Which Released Its Protest
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Rovers' Tale
Vol 436|11 August 2005 BOOKS & ARTS The rovers’ tale How NASA scientists overcame the odds to find signs of water on Mars. Roving Mars: Spirit, Opportunity, and the Exploration of the Red Planet by Steve Squyres JPL/NASA Hyperion: 2005. 432 pp. $25.95 Gregory Benford Roving Marsis a deftly and dramatically writ- ten history of the Mars rovers, Spirit and Opportunity. It is also a primer on how to do exotic geology at a distance of 100 million miles using robots. Steve Squyres knows how to render scenes and intricate technical detail to build tension, without losing sight of the thrill and grind of the groundbreaking work. “Eleven years had passed since I had started trying to send hardware to Mars, and in all that time I hadn’t seen a single plan for Mars explo- ration survive for more than about eighteen months before there was some sort of cata- clysm,” writes Squyres. Chief among these was the loss of the 1999 Mars Climate Orbiter: “The Mars program had become so screwed up that nobody had caught a high-school mis- take like mixing up English and metric units.” NASA doesn’t escape criticism over the rover mission either. According to Squyres, NASA’s On a roll: during testing for manoeuvrability in the lab, the rovers overcame a series of obstacles. rules meant that “cutting corners and taking chances” were the Jet Propulsion Laboratory’s The team had to trim experiments and patch signs of ancient surface water and found it, only management tools. After the losses of the problems right up to the launch date. -
Planetary Report Report
The PLANETARYPLANETARY REPORT REPORT Volume XXIX Number 1 January/February 2009 Beyond The Moon From The Editor he Internet has transformed the way science is On the Cover: Tdone—even in the realm of “rocket science”— The United States has the opportunity to unify and inspire the and now anyone can make a real contribution, as world’s spacefaring nations to create a future brightened by long as you have the will to give your best. new goals, such as the human exploration of Mars and near- In this issue, you’ll read about a group of amateurs Earth asteroids. Inset: American astronaut Peggy A. Whitson who are helping professional researchers explore and Russian cosmonaut Yuri I. Malenchenko try out training Mars online, encouraged by Mars Exploration versions of Russian Orlan spacesuits. Background: The High Rovers Project Scientist Steve Squyres and Plane- Resolution Camera on Mars Express took this snapshot of tary Society President Jim Bell (who is also head Candor Chasma, a valley in the northern part of Valles of the rovers’ Pancam team.) Marineris, on July 6, 2006. Images: Gagarin Cosmonaut Training This new Internet-enabled fun is not the first, Center. Background: ESA nor will it be the only, way people can participate in planetary exploration. The Planetary Society has been encouraging our members to contribute Background: their minds and energy to science since 1984, A dust storm blurs the sky above a volcanic caldera in this image when the Pallas Project helped to determine the taken by the Mars Color Imager on Mars Reconnaissance Orbiter shape of a main-belt asteroid. -
Mitchell Thomas JOS Article
H-SC Journal of Sciences (2017) Vol. VI Thomas Mars: A prospect for settlement Mitchell H. Thomas’17 Department of Biology, Hampden-Sydney College, Hampden-Sydney, VA 23943 The exploration of Mars was once left to the imagination. However, in recent years, the topic of exploring Mars has become more realistic and increasingly popular in news articles and scientific communities. Technology developed in the previous half-century have already allowed humans to send rovers to Mars in order to retrieve some basic data about the planet. Current technological advancements are resulting in reusable rockets that could one day travel between Earth and Mars. Exploration and colonization of Mars are important for the development of research on the planet and the search for life. Current data is limited, but shows that the conditions on Mars could have supported life in the past. To further our knowledge of the red planet, The atmosphere surrounding Earth is nearly organizations like NASA and companies like SpaceX one-hundred times denser than that of Mars and its are developing plans to colonize Mars. Many composition is crucial to life. According to NASA, the obstacles stand in the way before humans can reach Earth’s atmosphere is comprised of 78% Nitrogen, and colonize the red planet. However, Mars is the 21% Oxygen, and 1% Other. On Mars, the sparse best option for interplanetary colonization and the atmosphere is comprised of nearly 96% Carbon most feasible way to research current and future life Dioxide, less than 2% Argon, less than 2% Nitrogen, on a planet other than Earth. -
Educator's Guide
EDUCATOR’S GUIDE ABOUT THE FILM Dear Educator, “ROVING MARS”is an exciting adventure that This movie details the development of Spirit and follows the journey of NASA’s Mars Exploration Opportunity from their assembly through their Rovers through the eyes of scientists and engineers fantastic discoveries, discoveries that have set the at the Jet Propulsion Laboratory and Steve Squyres, pace for a whole new era of Mars exploration: from the lead science investigator from Cornell University. the search for habitats to the search for past or present Their collective dream of Mars exploration came life… and maybe even to human exploration one day. true when two rovers landed on Mars and began Having lasted many times longer than their original their scientific quest to understand whether Mars plan of 90 Martian days (sols), Spirit and Opportunity ever could have been a habitat for life. have confirmed that water persisted on Mars, and Since the 1960s, when humans began sending the that a Martian habitat for life is a possibility. While first tentative interplanetary probes out into the solar they continue their studies, what lies ahead are system, two-thirds of all missions to Mars have NASA missions that not only “follow the water” on failed. The technical challenges are tremendous: Mars, but also “follow the carbon,” a building block building robots that can withstand the tremendous of life. In the next decade, precision landers and shaking of launch; six months in the deep cold of rovers may even search for evidence of life itself, space; a hurtling descent through the atmosphere either signs of past microbial life in the rock record (going from 10,000 miles per hour to 0 in only six or signs of past or present life where reserves of minutes!); bouncing as high as a three-story building water ice lie beneath the Martian surface today. -
Emerging Technologies 1 for Human Mars Exploration
Emerging Technologies 1 for Human Mars Exploration Michelle Rucker Mars Study Capability Team NASA Johnson Space Center IEEE Aerospace Conference 2018 March, 2018 Human Explorers on Mars 2 have different needs than rovers Power Life Support Health Care Shelter Communication Earth Return Image courtesy NASA/JPL-Caltech IEEE Aerospace Conference 2018 March, 2018 Humans 3 need a lot more power! Rovers can hibernate…humans cannot . Mars rovers need less than 25 Watts (W) keep-alive power • Less than 650 W at peak loads . Human explorers may need as much as 40 kiloWatts (kW) for 300+ day surface missions • As much as 25 kW keep-alive power • Apollo missions were ~4 kW for 3 days . Kilopower Fission Power . High density energy storage . Robotic power connections IEEE Aerospace Conference 2018 March, 2018 Humans 4 need Life Support Systems! Rovers don’t need food, oxygen, water, bathrooms, or spacesuits . Closed-loop life support systems . Advanced water/air monitoring . Advanced waste management . Extended shelf-life food systems . New planetary spacesuits IEEE Aerospace Conference 2018 March, 2018 Humans 5 need Health Care! Rovers don’t get sick . Space radiation protection . Reduced gravity countermeasures . Autonomous medicine + non-physician training . In situ sample analysis, health monitoring IEEE Aerospace Conference 2018 March, 2018 Humans 6 need to come inside! Rovers don’t mind living outside . Reduced pressure . Temperature extremes . Months-long dust storms . Radiation . Long-duration habitats . Pressurized Rovers IEEE Aerospace Conference 2018 March, 2018 Humans 7 need to connect with loved ones! Isolation doesn’t bother a rover MARS . Up to 44 minutes delay between asking MARS EARTH Min. -
Space Solutions Fact Sheet
www.dynetics. Space Solutions Fact Sheet The Space Division at Dynetics, Inc., headquartered Key Facts in Huntsville, Ala., provides flexible flight hardware ▪ Building a Human Landing System (HLS) for NASA’s development from low-cost prototypes through Artemis program complete human-rated solutions. ▪ NASA contractor for Space Launch System’s (SLS) Universal Stage Adapter (USA) Dynetics Space Division’s capabilities include ▪ NASA Glenn Research Center’s Large Business Prime propulsion systems, small satellite development, Contractor of the Year (2018) mechanical and propulsion testing, system ▪ Lonestar Small Satellite Developer for SMDC integration and assembly, mission design and ▪ Propulsion system provider for Astrobotic robotic lunar vehicle sizing and vehicle structure design and lander manufacturing. ▪ Developer of innovative spacecraft and missile propulsion systems About Dynetics ▪ Built the NASA Space Launch System’s Core Stage Pathfinder Dynetics, a wholly owned subsidiary of Leidos, ▪ Designed the Laser Air Monitoring System (LAMS) for provides responsive, cost-effective engineering, NASA Orion program scientific, IT solutions to the national security, ▪ Prime contractor for NASA SLS Advanced Booster cybersecurity, space, and critical infrastructure Engineering Demonstration and Risk Reduction (ABEDRR) sectors. Our portfolio features highly specialized demonstrated low-cost, full-scale cryogenic tank technical services and a range of software and ▪ Provider of critical flight components for SLS Core Stage hardware products, including components, and SLS Exploration Upper Stage ▪ Certified to build NASA, DoD, and commercial flight subsystems, and complex end-to-end systems. hardware The company of more than 3,000 employees ▪ More than 500,000 sq. feet of research and development is based in Huntsville, Ala., and has offices facilities in North Alabama throughout the U.S. -
Gao-21-330, Nasa Lunar Programs
Report to Congressional Committees May 2021 NASA LUNAR PROGRAMS Significant Work Remains, Underscoring Challenges to Achieving Moon Landing in 2024 GAO-21-330 May 2021 NASA LUNAR PROGRAMS Significant Work Remains, Underscoring Challenges to Achieving Moon Landing in 2024 Highlights of GAO-21-330, a report to congressional committees Why GAO Did This Study What GAO Found In March 2019, the White House The National Aeronautics and Space Administration (NASA) has initiated eight directed NASA to accelerate its plans lunar programs since 2017 to help NASA achieve its goal of returning humans to for a lunar landing by 4 years, to 2024. the Moon. NASA plans to conduct this mission, known as Artemis III, in 2024. Accomplishing this goal will require NASA has made progress by completing some early lunar program development extensive coordination across lunar activities including initial contract awards, but an ambitious schedule decreases programs and contractors to ensure the likelihood of NASA achieving its goal. For example, NASA’s planned pace to systems operate together seamlessly develop a Human Landing System, shown below, is months faster than other and safely. In December 2019, GAO spaceflight programs, and a lander is inherently more complex because it found that NASA had begun making supports human spaceflight. decisions related to requirements, cost, and schedule for individual lunar Notional Human Landing System programs but was behind in taking these steps for the Artemis III mission. The House Committee on Appropriations included a provision in 2018 for GAO to review NASA’s proposed lunar-focused programs. This is the second such report. -
Space News Update – May 2019
Space News Update – May 2019 By Pat Williams IN THIS EDITION: • India aims to be 1st country to land rover on Moon's south pole. • Jeff Bezos says Blue Origin will land humans on moon by 2024. • China's Chang'e-4 probe resumes work for sixth lunar day. • NASA awards Artemis contract for lunar gateway power. • From airport to spaceport as UK targets horizontal spaceflight. • Russian space sector plagued by astronomical corruption. • Links to other space and astronomy news published in May 2019. Disclaimer - I claim no authorship for the printed material; except where noted (PW). INDIA AIMS TO BE 1ST COUNTRY TO LAND ROVER ON MOON'S SOUTH POLE India will become the first country to land a rover on the Moon's the south pole if the country's space agency "Indian Space Research Organisation (ISRO)" successfully achieves the feat during the country's second Moon mission "Chandrayaan-2" later this year. "This is a place where nobody has gone. All the ISRO missions till now to the Moon have landed near the Moon's equator. Chandrayaan-2, India’s second lunar mission, has three modules namely Orbiter, Lander (Vikram) & Rover (Pragyan). The Orbiter and Lander modules will be interfaced mechanically and stacked together as an integrated module and accommodated inside the GSLV MK-III launch vehicle. The Rover is housed inside the Lander. After launch into earth bound orbit by GSLV MK-III, the integrated module will reach Moon orbit using Orbiter propulsion module. Subsequently, Lander will separate from the Orbiter and soft land at the predetermined site close to lunar South Pole. -
Space Planes and Space Tourism: the Industry and the Regulation of Its Safety
Space Planes and Space Tourism: The Industry and the Regulation of its Safety A Research Study Prepared by Dr. Joseph N. Pelton Director, Space & Advanced Communications Research Institute George Washington University George Washington University SACRI Research Study 1 Table of Contents Executive Summary…………………………………………………… p 4-14 1.0 Introduction…………………………………………………………………….. p 16-26 2.0 Methodology…………………………………………………………………….. p 26-28 3.0 Background and History……………………………………………………….. p 28-34 4.0 US Regulations and Government Programs………………………………….. p 34-35 4.1 NASA’s Legislative Mandate and the New Space Vision………….……. p 35-36 4.2 NASA Safety Practices in Comparison to the FAA……….…………….. p 36-37 4.3 New US Legislation to Regulate and Control Private Space Ventures… p 37 4.3.1 Status of Legislation and Pending FAA Draft Regulations……….. p 37-38 4.3.2 The New Role of Prizes in Space Development…………………….. p 38-40 4.3.3 Implications of Private Space Ventures…………………………….. p 41-42 4.4 International Efforts to Regulate Private Space Systems………………… p 42 4.4.1 International Association for the Advancement of Space Safety… p 42-43 4.4.2 The International Telecommunications Union (ITU)…………….. p 43-44 4.4.3 The Committee on the Peaceful Uses of Outer Space (COPUOS).. p 44 4.4.4 The European Aviation Safety Agency…………………………….. p 44-45 4.4.5 Review of International Treaties Involving Space………………… p 45 4.4.6 The ICAO -The Best Way Forward for International Regulation.. p 45-47 5.0 Key Efforts to Estimate the Size of a Private Space Tourism Business……… p 47 5.1. -
Make the Most of Destination Moon
Challenger Center® and NASA eClips™ Make the Most of Destination Moon PRE-MISSION ASTRONAUT TRAINING (~30 MIN) Prepare your class of Astronauts for a richer virtual mission experience by helping them learn more about mapping, tracking and structure, and engines before the mission. Mapping Tracking and Structure Engines Divide the group into teams of three. Each person in the group will watch a different NASA eClips™ video or listen to the Innovation Now podcast to become an expert on one of the three topics. Mapping Experts Tracking and Structure Engine Experts Real World: Lunar Innovation Now: Launchpad: Apollo 11 - Reconnaissance Orbiter Weather or Not to Challenges of Landing on the Resources Launch Moon • Why is returning to • Why is it important • What criteria should be the Moon important? to conduct weather considered for determining What kinds of checks prior to a landing site? questions can we launch? • Why would landing in a answer through • What conditions crater have presented establishing a could affect a problems for the Apollo Essential launch and must be questions “sustainable astronauts? presence” there? considered? guide experts • How have we built as they watch our understanding of their video. the Moon? • What kinds of tests must scientists and engineers conduct to know a spacecraft is ready for launch? AFTER • How has the Lunar • What is a “Go / No • How did the Apollo viewing the Reconnaissance Go” Poll? astronauts help make a • What are some “do return to the Moon video, experts Orbiter been able to not launch” criteria possible? report map the Moon? that might scrub a findings to • Why was an orbiter the right spacecraft launch? their team. -
Espinsights the Global Space Activity Monitor
ESPInsights The Global Space Activity Monitor Issue 6 April-June 2020 CONTENTS FOCUS ..................................................................................................................... 6 The Crew Dragon mission to the ISS and the Commercial Crew Program ..................................... 6 SPACE POLICY AND PROGRAMMES .................................................................................... 7 EUROPE ................................................................................................................. 7 COVID-19 and the European space sector ....................................................................... 7 Space technologies for European defence ...................................................................... 7 ESA Earth Observation Missions ................................................................................... 8 Thales Alenia Space among HLS competitors ................................................................... 8 Advancements for the European Service Module ............................................................... 9 Airbus for the Martian Sample Fetch Rover ..................................................................... 9 New appointments in ESA, GSA and Eurospace ................................................................ 10 Italy introduces Platino, regions launch Mirror Copernicus .................................................. 10 DLR new research observatory .................................................................................. -
Accelerating Martian and Lunar Science Through Spacex Starship Missions
Accelerating Martian and Lunar Science through SpaceX Starship Missions Jennifer L. Heldmann, NASA Ames Research Center, Division of Space Sciences & Astrobiology, Planetary Systems Branch, Moffett Field, CA 94035, 650-604-5530, [email protected] Ali M. Bramson, Purdue University, [email protected] Shane Byrne, University of Arizona, [email protected] Ross Beyer, SETI Institute, [email protected] Peter Carrato, Bechtel Corp., [email protected] Nicholas Cummings, SpaceX, [email protected] Matthew Golombek, Jet Propulsion Lab, [email protected] Tanya Harrison, Outer Space Institute, [email protected] James Head, Brown University, [email protected] Kip Hodges, Arizona State University, [email protected] Keith Kennedy, Bechtel Corp., [email protected] Joe Levy, Colgate University, [email protected] Darlene S.S Lim, NASA Ames Research Center, [email protected] Margarita Marinova, Independent Consultant, [email protected] Alfred McEwen, University of Arizona, [email protected] Gareth Morgan, Planetary Science Institute, [email protected] Asmin Pathare, Planetary Science Institute, [email protected] Nathaniel Putzig, Planetary Science Institute, [email protected] Steve Ruff, Arizona State University, [email protected] Juliana Scheiman, SpaceX, [email protected] Hanna Sizemore, Planetary Science Institute, [email protected] Nathan Williams, Jet Propulsion Lab, [email protected] David Wilson, Bechtel Corp., [email protected] Paul Wooster, SpaceX, [email protected] Kris Zacny, Honeybee Robotics, [email protected] Abstract SpaceX is developing the Starship vehicle for both human and robotic flights to the surface of the Moon and Mars. This two-stage vehicle offers unprecedented payload capacity and the promise of lowering the cost of surface access due to its full reusability.