All-Metal Aromaticity and Antiaromaticity

Total Page:16

File Type:pdf, Size:1020Kb

All-Metal Aromaticity and Antiaromaticity Chem. Rev. 2005, 105, 3716−3757 3716 All-Metal Aromaticity and Antiaromaticity Alexander I. Boldyrev* Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0300 Lai-Sheng Wang* Department of Physics, Washington State University, 2710 University Drive, Richland, Washington 99354, and W. R. Wiley Environmental Molecular Sciences Laboratory and Chemical Sciences Division, Pacific Northwest National Laboratory, MS K8-88, P.O. Box 999, Richland, Washington 99352 Received December 2, 2004 - Contents 7.5. Is Li3Al4 Antiaromatic or Aromatic? The 3744 Controversy over the Net Antiaromaticity of - 1. Introduction 3716 Li3Al4 2. What Is Aromaticity? 3718 7.6. More Recent Works on the Net 3744 - 3. Experimental Generation and Photoelectron 3719 Antiaromaticity of Li3Al4 and Related Spectroscopy (PES) Characterization of All-Metal Species Aromatic/Antiaromatic Clusters 8. All-Metal Aromatic Clusters as Building Blocks of 3747 Molecules and Solids 4. Photoelectron Spectroscopic and Theoretical 3720 - + 2- 2 Study of M [Al4 ](M) Li, Na, Cu) 8.1. Robinson’s R3Ga3 Aromatic Organometallic 3747 + 2- ) Compounds 4.1. Photoelectron Spectra of M [Al4 ](M Li, 3720 2- Na, Cu) 8.2. Power’s R2Ga4 Aromatic Organometallic 3747 Compound with π Aromaticity and σ 4.2. Searching for Global Minimum Structures of 3720 Antiaromaticity M+[Al 2-](M) Li, Na, Cu) 4 8.3. Tetraatomic Aromatic Species of Group V 3748 4.3. Calculated Vertical Detachment Energies and 3721 2- and VI Elements: M4 (M ) N, P, As, Sb, Comparison with Experimental Data 2+ Bi) and M4 (M ) O, S, Se, Te) 2- 5. Multiple Aromaticity in the Al4 Cluster 3722 8.4. Pentaatomic Aromatic Species of Group IV 3749 - 5.1. Geometric Structure 3722 and V Elements: M5 (M ) N, P, As, Sb, 6- 5.2. Molecular Orbital Analyses and Multiple 3723 Bi) and M5 (Ge, Sn, Pb) 6- Aromaticity 8.5. Aromatic Hg4 Cluster in the Na3Hg2 3752 Amalgam 5.3. Electron Density Analyses 3724 9. Challenges in the Future 3753 5.4. Resonance Energy Evaluations 3725 2- 10. Acknowledgments 3754 5.5. Valence Bond Treatment of Al4 3727 11. Abbreviations 3754 5.6. Ring Current and Magnetic Criteria 3728 12. References 3755 6. Other Multiply Aromatic Clusters 3729 2- 2- 6.1. Valence Isoelectronic Species of Al4 :X4 3729 (X ) B, Ga, In, Tl) - 1. Introduction 6.2. Mixed Valence Isoelectronic Species: MAl3 3730 (M ) C, Si, Ge, Sn, Pb), M′Al3 (M′ ) P, As, Since its introduction by August Kekule´ in 1865,1 ′′ ′′ ) Bi), and Si2M 2 (M B, Al, Ga) the concept of aromaticity has been continuously - 6.3. X3 and NaX3 (X ) B, Al, Ga) Clusters 3733 conquering new territories in chemistry (refs 2-20 6.4. Pure σ Aromatic/Antiaromatic Metal Clusters 3735 are only a small fraction of the published articles, 6.5. Aromatic Metal Clusters with Only π Bond 3738 reviews, books, and conference proceedings on this 6.6. Sandwich Complexes Based on All-Metal 3740 subject). Initially, aromaticity was developed for the Aromatic Clusters following classes of organic compounds: (i) monocy- 7. All-Metal Clusters with Conflicting Aromaticity: 3740 clic planar conjugate hydrocarbons and their ions - + Antiaromaticity in Li3Al4 with (4n 2) π electrons; (ii) polycyclic conjugate 7.1. General Considerations 3740 hydrocarbonssbenzenoid hydrocarbons built of fused 7.2. Search for the Global Minimum Structures 3741 benzene rings; (iii) polycyclic conjugated carbocyclic - hydrocarbons based on nonbenzenoid systems such 7.3. Photoelectron Spectroscopy of Li3Al4 and 3741 Comparison between Experiment and Theory as azulene and other conjugate hydrocarbons with 2,4-17 7.4. Molecular Orbital Analyses and 3742 four-, five-, seven-, and eight-membered rings. 4- Today, aromaticity has been extended to a highly Antiaromaticity in Al4 diverse number of heterocyclic compounds,3,8,13,15,17,21-23 as well as three-dimensional (3D) compounds, such - * E-mail (A.I.B.) [email protected]; (L.-S.W.) [email protected]. as ferrocenes and related sandwich systems,24 29 10.1021/cr030091t CCC: $53.50 © 2005 American Chemical Society Published on Web 09/28/2005 All-Metal Aromaticity and Antiaromaticity Chemical Reviews, 2005, Vol. 105, No. 10 3717 from the initial proposal of Thorn and Hoffmann, approximately 25 metallobenzenes have been isolated and characterized.36 The first example of a stable, isolabile metallobenzenesosmabenzeneswas reported by Elliot et al. in 1982.37 A large family of metallo- benzenessthe iridabenzenesswas synthesized by Bleeke and co-workers,38-40 whereas a series of dimetallobenzenes with two metal atoms incorpo- rated into the benzene ring was synthesized and characterized by Rothwell et al.41,42 Recent advances in metallobenzenes have been reviewed by Bleeke.36 The term “metalloaromaticity” was introduced by Bursten and Fenske43 in 1979 to describe metal complexes of cyclobutadienesaromatic compounds containing a metal atom coordinated to C H , which Alexander I. Boldyrev was born in Siberia, Russia (1951), and received 4 4 his B.S./M.S. (1974) in chemistry from Novosibirsk University, his Ph.D. is the simplest and archetypal Hu¨ ckel antiaromatic in physical chemistry from Moscow State University, and his Dr.Sci. in (4n π electrons) molecule. Interestingly, a coordinated chemical physics from Moscow Physico-Chemical Institute (1984). He is C4H4 often acts as if it were aromatic rather than currently a professor in the Department of Chemistry and Biochemistry antiaromatic. at Utah State University. His current scientific interest is the development The first organometallic compound containing an of chemical bonding models capable of predicting the structure, stability, chemical bonding, and other molecular properties of pure and mixed main aromatic cycle completely composed of metal atoms 44 group metal, nonmetal, and metalloid clusters, with the most recent accent was synthesized by Robinson et al. in 1995. That on transition metal clusters. aromatic compound, Na2(Mes2C6H3)Ga]3 (Mes ) 2,4,6- 2- Me3C6H2), contains a triangular aromatic Ga3 ring embedded in a large organometallic molecule. In the follow-up publications, Robinson, in collaboration with Schaefer and others, proved computationally 2- that the Ga3 unit indeed has two completely delo- calized π electrons similar to that in the hydrocarbon + 45-48 analogue C3H3 . The first π aromatic organome- tallic compound composed of four gallium atoms, in which an almost perfect square-planar gallium clus- ter Ga4 was embedded in an organometallic environ- ment in the K2[Ga4(C6H3-2,6-Trip2)2] (Trip ) C6H2- i 2,4,6- Pr3) compound, was prepared by Twamley and Power.49 Aromaticity in the Power compound was established computationally.50-52 It was shown that the planar -Ga4- unit does possess two completely delocalized π electrons and is hence π aromatic, Lai-Sheng Wang was born in Henan, China, in 1961 and received his 2+ B.S. in chemistry from Wuhan University, Wuhan, China (1982). After a similar to that in the hydrocarbon analogue C4H4 . brief stay at the Institute of Chemistry, Chinese Academy of Sciences in A few solid compounds containing aromatic met- Beijing in 1982, he came to the University of California, Berkeley, and alloid and metal clusters have been characterized as obtained his Ph.D. in physical chemistry in 1990. He was a postdoctoral well. Among them, experimental characterization has research associate at Rice University from 1990 to 1992. In 1993, he been reported on aromatic square clusters, such as took a joint position between Washington State University and the Pacific 2+ 2+ 53-56 2- 2- 57-59 Northwest National Laboratory, where he conducts his research in the Se4 ,Te4 , Sb4 , and Bi4 , which are W. R. Wiley Environmental Molecular Sciences Laboratory. He is currently valence isoelectronic to the prototypical aromatic 2- professor of physics and materials sciences at Washington State University hydrocarbon C4H4 , as well as planar pentagonal - 60,61 6- 6- 62 and holds an affiliate senior chief scientist position at the Chemical aromatic clusters, such as As5 , ,Sn5 , and Pb5, , Sciences Division, Pacific Northwest National Laboratory. His research which are valence isoelectronic to the prototypical interests include the study of size-dependent properties of atomic clusters aromatic hydrocarbons C H -. using photoelectron spectroscopy, discovery of new chemical bonds in 5 5 clusters, and cluster-assembled materials. His group has also developed King and Rouvray30,63a and Aihara63b,c advanced experimental techniques to investigate multiply charged anions in the gas aromaticity in deltahedral boranes and in related phase and is currently involved with the study of the microsolvation of compounds including deltahedral metal carbonyls, complex anions and solution phase species in the gas phase. He has such as the octahedral clusters Rh6(CO)16,Ru6C- received a Sloan Research Fellowship and is a Fellow of the American 2- 30 (CO)17, and Os6(CO)18 . King extended this treat- Physical Society. He is currently holding a John Simon Guggenheim - Fellowship. ment to Rh Ni carbonyl clusters with structures related to deltahedral 3D aromatic systems such as pyramidal hydrocarbons,8 boron hydrides, carbo- and boranes.64 The deltahedral structure of the Rh-Ni heteroboranes,30,31 and fullerenes.32-34 carbonyl clusters can be explained on the basis of Compounds containing metal atoms have been Wade’s rules.65 King also considered a variety of found to be aromatic, too. In 1979, Thorn and Zintl-like ions composed of metals, which are isolobal Hoffmann35 predicted that some hypothetical metal- and
Recommended publications
  • Ring Currents Modulate Optoelectronic Properties of Aromatic Chromophores at 25 T
    Ring currents modulate optoelectronic properties of aromatic chromophores at 25 T Bryan Kudischa, Margherita Maiuria,b, Luca Morettia,b, Maria B. Oviedoa,c,d,e, Leon Wangf, Daniel G. Oblinskya, Robert K. Prud’hommef, Bryan M. Wongc, Stephen A. McGillg, and Gregory D. Scholesa,1 aDepartment of Chemistry, Princeton University, Princeton, NJ 08540; bDipartimento di Fisica, Politecnico di Milano, 20133 Milano, Italy; cDepartment of Chemical & Environmental Engineering, University of California, Riverside, CA 92521; dDepartment of Materials Science & Engineering, University of California, Riverside, CA 92521; eInstituto de Investigaciones Fisicoquímicas de Cordoba, Consejo Nacional de Investigaciones Científicas y Técnicas, Departamento de Química Teorica y Computacional, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA Córdoba, Argentina; fDepartment of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08540; and gNational High Magnetic Field Laboratory, Tallahassee, FL 32310 Edited by Catherine J. Murphy, University of Illinois at Urbana–Champaign, Urbana, IL, and approved April 1, 2020 (received for review October 16, 2019) The properties of organic molecules can be influenced by magnetic This perspective in many ways is inspired by some of the sa- fields, and these magnetic field effects are diverse. They range lient features that govern the magneto-optical responses in from inducing nuclear Zeeman splitting for structural determina- magnetic circular dichroism (MCD) spectroscopy. While best tion in NMR spectroscopy to polaron Zeeman splitting organic known for its ability to interrogate the degeneracy of electronic spintronics and organic magnetoresistance. A pervasive magnetic states, many electronic transitions will display a weak MCD due field effect on an aromatic molecule is the aromatic ring current, to the magnetic field-induced mixing of electronic states that which can be thought of as an induction of a circular current of gives rise to the B-terms, even in diamagnetic systems (19).
    [Show full text]
  • Introduction to Aromaticity
    Introduction to Aromaticity Historical Timeline:1 Spotlight on Benzene:2 th • Early 19 century chemists derive benzene formula (C6H6) and molecular mass (78). • Carbon to hydrogen ratio of 1:1 suggests high reactivity and instability. • However, benzene is fairly inert and fails to undergo reactions that characterize normal alkenes. - Benzene remains inert at room temperature. - Benzene is more resistant to catalytic hydrogenation than other alkenes. Possible (but wrong) benzene structures:3 Dewar benzene Prismane Fulvene 2,4- Hexadiyne - Rearranges to benzene at - Rearranges to - Undergoes catalytic - Undergoes catalytic room temperature. Faraday’s benzene. hydrogenation easily. hydrogenation easily - Lots of ring strain. - Lots of ring strain. - Lots of ring strain. 1 Timeline is computer-generated, compiled with information from pg. 594 of Bruice, Organic Chemistry, 4th Edition, Ch. 15.2, and from Chemistry 14C Thinkbook by Dr. Steven Hardinger, Version 4, p. 26 2 Chemistry 14C Thinkbook, p. 26 3 Images of Dewar benzene, prismane, fulvene, and 2,4-Hexadiyne taken from Chemistry 14C Thinkbook, p. 26. Kekulé’s solution: - “snake bites its own tail” (4) Problems with Kekulé’s solution: • If Kekulé’s structure were to have two chloride substituents replacing two hydrogen atoms, there should be a pair of 1,2-dichlorobenzene isomers: one isomer with single bonds separating the Cl atoms, and another with double bonds separating the Cl atoms. • These isomers were never isolated or detected. • Rapid equilibrium proposed, where isomers interconvert so quickly that they cannot be isolated or detected. • Regardless, Kekulé’s structure has C=C’s and normal alkene reactions are still expected. - But the unusual stability of benzene still unexplained.
    [Show full text]
  • On the Harmonic Oscillator Model of Electron Delocalization (HOMED) Index and Its Application to Heteroatomic Π-Electron Systems
    Symmetry 2010, 2, 1485-1509; doi:10.3390/sym2031485 OPEN ACCESS symmetry ISSN 2073-8994 www.mdpi.com/journal/symmetry Article On the Harmonic Oscillator Model of Electron Delocalization (HOMED) Index and its Application to Heteroatomic π-Electron Systems Ewa D. Raczyñska 1, *, Małgorzata Hallman 1, Katarzyna Kolczyñska 2 and Tomasz M. Stêpniewski 2 1 Department of Chemistry, Warsaw University of Life Sciences (SGGW), ul. Nowoursynowska 159c, 02-776 Warszawa, Poland 2 Interdisciplinary Department of Biotechnology, Warsaw University of Life Sciences (SGGW), ul. Nowoursynowska 166, 02-776 Warszawa, Poland * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +48-22-59-37623; Fax: +49-22-59-37635. Received: 23 April 2010; in revised form: 19 May 2010 / Accepted: 7 July 2010 / Published: 12 July 2010 Abstract: The HOMA (Harmonic Oscillator Model of Aromaticity) index, reformulated in 1993, has been very often applied to describe π-electron delocalization for mono- and polycyclic π-electron systems. However, different measures of π-electron delocalization were employed for the CC, CX, and XY bonds, and this index seems to be inappropriate for compounds containing heteroatoms. In order to describe properly various resonance effects (σ-π hyperconjugation, n-π conjugation, π-π conjugation, and aromaticity) possible for heteroatomic π-electron systems, some modifications, based on the original HOMA idea, were proposed and tested for simple DFT structures containing C, N, and O atoms. An abbreviation HOMED was used for the modified index. Keywords: geometry-based index; π -electron delocalization; σ - π hyperconjugation; n-π conjugation; π-π conjugation; aromaticity; heteroatomic compounds; DFT 1.
    [Show full text]
  • Organic Chemistry
    Organic Chemistry Organic Chemistry Theory, Reactivity and Mechanisms in Modern Synthesis With a Foreword by Robert H. Grubbs Pierre Vogel Kendall N. Houk Authors All books published by Wiley-VCH are carefully produced. Neverthe- less, authors, editors, and publisher do not warrant the information con- Prof. Pierre Vogel tained in these books, including this book, to be free of errors. Readers EPFL are advised to keep in mind that statements, data, illustrations, procedu- SB-DO ral details or other items may inadvertently be inaccurate. Avenue F.-A. Forel 2 1015 Lausanne Library of Congress Card No.: Switzerland applied for Prof. Kendall N. Houk British Library Cataloguing-in-Publication Data Dept. of Chemistry and Biochemistry A catalogue record for this book is available from the British Library. University of California Los Angeles, CA 90095–1569 Bibliographic information published by United States the Deutsche Nationalbibliothek The Deutsche Nationalbibliothek lists this publication in the Deutsche Cover: The cover features a computed Nationalbibliografie; detailed bibliographic data are available on the transition state structure with frontier Internet at <http://dnb.d-nb.de>. molecular orbitals for the Diels-Alder reaction of SO2 and butadiene, catalyzed © 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Boschstr. 12, 69469 by another SO2 (J. Am. Chem. Soc. 1998, Weinheim, Germany 120, 13276–13277). Pierre Vogel established the mechanism of this All rights reserved (including those of translation into other languages). reaction and applied it to the total No part of this book may be reproduced in any form – by photoprinting, synthesis of natural product microfilm, or any other means – nor transmitted or translated into a (-)-dolabriferol (Angew.
    [Show full text]
  • Aromaticity Sem- Ii
    AROMATICITY SEM- II In 1931, German chemist and physicist Sir Erich Hückel proposed a theory to help determine if a planar ring molecule would have aromatic properties .This is a very popular and useful rule to identify aromaticity in monocyclic conjugated compound. According to which a planar monocyclic conjugated system having ( 4n +2) delocalised (where, n = 0, 1, 2, .....) electrons are known as aromatic compound . For example: Benzene, Naphthalene, Furan, Pyrrole etc. Criteria for Aromaticity 1) The molecule is cyclic (a ring of atoms) 2) The molecule is planar (all atoms in the molecule lie in the same plane) 3) The molecule is fully conjugated (p orbitals at every atom in the ring) 4) The molecule has 4n+2 π electrons (n=0 or any positive integer Why 4n+2π Electrons? According to Hückel's Molecular Orbital Theory, a compound is particularly stable if all of its bonding molecular orbitals are filled with paired electrons. - This is true of aromatic compounds, meaning they are quite stable. - With aromatic compounds, 2 electrons fill the lowest energy molecular orbital, and 4 electrons fill each subsequent energy level (the number of subsequent energy levels is denoted by n), leaving all bonding orbitals filled and no anti-bonding orbitals occupied. This gives a total of 4n+2π electrons. - As for example: Benzene has 6π electrons. Its first 2π electrons fill the lowest energy orbital, and it has 4π electrons remaining. These 4 fill in the orbitals of the succeeding energy level. The criteria for Antiaromaticity are as follows: 1) The molecule must be cyclic and completely conjugated 2) The molecule must be planar.
    [Show full text]
  • An Indicator of Triplet State Baird-Aromaticity
    inorganics Article The Silacyclobutene Ring: An Indicator of Triplet State Baird-Aromaticity Rabia Ayub 1,2, Kjell Jorner 1,2 ID and Henrik Ottosson 1,2,* 1 Department of Chemistry—BMC, Uppsala University, Box 576, SE-751 23 Uppsala, Sweden; [email protected] (R.A.); [email protected] (K.J.) 2 Department of Chemistry-Ångström Laboratory Uppsala University, Box 523, SE-751 20 Uppsala, Sweden * Correspondence: [email protected]; Tel.: +46-18-4717476 Received: 23 October 2017; Accepted: 11 December 2017; Published: 15 December 2017 Abstract: Baird’s rule tells that the electron counts for aromaticity and antiaromaticity in the first ππ* triplet and singlet excited states (T1 and S1) are opposite to those in the ground state (S0). Our hypothesis is that a silacyclobutene (SCB) ring fused with a [4n]annulene will remain closed in the T1 state so as to retain T1 aromaticity of the annulene while it will ring-open when fused to a [4n + 2]annulene in order to alleviate T1 antiaromaticity. This feature should allow the SCB ring to function as an indicator for triplet state aromaticity. Quantum chemical calculations of energy and (anti)aromaticity changes along the reaction paths in the T1 state support our hypothesis. The SCB ring should indicate T1 aromaticity of [4n]annulenes by being photoinert except when fused to cyclobutadiene, where it ring-opens due to ring-strain relief. Keywords: Baird’s rule; computational chemistry; excited state aromaticity; Photostability 1. Introduction Baird showed in 1972 that the rules for aromaticity and antiaromaticity of annulenes are reversed in the lowest ππ* triplet state (T1) when compared to Hückel’s rule for the electronic ground state (S0)[1–3].
    [Show full text]
  • Aromaticity in Polyhydride Complexes of Ru, Ir, Os, and Pt† Cite This: DOI: 10.1039/C5cp04330a Elisa Jimenez-Izala and Anastassia N
    PCCP View Article Online PAPER View Journal r-Aromaticity in polyhydride complexes of Ru, Ir, Os, and Pt† Cite this: DOI: 10.1039/c5cp04330a Elisa Jimenez-Izala and Anastassia N. Alexandrova*ab Transition-metal hydrides represent a unique class of compounds, which are essential for catalysis, organic i À i À synthesis, and hydrogen storage. In this work we study IrH5(PPh3)2,(RuH5(P Pr3)2) ,(OsH5(PPr3)2) ,and À OsH4(PPhMe2)3 polyhydride complexes, inspired by the recent discovery of the s-aromatic PtZnH5 cluster À anion. The distinctive feature of these molecules is that, like in the PtZnH5 cluster, the metal is five-fold Received 23rd July 2015, coordinated in-plane, and holds additional ligands attheaxialpositions.Thisworkshowsthattheunusual Accepted 17th September 2015 coordination in these compounds indeed can be explained by s-aromaticity in the pentagonal arrangement, DOI: 10.1039/c5cp04330a stabilized by the atomic orbitals on the metal. Based on this newly elucidated bonding principle, we additionally propose a new family of polyhydrides that display a uniquely high coordination. We also report the first www.rsc.org/pccp indications of how aromaticity may impact the reactivity of these molecules. 1 Introduction many catalytic cycles, where they have either been used as catalysts or invoked as key intermediates.15,16 Aromaticity in Aromaticity is a very important concept in the contemporary general is associated with high symmetry, stability, and specific chemistry: the particular electronic structure of aromatic reactivity. Therefore, the stability of transition-metal hydride systems, where electrons are delocalized, explains their large complexes might have an important repercussion in the kinetics energetic stabilization and low reactivity.
    [Show full text]
  • Recent Studies on the Aromaticity and Antiaromaticity of Planar Cyclooctatetraene
    Symmetry 2010 , 2, 76-97; doi:10.3390/sym2010076 OPEN ACCESS symmetry ISSN 2073-8994 www.mdpi.com/journal/symmetry Review Recent Studies on the Aromaticity and Antiaromaticity of Planar Cyclooctatetraene Tohru Nishinaga *, Takeshi Ohmae and Masahiko Iyoda Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan; E-Mails: [email protected] (T.O.); [email protected] (M.I.) * Author to whom correspondence should be addressed; E-Mail: [email protected]. Received: 29 December 2009; in revised form: 23 January 2010 / Accepted: 4 February 2010 / Published: 5 February 2010 Abstract: Cyclooctatetraene (COT), the first 4n π-electron system to be studied, adopts an inherently nonplanar tub-shaped geometry of D2d symmetry with alternating single and double bonds, and hence behaves as a nonaromatic polyene rather than an antiaromatic compound. Recently, however, considerable 8 π-antiaromatic paratropicity has been shown to be generated in planar COT rings even with the bond alternated D4h structure. In this review, we highlight recent theoretical and experimental studies on the antiaromaticity of hypothetical and actual planar COT. In addition, theoretically predicted triplet aromaticity and stacked aromaticity of planar COT are also briefly described. Keywords: antiaromaticity; cyclooctatetraene; NMR chemical shifts; quantum chemical calculations; ring current 1. Introduction Cyclooctatetraene (COT) was first prepared by Willstätter in 1911 [1,2]. At that time, the special stability of benzene was elusive and it was of interest to learn the reactivity of COT as the next higher vinylogue of benzene. However, unlike benzene, COT was found to be highly reactive to electrophiles just like other alkenes.
    [Show full text]
  • C&En: Science & Technology
    C&EN: SCIENCE & TECHNOLOGY - DECIPHERING METAL ANTIAROMATICITY • Table of Contents • cen-chemjobs.org • Today's Headlines December 15, 2003 • Editor's Page Volume 81, Number 50 CENEAR 81 50 pp. 23-26 • Business Go to ISSN 0009-2347 • Government & Policy DECIPHERING METAL • Science & Technology ANTIAROMATICITY • ACS News DECIPHERING METAL Assessments of and • Calendars ANTIAROMATICITY bonding in all-metal clusters • Books draw chemists into an • Career & Employment Assessments of and bonding in all-metal clusters engaging debate • Special Reports draw chemists into an engaging debate • Nanotechnology TWO SIDES OF A • What's That Stuff? STEPHEN K. RITTER, C&EN WASHINGTON STORY A Deeper Discussion Of All- Back Issues Metal Aromaticity- Aromatic compounds--stabilized by 4n + 2 electrons--were once Antiaromaticity thought to be purely the domain of organic chemistry. But this organic Related Stories Safety Letters boundary has become flexible in the past few years as several research Chemcyclopedia groups have shown that inorganic cluster systems can be aromatic. INORGANIC ANTIAROMATICITY [C&EN, Apr. 28, 2003] ACS Members can sign up to The push to better understand the bonding in these compounds led receive C&EN e-mail earlier this year to the discovery that they can also possess newsletter. METALLOAROMATICS antiaromaticity: destabilization observed in cyclic systems with 4n [C&EN, Sept. 24, 2001] electrons. Now, a lively discussion has ensued on whether the newly reported antiaromatic compounds are truly antiaromatic or are actually It's A Metallic Aromatic net aromatic. [C&EN, Feb. 5, 2001] The debate is centered on the work of associate chemistry professor It's A Flat World For Rare Alexander I.
    [Show full text]
  • Aromaticity, Antiaromaticity, Homoaromaticity and the Hückel (4N + 2) Rule
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/329877657 Aromaticity, Antiaromaticity, Homoaromaticity and the Hückel (4n + 2) Rule Presentation · December 2018 DOI: 10.13140/RG.2.2.34131.63528 CITATIONS READS 0 36,125 1 author: Dr Sumanta Mondal GITAM (Deemed to be University) 259 PUBLICATIONS 510 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: SARS-CoV-2 View project Natural Products View project All content following this page was uploaded by Dr Sumanta Mondal on 10 May 2021. The user has requested enhancement of the downloaded file. Aromaticity, Antiaromaticity and the Hückel (4n + 2) Rule ❖ Aromaticity - In 1931, German chemist and physicist Sir Erich Hückel proposed a theory to help determine if a planar ring molecule would have aromatic properties. His rule states that if a cyclic, planar molecule has 4n+2 π electrons, it is considered aromatic. This rule would come to be known as Hückel's Rule. • Criteria for Aromaticity 1) The molecule is cyclic (a ring of atoms) 2) The molecule is planar (all atoms in the molecule lie in the same plane) 3) The molecule is fully conjugated (p orbitals at every atom in the ring) 4) The molecule has 4n+2 π electrons (n=0 or any positive integer) • Why 4n+2 π Electrons? - According to Hückel's Molecular Orbital Theory, a compound is particularly stable if all of its bonding molecular orbitals are filled with paired electrons. - This is true of aromatic compounds, meaning they are quite stable.
    [Show full text]
  • Sc-Homoaromaticity
    This is a repository copy of Modern Valence-Bond Description of Homoaromaticity. White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/106288/ Version: Accepted Version Article: Karadakov, Peter Borislavov orcid.org/0000-0002-2673-6804 and Cooper, David L. (2016) Modern Valence-Bond Description of Homoaromaticity. Journal of Physical Chemistry A. pp. 8769-8779. ISSN 1089-5639 https://doi.org/10.1021/acs.jpca.6b09426 Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Modern Valence-Bond Description of Homoaromaticity Peter B. Karadakov; and David L. Cooper; Department of Chemistry, University of York, Heslington, York, YO10 5DD, U.K. Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, U.K. Abstract Spin-coupled (SC) theory is used to obtain modern valence-bond (VB) descriptions of the electronic structures of local minimum and transition state geometries of three species that have been con- C sidered to exhibit homoconjugation and homoaromaticity: the homotropenylium ion, C8H9 , the C cycloheptatriene neutral ring, C7H8, and the 1,3-bishomotropenylium ion, C9H11.
    [Show full text]
  • All-Metal Aromatic Cationic Palladium Triangles Can Mimic Aromatic Donor Ligands with Lewis Acidic Cite This: Chem
    Chemical Science View Article Online EDGE ARTICLE View Journal | View Issue All-metal aromatic cationic palladium triangles can mimic aromatic donor ligands with Lewis acidic Cite this: Chem. Sci.,2017,8,7394 cations† Yanlan Wang,a Anna Monfredini,c Pierre-Alexandre Deyris,a Florent Blanchard,a Etienne Derat,b Giovanni Maestri *ac and Max Malacriaab We present that cationic rings can act as donor ligands thanks to suitably delocalized metal–metal bonds. This could grant parent complexes with the peculiar properties of aromatic rings that are crafted with main group elements. We assembled Pd nuclei into equilateral mono-cationic triangles with unhindered faces. Like their main group element counterparts and despite their positive charge, these noble-metal rings form stable bonding interactions with other cations, such as positively charged silver atoms, to deliver Received 9th August 2017 the corresponding tetranuclear dicationic complexes. Through a mix of modeling and experimental Accepted 28th August 2017 techniques we propose that this bonding mode is an original coordination-like one rather than a 4- DOI: 10.1039/c7sc03475j Creative Commons Attribution 3.0 Unported Licence. centre–2-electron bond, which have already been observed in three dimensional aromatics. The present rsc.li/chemical-science results thus pave the way for the use of suitable metal rings as ligands. Introduction perpendicular to their plane (Qzz, Fig. 1, bottom), while anions form these interactions with those that have a positive one.7 Aromaticity is a fascinating chemical concept. It provides For decades, chemists have only played with a few nuclei to a unifying picture to account for and predict the properties of construct aromatics, mostly H, C, N and O.
    [Show full text]