SUPPLEMENTARY INFORMATION DOI: 10.1038/NMAT3404 Supplementary Information for Macroporous nanowire nanoelectronic scaffolds for synthetic tissues Macroporous nanowire nanoelectronic scaffolds for synthetic tissues Bozhi Tian1,2,3†, Jia Liu1†, Tal Dvir2,4†, Lihua Jin5, Jonathan H. Tsui2, Quan Qing1, Zhigang Suo5, Robert Langer3,4, Daniel S. Kohane2* and Charles M. Lieber1,5* 1Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA, 2Department of Anesthesiology, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts 02115, USA, 3David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA, 4Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA, 5School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA, †These authors have contributed equally to this manuscript. *email:
[email protected];
[email protected] This file contains: Materials & Methods Figures S1-S13 Supplementary References 1 NATURE MATERIALS | www.nature.com/naturematerials 1 © 2012 Macmillan Publishers Limited. All rights reserved. SUPPLEMENTARY INFORMATION DOI: 10.1038/NMAT3404 Materials and Methods then (3) the n+-n-n+ kinked nanowires were dispersed on the SU-8 layer by dropping an isopropanol solution of the nanowires onto the SU-8 layer and allowing the solution to evaporate Nanowire Synthesis. Single-crystalline nanowires were synthesized using the Au nanocluster- (Fig. S1d). (4) The kinked nanowire positions were located relative to a standard marker catalyzed vapor-liquid-solid growth mechanism in a home-built chemical vapor (CVD) patternS4 using an optical microscope (Olympus BX51) in dark-field mode, and then IGOR Pro deposition system described previouslyS1-S3.