Glaucoma Physiologic Electrical Fields Direct Retinal Ganglion Cell Axon Growth In Vitro Kimberly K. Gokoffski,1,2 Xingyuan Jia,3,4 Daniel Shvarts,1 Guohua Xia,5 and Min Zhao2,4 1Roski Eye Institute, University of Southern California, Los Angeles, California, United States 2Department of Ophthalmology and Vision Sciences, University of California, Davis, Sacramento, California, United States 3Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China 4Department of Dermatology, Institute for Regenerative Cures, University of California, Davis, Sacramento, California, United States 5Department of Psychiatry and Behavioral Sciences, University of California, Davis, Sacramento, California, United States Correspondence: Kimberly K. Go- PURPOSE. The purpose of this study was to characterize the ability of applied electrical fields koffski, Roski Eye Institute, Univer- (EFs) to direct retinal ganglion cell (RGC) axon growth as well as to assess whether Rho sity of Southern California, 1450 San GTPases play a role in translating electrical cues to directional cues. Pablo Street, 4th Floor, Los Angeles, CA 90033, USA; METHODS. Full-thickness, early postnatal mouse retina was cultured in electrotaxis chambers
[email protected]. and exposed to EFs of varying strengths (50–200 mV/mm). The direction of RGC axon growth Min Zhao, Department of Ophthal- was quantified from time-lapsed videos. The rate of axon growth and responsiveness to mology and Vision Sciences, Univer- changes in EF polarity were also assessed. The effect of toxin B, a broad-spectrum inhibitor of sity of California, Davis, 4860 Y Rho GTPase signaling, and Z62954982, a selective inhibitor of Rac1, on EF-directed growth Street Suite 2400, Sacramento, CA was determined.