Photosynthetic Performance of Single-Cell C4 Species In
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Origin and Age of Australian Chenopodiaceae
ARTICLE IN PRESS Organisms, Diversity & Evolution 5 (2005) 59–80 www.elsevier.de/ode Origin and age of Australian Chenopodiaceae Gudrun Kadereita,Ã, DietrichGotzek b, Surrey Jacobsc, Helmut Freitagd aInstitut fu¨r Spezielle Botanik und Botanischer Garten, Johannes Gutenberg-Universita¨t Mainz, D-55099 Mainz, Germany bDepartment of Genetics, University of Georgia, Athens, GA 30602, USA cRoyal Botanic Gardens, Sydney, Australia dArbeitsgruppe Systematik und Morphologie der Pflanzen, Universita¨t Kassel, D-34109 Kassel, Germany Received 20 May 2004; accepted 31 July 2004 Abstract We studied the age, origins, and possible routes of colonization of the Australian Chenopodiaceae. Using a previously published rbcL phylogeny of the Amaranthaceae–Chenopodiaceae alliance (Kadereit et al. 2003) and new ITS phylogenies of the Camphorosmeae and Salicornieae, we conclude that Australia has been reached in at least nine independent colonization events: four in the Chenopodioideae, two in the Salicornieae, and one each in the Camphorosmeae, Suaedeae, and Salsoleae. Where feasible, we used molecular clock estimates to date the ages of the respective lineages. The two oldest lineages both belong to the Chenopodioideae (Scleroblitum and Chenopodium sect. Orthosporum/Dysphania) and date to 42.2–26.0 and 16.1–9.9 Mya, respectively. Most lineages (Australian Camphorosmeae, the Halosarcia lineage in the Salicornieae, Sarcocornia, Chenopodium subg. Chenopodium/Rhagodia, and Atriplex) arrived in Australia during the late Miocene to Pliocene when aridification and increasing salinity changed the landscape of many parts of the continent. The Australian Camphorosmeae and Salicornieae diversified rapidly after their arrival. The molecular-clock results clearly reject the hypothesis of an autochthonous stock of Chenopodiaceae dating back to Gondwanan times. -
Gene Expression Profiling in Single Cell C4 and Related Photosynthetic Species in Suaedoideae
GENE EXPRESSION PROFILING IN SINGLE CELL C4 AND RELATED PHOTOSYNTHETIC SPECIES IN SUAEDOIDEAE By RICHARD MATTHEW SHARPE A dissertation submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY WASHINGTON STATE UNIVERSITY Program in Molecular Plant Sciences DECEMBER 2014 © Copyright by RICHARD MATTHEW SHARPE, 2014 All Rights Reserved 137 i i © Copyright by RICHARD MATTHEW SHARPE, 2014 All Rights Reserve To the Faculty of Washington State University: The members of the Committee appointed to examine the dissertation of RICHARD MATTHEW SHARPE find it satisfactory and recommend it be accepted. i i ______________________________ Gerald E. Edwards, PhD. Co-Chair ______________________________ Amit Dhingra, PhD. Co-Chair ______________________________ Thomas W. Okita, PhD. ii ACKNOWLEDGMENTS Gerald E. Edwards, Amit Dhingra, Thomas W. Okita, Sascha Offermann, Helmut Kirchhoff, Miroslava Herbstova, Robert Yarbrough, Tyson Koepke, Derick Jiwan, Christopher Hendrickson, Maxim Kapralov, Chuck Cody, Artemus Harper, John Grimes, Marco Galli, Mio Satoh-Cruz, Ananth Kalyanaraman, Katherine Evans, David Kramer, Scott Schaeffer, Nuria Koteyeva, Elena Voznesenskaya, National Science Foundation, Washington State University i i Program in Molecular Plant Sciences i iii GENE EXPRESSION PROFILING IN SINGLE CELL C4 AND RELATED PHOTOSYNTHETIC SPECIES IN SUAEDOIDEAE Abstract by Richard Matthew Sharpe, Ph.D. Washington State University December 2014 Co-Chair: Gerald E. Edwards Co-Chair: Amit Dhingra Slightly over a decade ago Suaeda aralocaspica, a higher land plant species that performs C4 photosynthesis in a single cell was discovered. Subsequent to this discovery three additional i species in the Bienertia genus, a sister clade to the Suaeda genus, were reported that perform the v C4 photosynthetic function in a single chlorenchyma cell. -
WOOD ANATOMY of CHENOPODIACEAE (AMARANTHACEAE S
IAWA Journal, Vol. 33 (2), 2012: 205–232 WOOD ANATOMY OF CHENOPODIACEAE (AMARANTHACEAE s. l.) Heike Heklau1, Peter Gasson2, Fritz Schweingruber3 and Pieter Baas4 SUMMARY The wood anatomy of the Chenopodiaceae is distinctive and fairly uni- form. The secondary xylem is characterised by relatively narrow vessels (<100 µm) with mostly minute pits (<4 µm), and extremely narrow ves- sels (<10 µm intergrading with vascular tracheids in addition to “normal” vessels), short vessel elements (<270 µm), successive cambia, included phloem, thick-walled or very thick-walled fibres, which are short (<470 µm), and abundant calcium oxalate crystals. Rays are mainly observed in the tribes Atripliceae, Beteae, Camphorosmeae, Chenopodieae, Hab- litzieae and Salsoleae, while many Chenopodiaceae are rayless. The Chenopodiaceae differ from the more tropical and subtropical Amaran- thaceae s.str. especially in their shorter libriform fibres and narrower vessels. Contrary to the accepted view that the subfamily Polycnemoideae lacks anomalous thickening, we found irregular successive cambia and included phloem. They are limited to long-lived roots and stem borne roots of perennials (Nitrophila mohavensis) and to a hemicryptophyte (Polycnemum fontanesii). The Chenopodiaceae often grow in extreme habitats, and this is reflected by their wood anatomy. Among the annual species, halophytes have narrower vessels than xeric species of steppes and prairies, and than species of nitrophile ruderal sites. Key words: Chenopodiaceae, Amaranthaceae s.l., included phloem, suc- cessive cambia, anomalous secondary thickening, vessel diameter, vessel element length, ecological adaptations, xerophytes, halophytes. INTRODUCTION The Chenopodiaceae in the order Caryophyllales include annual or perennial herbs, sub- shrubs, shrubs, small trees (Haloxylon ammodendron, Suaeda monoica) and climbers (Hablitzia, Holmbergia). -
The C4 Plant Lineages of Planet Earth
Journal of Experimental Botany, Vol. 62, No. 9, pp. 3155–3169, 2011 doi:10.1093/jxb/err048 Advance Access publication 16 March, 2011 REVIEW PAPER The C4 plant lineages of planet Earth Rowan F. Sage1,*, Pascal-Antoine Christin2 and Erika J. Edwards2 1 Department of Ecology and Evolutionary Biology, The University of Toronto, 25 Willcocks Street, Toronto, Ontario M5S3B2 Canada 2 Department of Ecology and Evolutionary Biology, Brown University, 80 Waterman St., Providence, RI 02912, USA * To whom correspondence should be addressed. E-mail: [email protected] Received 30 November 2010; Revised 1 February 2011; Accepted 2 February 2011 Abstract Using isotopic screens, phylogenetic assessments, and 45 years of physiological data, it is now possible to identify most of the evolutionary lineages expressing the C4 photosynthetic pathway. Here, 62 recognizable lineages of C4 photosynthesis are listed. Thirty-six lineages (60%) occur in the eudicots. Monocots account for 26 lineages, with a Downloaded from minimum of 18 lineages being present in the grass family and six in the sedge family. Species exhibiting the C3–C4 intermediate type of photosynthesis correspond to 21 lineages. Of these, 9 are not immediately associated with any C4 lineage, indicating that they did not share common C3–C4 ancestors with C4 species and are instead an independent line. The geographic centre of origin for 47 of the lineages could be estimated. These centres tend to jxb.oxfordjournals.org cluster in areas corresponding to what are now arid to semi-arid regions of southwestern North America, south- central South America, central Asia, northeastern and southern Africa, and inland Australia. -
A Draft Genome Assembly of Halophyte Suaeda Aralocaspica, a Plant That Performs C₄ Photosynthesis Within Individual Cells --Manuscript Draft
GigaScience A draft genome assembly of halophyte Suaeda aralocaspica, a plant that performs C₄ photosynthesis within individual cells --Manuscript Draft-- Manuscript Number: GIGA-D-19-00024R1 Full Title: A draft genome assembly of halophyte Suaeda aralocaspica, a plant that performs C₄ photosynthesis within individual cells Article Type: Data Note Funding Information: the Key Research and Development Dr. Lei Wang Program of Xinjiang province (2018B01006-4) National Natural Science Foundation of Dr. Lei Wang China (31770451) National Key Research and Development Prof. Changyan Tian Program (2016YFC0501400) ABLife Dr. Yi Zhang (ABL2014-02028) Abstract: Background: The halophyte Suaeda aralocaspica performs complete C₄ photosynthesis within individual cells (SCC₄), which is distinct from typical C₄ plants that require the collaboration of two types of photosynthetic cells. However, despite SCC₄ plants having features that are valuable in engineering higher photosynthetic efficiencies in C₃ species, including rice, there are no reported sequenced SCC₄ plant genomes, which limits our understanding of the mechanisms involved in, and evolution of, SCC₄ photosynthesis. Findings: Using Illumina and Pacbio platforms, we generated ∼202 Gb of clean genomic DNA sequences having a 433-fold coverage based on the 467 Mb estimated genome size of S. aralocaspica. The final genome assembly was 452 Mb, consisting of 4,033 scaffolds, with a scaffold N50 length of 1.83 Mb. We annotated 29,604 protein- coding genes using Evidence Modeler based on the gene information from ab initio predictions, homology levels with known genes, and RNA sequencing-based transcriptome evidence. We also annotated noncoding genes, including 1,651 long noncoding RNAs, 21 microRNAs, 382 transfer RNAs, 88 small nuclear RNAs, and 325 ribosomal RNAs. -
Disentangling Sources of Gene Tree Discordance in Phylogenomic Datasets: Testing
bioRxiv preprint doi: https://doi.org/10.1101/794370; this version posted March 13, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 1 1 Disentangling Sources of Gene Tree Discordance in Phylogenomic Datasets: Testing 2 Ancient Hybridizations in Amaranthaceae s.l. 3 4 Diego F. Morales-Briones1*, Gudrun Kadereit2, Delphine T. Tefarikis2, Michael J. Moore3, 5 Stephen A. Smith4, Samuel F. Brockington5, Alfonso Timoneda5, Won C. Yim6, John C. 6 Cushman6, Ya Yang1* 7 8 1 Department of Plant and Microbial Biology, University of Minnesota-Twin Cities, 1445 9 Gortner Avenue, St. Paul, MN 55108, USA 10 2 Institut für Molekulare Physiologie, Johannes Gutenberg-Universität Mainz, D-55099, Mainz, 11 Germany 12 3 Department of Biology, Oberlin College, Science Center K111, 119 Woodland Street, Oberlin, 13 OH 44074-1097, USA 14 4 Department of Ecology & Evolutionary Biology, University of Michigan, 830 North University 15 Avenue, Ann Arbor, MI 48109-1048, USA 16 5 Department of Plant Sciences, University of Cambridge, Tennis Court Road, Cambridge, CB2 17 3EA, United Kingdom 18 6 Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, 89577, 19 USA 20 21 * Correspondence to be sent to: Diego F. Morales-Briones and Ya Yang. Department of Plant and 22 Microbial Biology, University of Minnesota, 1445 Gortner Avenue, St. Paul, MN 55108, USA, 23 Telephone: +1 612-625-6292 (YY) Email: [email protected]; [email protected] bioRxiv preprint doi: https://doi.org/10.1101/794370; this version posted March 13, 2020. -
The Unique Structural and Biochemical Development of Single Cell C4
Journal of Experimental Botany, Vol. 67, No. 9 pp. 2587–2601, 2016 doi:10.1093/jxb/erw082 Advance Access publication 8 March 2016 This paper is available online free of all access charges (see http://jxb.oxfordjournals.org/open_access.html for further details) RESEARCH PAPER The unique structural and biochemical development of single cell C4 photosynthesis along longitudinal leaf gradients in Bienertia sinuspersici and Suaeda aralocaspica (Chenopodiaceae) 1 1 2 3 3, Nuria K. Koteyeva , Elena V. Voznesenskaya , James O. Berry , Asaph B. Cousins and Gerald E. Edwards * Downloaded from https://academic.oup.com/jxb/article/67/9/2587/2877400 by guest on 01 October 2021 1 Laboratory of Anatomy and Morphology, VL Komarov Botanical Institute of Russian Academy of Sciences, St Petersburg, 197376, Russia 2 Department of Biological Sciences, State University of New York, Buffalo, NY 14260, USA 3 School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA * Correspondence: [email protected] Received 3 January 2016; Accepted 8 February 2016 Editor: Howard Griffiths, University of Cambridge Abstract Temporal and spatial patterns of photosynthetic enzyme expression and structural maturation of chlorenchyma cells along longitudinal developmental gradients were characterized in young leaves of two single cell C4 species, Bienertia sinuspersici and Suaeda aralocaspica. Both species partition photosynthetic functions between distinct intracellular domains. In the C4-C domain, C4 acids are formed in the C4 cycle during capture of atmospheric CO2 by phosphoenolpyruvate carboxylase. In the C4-D domain, CO2 released in the C4 cycle via mitochondrial NAD- malic enzyme is refixed by Rubisco. Despite striking differences in origin and intracellular positioning of domains, these species show strong convergence in C4 developmental patterns. -
The Effect of Combined Salinity and Waterlogging on the Halophyte Suaeda Maritima : the Role of Antioxidants
A University of Sussex DPhil thesis Available online via Sussex Research Online: http://sro.sussex.ac.uk/ This thesis is protected by copyright which belongs to the author. This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the Author The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the Author When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given Please visit Sussex Research Online for more information and further details Responses of Suaeda maritima to flooding and salinity By Gazala M. Alhdad Presented for the degree of Doctor of Philosophy in the School of Life Sciences at the University of Sussex Submitted October 2012 ii Declaration The contents of this thesis are the original work by the author, except where otherwise stated. I hereby declare that this has not and will not be submitted in whole or in part to any other university for the award of any other degree. Signature……………………………………………………….Gazala Alhdad iii UNIVERSITY OF SUSSEX GAZALA M. ALHDAD RESPONSES OF SUAEDA MARITIMA TO FLOODING AND SALINITY ABSTRACT Suaeda maritima is an annual halophyte commonly found in salt-marshes. Its salt tolerance has been well studied, though there is little published on the effect of simultaneous waterlogging. The effects of saline waterlogging on growth, antioxidants (glutathione and total polyphenolic compounds, antioxidant activity) and oxidative damage were investigated with simulated tides in a controlled glasshouse and on plants collected from the field. -
From Cacti to Carnivores: Improved Phylotranscriptomic Sampling And
Article Type: Special Issue Article RESEARCH ARTICLE INVITED SPECIAL ARTICLE For the Special Issue: Using and Navigating the Plant Tree of Life Short Title: Walker et al.—Phylotranscriptomic analysis of Caryophyllales From cacti to carnivores: Improved phylotranscriptomic sampling and hierarchical homology inference provide further insight into the evolution of Caryophyllales Joseph F. Walker1,13, Ya Yang2, Tao Feng3, Alfonso Timoneda3, Jessica Mikenas4,5, Vera Hutchison4, Caroline Edwards4, Ning Wang1, Sonia Ahluwalia1, Julia Olivieri4,6, Nathanael Walker-Hale7, Lucas C. Majure8, Raúl Puente8, Gudrun Kadereit9,10, Maximilian Lauterbach9,10, Urs Eggli11, Hilda Flores-Olvera12, Helga Ochoterena12, Samuel F. Brockington3, Michael J. Moore,4 and Stephen A. Smith1,13 Manuscript received 13 October 2017; revision accepted 4 January 2018. 1 Department of Ecology & Evolutionary Biology, University of Michigan, 830 North University Avenue, Ann Arbor, MI 48109-1048 USA 2 Department of Plant and Microbial Biology, University of Minnesota-Twin Cities, 1445 Gortner Avenue, St. Paul, MN 55108 USA 3 Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK 4 Department of Biology, Oberlin College, Science Center K111, 119 Woodland Street, Oberlin, OH 44074-1097 USA 5 Current address: USGS Canyonlands Research Station, Southwest Biological Science Center, 2290 S West Resource Blvd, Moab, UT 84532 USA 6 Institute of Computational and Mathematical Engineering (ICME), Stanford University, 475 Author Manuscript Via Ortega, Suite B060, Stanford, CA, 94305-4042 USA This is the author manuscript accepted for publication and has undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. -
Anatomical Features and Scot Profiles Provide New Insight Into Phenotypic Plasticity in the Halophyte Suaeda Maritima in Thailand
BIODIVERSITAS ISSN: 1412-033X Volume 21, Number 3, March 2020 E-ISSN: 2085-4722 Pages: 1082-1090 DOI: 10.13057/biodiv/d210331 Anatomical features and SCoT profiles provide new insight into phenotypic plasticity in the halophyte Suaeda maritima in Thailand KANOKPHORN RITTIRONGSAKUL1, ANITTHAN SRINUAL1,♥, ONGKARN VANIJAJIVA2 1Department of Biology, Faculty of Science, Srinakharinwirot University. 114 Sukhumvit 23, Bangkok 10110, Thailand. Tel +66 2 649 5000, Fax +66 2 258 4007, email: [email protected], [email protected] 2Faculty of Science and Technology, Phranakhon Rajabhat University. 9 Chaeng Watthana Rd, Anusawari, Bang Khen, Bangkok 10220, Thailand Manuscript received: 4 February 2020. Revision accepted: 17 February 2020. Abstract. Rittirongsakul K, Srinual A, Vanijajiva O. 2020. Anatomical features and SCoT profiles provide new insight into phenotypic plasticity in the halophyte Suaeda maritima in Thailand. Biodiversitas 21: 1082-1090. Phenotypic plasticity is the variation in phenotypic traits of organisms to survive with fluctuating environments. Halophytes are plants that can naturally tolerate high concentrations of salt in the soil, and their tolerance to salt stress, which reflects the ability of the plants to produce different phenotypic traits in response to changing environmental conditions. Suaeda maritima (L.) Dumort is a polymorphic halophyte and prominent species complex from tropical to temperate regions due to diverse stressful saline habitats. Consequently, the identification of S. maritima based on morphological data is challenging due to high phenotypic plasticity. In Thailand, S. maritima, known as Seablite or Cha Khram, has only been reported for the genus Suaeda which frequently found in coastal salt marshes. The peculiarities of the prevalence of three distinctive color traits, green, green-reddish and reddish, were commonly observed in Thailand. -
Suaeda Maritima on a Salt Marsh
Phenotypic plasticity and population differentiation in Suaeda maritima on a salt marsh Ahmed Ali Alghamdi A thesis submitted in fulfilment of the requirement for the degree of Doctor of Philosophy to the University of East Anglia School of Biological Sciences December 2012 © This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with the author and that no quotation from the thesis, nor any information derived therefrom, may be published without the author’s prior, written consent. Abstract Suaeda maritima (L) Dumort is a polymorphic annual species of the family Chenopodiaceae that in the UK occurs exclusively in coastal salt marshes. The main aim of this study has been to examine the phenotypic variations within and between its populations in the heterogeneous microenvironments of a salt marsh. Detailed field characterizations of the growth, seed production and seed heteromorphism of four Suaeda maritima populations at Stiffkey salt marsh were conducted over three consecutive years, revealing considerable consistent phenotypic variation between populations on the high marsh, high-marsh creek bank, upper low marsh, and low marsh. Field environmental heterogeneity was assessed by taking measurements of sediment salinity, water content, organic content, redox potential, elevation in the tidal frame and annual number of tidal inundations. They demonstrated that different Suaeda maritima populations do indeed experience divergences between their environments that could both affect the phenotypic responses of developing plants and constitute selection pressures for the evolution of genetically differentiated populations. Experiments involving seedling reciprocal transplantation in the field and seedling transplantation to uniform laboratory conditions revealed significant differences among populations in terms of survival, growth and fecundity parameters. -
UC Santa Barbara Posters
UC Santa Barbara Posters Title Diversification of the Genus Suaeda (Amaranthaceae): Use of Genome Skimming to Elevate Putative Species Radiation in Northwestern Mexico Permalink https://escholarship.org/uc/item/3jp1q385 Authors Motta, Carina I Guilliams, C. Matt Seltmann, Katja et al. Publication Date 2018 eScholarship.org Powered by the California Digital Library University of California DIVERSIFICATION OF THE GENUS SUAEDA (AMARANTHACEAE): USE OF GENOME SKIMMING TO EVALUATE PUTATIVE SPECIES RADIATION IN NORTHWESTERN MEXICO Carina Motta¹,2 , C. Matt Guilliams², Katja Seltman¹, Wayne Ferren³, Susan Mazer ¹, Kristen Hasenstab-Lehman² ¹University of California, Santa Barbara, Santa Barbara, CA 93106 ²The Santa Barbara Botanic Garden, 1212 Mission Canyon Road, Santa Barbara, CA 93105 ³Channel Islands Restoration, 928 Carpinteria Street Ste. 3 Santa Barbara, CA, 93103 INTRODUCTION RESULTS CONCLUSIONS a b There are over 100 estuaries along the northwestern coast of Mexico. Our inferences using the nrDNA matrix reveals S. Los Angeles 1 These estuaries are relatively isolated, which may promote diversification S. Los Angeles 2 some interesting, well supported phylogenetic S. Las Animas 1 of the flora they support. Suaeda sect. Brezia (Amaranthaceae) is one of S. Las Animas 2 patterns both at deeper levels in the tree and the few sexually reproductive halophytes that grows in these estuaries S. Las Animas 3 towards the tips that correspond to geographic S. Las Animas 4 1 (Fig 1). Members of this genus are generally confined to saline or alkaline S. Los Angeles 3 distribution of the samples (Fig. 5). We root the c S. Los Angeles 4 soils and have thick, succulent leaves. The seeds can be dimorphic, with S.