DNA replication. Errors in MMR cause certain types of cancer including hereditary non-polyposis colorectal cancer, genome instability, abnormalities in meiosis, sterility in mammalian systems and resistance to certain chemotherapeutic agents. In eukaryotes, MSH2 (MutS homologue 2) is a major player in MMR, acting in combination with MSH3 or MSH6 as a heterodimer. MSH2 has been involved in a variety of processes which protect the integrity of the genome. In this study hMSH2 gene was cloned to identifying their role and understanding the functional diversity of protein that will contribute towards the repair mechanisms. Using in frame designed primers through PCR strategy and cloned full-length cDNA fragment hMSH2 gene into pET32b expression vector. The sequence contained an open reading frame of 2805 bp coding for a putative protein of 935 amino acids. Recombinant C-3 clone (pET32b-hMSH2) observed as positive after restriction digestion with expected band size (~8.6kb). This recombinant clone of hMSH2 gene, further used to express the protein and purified protein used to understand the role of mismatch repair protein MSH2. Keywords: DNA damage, DNA repair, mismatch repair (MMR), MSH2 Introduction cause defects in DNA.
    [Show full text]
  • Unit -IX Chapter-11. Biotechnology Principles and Processes
    INDIAN SCHOOL MUSCAT INDIAN SCHOOL MUSCAT INDIAN SCHOOL MUSCAT Questionbank Biology Unit -IX Chapter-11. Biotechnology Principles and processes IMPORTANT POINTS Biotechnology may be defined as the use of microorganisms animals of plants cells of their com- ponents to generate products and services useful to human beings. Genetic engineering and maintenance of sterile condition in chemical engineering process have given the birth to modern biotechonology. The basic principles of Recombinant DNA Technology involve the stages like generation of DNA fragments and selection of the desired pieces of DNA, insertion of the selected DNA into a cloning vector i.e. plasmid, to create a recombinant DNA, Introduction of the recombinant vectors into host cells (e.g. Bacteria), multiplication and reflaction of clones containing the recombinant molecules and expression of gene to produce the desired product. The tools required in the recombinant DNA technology include restriction enzymes,cloning vectors and competent host. The term DNA recombinant technology refer to the transfer of segment of DNA from one organism to another organism (host cell) where it reproduce.The proces involve a sequence of steps like isolation of genetic material,Cutting of DNA at specific site,amplification of gene of interest using PCR,insertion of recombinant DNA into the host cell organism obtaining the foreign gene product and downstream processing. (1)The enzymes that cuts specifically recognition sites in the DNA is known as (a) DNA ligase (b) DNA Polymerase (c) Reverse
    [Show full text]
  • UNIT-I DNA: Definition, Structure & Discovery DNA
    SRINIVASAN ARTS AND SCIENCE COLLEGE (CO-ED) PERAMBALUlR - 621212 DEPARTMENT OF BIOTECHNOLOGY CLASS : I M.SC., BIOTECHNOLOGY SUBJECT: rDNA TECHNOLOGY SUB CODE : P16BT21 UNIT-I DNA: Definition, Structure & Discovery DNA The structure of the DNA double helix. The atoms in the structure are colour-coded by element and the detailed structures of two base pairs are shown in the bottom right. The structure of part of a DNA double helix Deoxyribonucleic acid is a molecule composed of two polynucleotide chains that coil around each other to form a double helix carrying genetic instructions for the development, functioning, growth and reproduction of all known organisms and many viruses. DNA and ribonucleic acid (RNA) are nucleic acids. Alongside proteins, lipids and complex carbohydrates (polysaccharides), nucleic acids are one of the four major types of macromolecules that are essential for all known forms of life. The two DNA strands are known as polynucleotides as they are composed of simpler monomeric units called nucleotides. Each nucleotide is composed of one of four nitrogen-containing nucleobases (cytosine [C], guanine [G], adenine [A] or thymine [T]), a sugar called deoxyribose, and a phosphate group. The nucleotides are joined to one another in a chain by covalent bonds (known as the phospho-diester linkage) between the sugar of one nucleotide and the phosphate of the next, resulting in an alternating sugar-phosphate backbone. The nitrogenous bases of the two separate polynucleotide strands are bound together, according to base pairing rules (A with T and C with G), with hydrogen bonds to make double- stranded DNA. The complementary nitrogenous bases are divided into two groups, pyrimidines and purines.
    [Show full text]
  • Molecular Cloning
    Now includes NEB® Golden Gate Assembly Kit (BsmBI-HF®v2) Molecular Cloning TECHNICAL GUIDE FREE Next Day Delivery www.neb.uk.com OVERVIEW TABLE OF CONTENTS 3 Online Tools 4–5 Cloning Workflow Comparison 6 DNA Assembly Molecular Cloning Overview 6 Overview Molecular cloning refers to the process by which recombinant DNA molecules are 6 Product Selection produced and transformed into a host organism, where they are replicated. A molecular 7 Golden Gate Assembly Kits cloning reaction is usually comprised of two components: 7 Optimization Tips 8 Technical Tips for Optimizing 1. The DNA fragment of interest to be replicated. Golden Gate Assembly Reactions 2. A vector/plasmid backbone that contains all the components for replication in the host. 9 NEBuilder® HiFi DNA Assembly 10 Protocol/Optimization Tips ® DNA of interest, such as a gene, regulatory element(s), operon, etc., is prepared for cloning 10 Gibson Assembly by either excising it out of the source DNA using restriction enzymes, copying it using 11 Cloning & Mutagenesis PCR, or assembling it from individual oligonucleotides. At the same time, a plasmid vector 11 NEB PCR Cloning Kit is prepared in a linear form using restriction enzymes (REs) or Polymerase Chain Reaction 12 Q5® Site-Directed Mutagenesis Kit (PCR). The plasmid is a small, circular piece of DNA that is replicated within the host and 12 Protocols/Optimization Tips exists separately from the host’s chromosomal or genomic DNA. By physically joining the 13–24 DNA Preparation DNA of interest to the plasmid vector through phosphodiester bonds, the DNA of interest 13 Nucleic Acid Purification becomes part of the new recombinant plasmid and is replicated by the host.
    [Show full text]
  • Substrate-Assisted Catalysis in the Cleavage of DNA by the Ecori and Ecorv Restriction Enzymes
    Proc. Natl. Acad. Sci. USA Vol. 90, pp. 8499-8503, September 1993 Biochemistry Substrate-assisted catalysis in the cleavage of DNA by the EcoRI and EcoRV restriction enzymes (acid base catalysis/mechanism of deavage/nuclease/chemicafly modiffed oligodeoxynucleotide/H-phosphonate) ALBERT JELTSCH, JURGEN ALVES, HEINER WOLFES, GUNTER MAASS, AND ALFRED PINGOUD* Zentrum Biochemie, Medizinische Hochschule Hannover, Konstanty-Gutschow-Strasse 8, 30623 Hannover, Germany Communicated by Thomas R. Cech, June 14, 1993 ABSTRACT The crystal structure analyses of the EcoRI- stereochemistry of their catalysis make it likely that these DNA and EcoRV-DNA complexes do not provide clear sug- enzymes cleave DNA by a similar mechanism that involves gestions as to which amino acid residues are responsible for the an attack of an activated water molecule in-line with the activation of water to carry out the DNA cleavage. Based on leaving 03' group. Recently, we published (11) a detailed molecular modeling, we have proposed recently that the at- proposal for the mechanism of DNA cleavage by EcoRI and tacking water molecule is activated by the negatively charged EcoRV based on structural data (Brookhaven data bank pro-Rp phosphoryl oxygen of the phosphate group 3' to the entries: 1RlE, 3RVE), molecular modeling, and results of scissile phosphodiester bond. We now present experimental site-directed mutagenesis experiments (ref. 12 and references evidence to support this proposal. (0) Oligodeoxynucleotide therein): Asp-91 and Glu-111 in EcoRI, Asp-74 and Asp-90 in substrates lacking this phosphate group in one strand are EcoRV, and the phosphate at which cleavage occurs were cleaved only in the other strand.
    [Show full text]