INVESTIGATIONS INTO LIGAND SUBSTITUTIONS OF RHENIUM AND MOLYBDENUM d4 HEXANUCLEAR CLUSTERS AND THE SYNTHESIS AND CHARACTERIZATION OF AURATED PYRENE AND THIOPHENE DERIVATIVES

By

MIYA ALETHEA PEAY

Submitted in partial fulfillment of the requirements

For the degree of Doctor of Philosophy

Thesis Adviser: Dr. Thomas Gray

Department of

CASE WESTERN RESERVE UNIVERSITY

August, 2011

CASE WESTERN RESERVE UNIVERSITY

SCHOOL OF GRADUATE STUDIES

We hereby approve the thesis/dissertation of

_____Miya Peay______

candidate for the ______Doctorate of Philosophy _____degree *.

(signed)_____John Protasiewicz______(chair of the committee)

______Irene Lee ______

______John Stuehr ______

__ Anthony Berdis ______

___ Thomas Gray______

______

(date) ___August 2011______

*We also certify that written approval has been obtained for any proprietary material contained therein.

Dedicated To:

God the Father, the Son, and the Holy Spirit, the One who strengthens me and keeps me,

To my family and friends for their undying love and support throughout the many years. I could not have done any of this without any of you!

Finally to my unborn baby girl, Mommy has loved you from the day I found out about you. You mean more to me than I could have ever imagined and I can’t wait to show this to you in hopes that one day you’ll see it as a means to push yourself to greater heights as well. Table of Contents

List of Tables……………………………………………………………………………..iii

List of Figures……………………………………………………………………………iv

List of Schemes…………………………………………………………………………viii

Acknowledgements……………………………………………………………………….ix

Abstract……………………………………………………………………………………x

Chapter 1. General Introduction…………………………………………………………..1

Chapter 2. Ligand Substitution on Hexanuclear Rhenium(III) and Molybdenum(II)

Clusters

2.1 Introduction………………………………………………………………….15

2.2 Results and Discussion………………………………………………………20

2.3 Conclusion…………………………………………………………………...26

2.4 Experimental…………………………………………………………………27

2.5 Cited Work…………………………………………………………………...43

Chapter 3. Synthesis and Characterization of Mono- and Diaurated Pyrenes

3.1 Introduction…………………………………………………………………..46

3.2 Results and Discussion………………………………………………………52

3.3 Conclusion…………………………………………………………………...62

3.4 Experimental…………………………………………………………………63

3.5 Cited Work…………………………………………………………………...73

Chapter 4. Synthesis and Crystal Structure of a Centrosymmetric, Di-(I)

Disubstituted Bithiophene

4.1 Introduction………………………………………………………………….77

i 4.2 Results and Discussion………………………………………………………83

4.3 Conclusion…………………………………………………………………...87

4.4 Experimental…………………………………………………………………88

4.5 Cited Work…………………………………………………………………...93

Chapter 5. Conclusion……………………………………………………………………97

Appendix. X-Ray Crystal Structure Data…..……………………………………………99

Bibliography……………………………………………………………………………179

ii List of Tables

Chapter 2.

31 2.1: P NMR Chemical Shifts Relative to 85% H3PO4 (aq) of Phosphine-Ligated

Clusters…………………………………………………………………………………..22

2.2: Crystallographic Data for Compound 2.13 Collected at 100 ± 2 K………………...25

2.3: Selected Interatomic Distances (Å) and Angles (deg) for 2.13……………………..25

Chapter 3.

31 3.1: P NMR Chemical Shifts Relative to 85% H3PO4 (aq) of Phosphine-Ligated Gold

Complexes………………………………………………………………………………..54

3.2: Crystallographic Data for Compounds 3.7 and 3.8 Collected at 100 ± 2 K………...61

3.3: Selected Interatomic Distances (Å) and Angles (deg) for 3.7 and 3.8……………...61

Chapter 4.

4.1: Crystallographic Data for Compound 4.7 Collected at 100 ± 2 K………………….86

4.2: Selected Interatomic Distances (Å) and Angles (deg) for 4.7………………………86

iii List of Figures

Chapter 1.

2– 1.1: Structure of [Mo6Cl14] , a representative cluster. Mo: violet, Cl, green……………1

1.2: Potential energy diagram for reactants (R), products in ground- and excited states (P

and P* respectively), and electron-transfer free energies for ground- and excited states

o o (ΔGr and ΔGex respectively)……………………………………………………………..3

1.3: General reaction cycle Suzuki coupling……………………………………………...5

1.4: The relativistic (R) and nonrelativistic (NR) orbital energies of AgH and AuH. Data

are taken from Desclaux and Pyykkö……………………………………………………..7

1.5: Relativistic (R) to nonrelativistic (NR) ratio of the 6s-shell radii in the atomic

ground states for elements 55-100. Data adapted from Pyykkö and Desclaux…………...7

1.6: Unsubstituted pyrene molecule……………………………………………………….8

1.7: IUPAC naming system for naming (a) thiophene, (b)-(d) isomeric bithiophenes, and

(e) 3’-substituted terthiophene…………………………………………………………….9

Chapter 2.

2– 2.1: Structure of [Mo6Cl14] , a representative cluster. Mo: violet, Cl, green…………..15

2.2: Measurement of cone angle θ……………………………………………………….19

2.3: Cluster reaction and substitution position…………………………………………...21

2.4: Crystal structure of the anion of (Ph4P)2[Mo6Cl8(O3SCF3)6] (50%, 100 K). Legend:

Mo, gray; Cl, light green, O, red; S, yellow, C, blue; F, lime green……………………..24

31 2.5: P NMR of trans-Re6Se8(PBu3)4I2…………………………………………………30

1 2.6: H NMR of trans-Re6Se8(PBu3)4I2...... 31

31 2.7: P NMR of cis-Re6Se8(PBu3)4I2...... 32

iv 1 2.8: H cis-Re6Se8(PBu3)4I2...... 33

31 2.9: P [Re6Se8(PBu3)5I]I...... 34

1 2.10: H [Re6Se8(PBu3)5I]I...... 35

31 2.11: P NMR of trans-Re6S8(PBu3)4Br2………………………………………………..36

31 2.12: P NMR of cis-Re6S8(PBu3)4Br2………………………………………………….37

31 2.13: P NMR of [Re6S8(PBu3)5Br]Br…………………………………………………..38

2.14: MALDI Mass Spectra of trans-Re6Se8(PBu3)4I2…………………………………..39

2.15: MALDI- Mass Spectra cis-Re6Se8(PBu3)4I2...... 40

2.16: Mass Spectra of trans-Re6S8(PBu3)4Br2…………………………………………...41

2.17: Mass Spectra of cis-Re6S8(PBu3)4Br2……………………………………………...42

Chapter 3.

3.1: First and second generation gold-containing rheumatoid arthritis drugs. (1)

Aurothioglucose, (2) disodium aurothiomalate, (3) tri-sodium bis(thiosulphato)gold, (4)

aurothiopropanol sulphonate, (5) gold (I) 4-amino-2-mercaptobenzoate, and (6)[tetra-O-

acetyl-β-D-(glucopyranosyl)thio]-triethyl-phosphine)gold(I)…………………………...47

3.2: Detailed pictorial view of a phosphinegold(I) aromatic complex…………………..51

3.3: Absorption spectra of 2-[(PCy3)Au]pyrene and 2,7-[(PCy3)Au]2pyrene in CH2Cl2..55

3.4: Absorption and emission of 2-[(PCy3)Au]pyrene in CHCl3………………………...56

3.5: Absorption and emission of 2,7-[(PCy3)Au]2pyrene in CHCl3……………………..57

3.6: Emission spectrum of digold(I) pyrene in a 2-methyltetrahydrofuran glass at 77 K.58

3.7: 2-[(PCy3)Au]pyrene (50%, 100 K). Hydrogen atoms are omitted for clarity.

Unlabeled atoms are ……………………………………………………………...59

v 3.8: 2,7-[(PCy3)Au]2pyrene. 50% probability ellipsoids are shown. Hydrogen atoms and

solvent molecules are omitted for clarity. Unlabeled atoms are carbon…………………60

31 3.9: P NMR 2-[(PCy3)Au]pyrene………………………………………………………66

1 3.10: H NMR 2-[(PCy3)Au]pyrene...... 67

31 3.11: P NMR 2,7-[(PCy3)Au]2pyrene………………………………………………….68

1 3.12: H NMR 2,7-[(PCy3)Au]2pyrene...... 69

31 3.13: P NMR 2,7-[(PPh3)Au]2pyrene...... 70

1 3.14: H NMR 2,7-[(PPh3)Au]2pyrene...... 71

3.15: Mass Spectra of 2,7-[(PCy3)Au]2pyrene…………………………………………...72

Chapter 4.

4.1: Resonance structures of polyenes, oligothiophenes, and oligo-p-phenylenes………78

4.2: Examples of various oligothiophenes used or synthesized for use in electronic applications………………………………………………………………………………80

4.3: First and second generation gold-containing rheumatoid arthritis drugs. (1)

Aurothioglucose, (2) disodium aurothiomalate, (3) tri-sodium bis(thiosulphato)gold, (4)

aurothiopropanol sulphonate, (5) gold (I) 4-amino-2-mercaptobenzoate, and (6)[tetra-O- acetyl-β-D-(glucopyranosyl)thio]-triethyl-phosphine)gold(I)…………………………...81

4.4: (a) 3,3’-Bis(diphenylphosphino)-2,2’-bithiophene gold(I) chloride and (b) 3,3’’’-

Dihexyl-3’,3’’-bis(diphenylphosphino)-2,5’:2’,2’’:5’’,2’’’-quaterthiophene gold(I) chloride…………………………………………………………………………………..82

4.5: Absorbance spectra of 5,5’-[(PPh3)Au]2-2,2’-bithiophene and 5,5’-(Bpin)2-2,2’-

bithiophene in CH2Cl2……………………………………………………………………84

vi 4.6: 5,5’-[(PPh3)Au]2-2,2’-bithiophene. 50% probability ellipsoids are shown. Hydrogen

atoms and solvent molecules are omitted for clarity. Unlabeled atoms are carbon……...85

31 4.7: P NMR for 5, 5’-[(PPh3)Au]2-2, 2’-bithiophene…………………………………..90

1 4.8: H NMR for 5, 5’-[(PPh3)Au]2-2, 2’-bithiophene…………………………………...91

4.9: Mass Spectra of 5, 5’-[(PPh3)Au]2-2, 2’-bithiophene……………………………….92

vii List of Schemes

Chapter 3.

3.1 Transmetalation reactions of pyrene…………………………………………………49

3.2 Ir catalyzed borylation of pyrene. (a) 2-(Bpin)pyrene, (b) 2,7-(Bpin)2pyrene………50

3.3: Auration of pyrene…………………………………………………………………..53

Chapter 4.

4.1: Auration of thiophene……………………………………………………………….83

viii Acknowledgements

I would first like to thank my advisor, Dr. Thomas Gray for his patience, support, and kindness. When we first started I admit I didn’t have a clue what I was doing or where I was going but you stuck with me. I have learned so much under your wing that I know I’ll be able to fly right!

To my original committee members, Dr. John Protasiewicz, Dr. Irene Lee, Dr.

Clemens Burda, and Dr. Anthony Berdis, thanks for your patience and time with me over the years. Also thanks to Dr. John Stuehr for standing in as a replacement committee member. Any and all help and critiques are much appreciated for the enhancement of my thesis.

To my group members, past and present, it has definitely been good times working with you all! You kept smiles on my face on days I wanted to cry and for that

I’m thankful. For all the group discussions, on and off the record, for the support and advice, thanks for everything.

I would also like to thank the entire Department of Chemistry at Case Western

Reserve University. Each of you has helped me in some way whether you knew it or not.

I would be remiss if I forget the two people who kept me from those “chemical meltdowns” we so often faced: Dr. Marlena P. Washington and Dr. James B. Updegraff

III. We have seen some days together, a lot of nights too truth be told! It’s been a bumpy ride but we made it and it feels great! Thanks for the laughs, the talks, times for venting and even hiding out! I don’t know how I would have made it through without you two, lunch just wouldn’t have been as fun, “Hi, my name is Becky.”

ix Finally, to my family and friends, words can’t express how much you all truly mean to me and how much your love, support, talks, words of wisdom, jokes, and everything else has kept me going and gotten me through. There were many days I wanted give up but you all wouldn’t have that. You all sustained me and I can only hope that one day I can give back some of what you’ve given me over these last years, and for some of you, over my entire life. Know that my love for you is undying and to you I give thanks.

x Investigations into Ligand Substitutions of Rhenium and Molybdenum d4 Hexanuclear Clusters and the Synthesis and Characterization of Aurated Pyrene and Thiophene Derivatives

Abstract

by

MIYA ALETHEA PEAY

Ligand substitution reactions were performed on d4 rhenium and molybdenum

2+ hexanuclear clusters. For the [Re6(µ3-Q)8] clusters, where Q= S, Se, varying amounts of

tributylphosphine and reaction times yielded multiply substituted clusters. Phosphine

substituted reactions were monitored by 31P and 1H NMR as well as mass spectrometry.

31 2+ P NMR showed substitution through downfield shifts, for the [Re6S8] clusters, and

2+ upfield for that of the [Re6Se8] clusters from the free tributylphosphine ligand, while

mass spectrometry determined the amount of bound phosphines (four or five). Cis-,

trans-, and penta-phosphine clusters were generated from these reactions. Triflates

replaced apical chlorides on the Mo(II) cluster for increasing lability. A crystal structure

4+ was determined from this cluster displaying that of a [Mo6Cl8] core surrounded by six triflate ligands bound through oxygen. Two tetraphenylphosphonium cations are also found with the structure.

Base-promoted transmetalation was used to attach phosphine gold(I) fragments to the ends of pyrene. Three new compounds were generated with tricyclohexylphosphine-

and triphenylphosphinegold(I) at the 2- and 2,7-positions. 31P and 1H NMR confirm

reactions went to completion with no traces of the starting phosphine. Diffraction quality

crystals were reported for two of the products. Binding of the phosphine causes a red

x shifting and increase of the absorbance which is further enhanced with additional gold(I) ligands.

Finally, diaurated bithiophene was produced from a boron transmetalation reaction. Triphenylphosphinegold bromide provided a suitable starting ligand for the replacement of terminal boropinacolates on the bithiophene. Reaction monitoring through multinuclear spectroscopy and mass spectrometry determined a diaurated species. A crystal structure allowed visual confirmation of the complex demonstrating the triphenylphosphinegold(I) ligand bound to the carbon adjacent to the sulfur atom. In agreement with aurated pyrenes, phosphine binding both red shifts and increases the absorbance. Further evaluation would enable studies of its optoelectronics properties.

xi Chapter 1

General Introduction

Clusters

In general, clusters are defined as a localized organization of metal atoms that include direct metal-metal interactions.1 The molybdenum(II) and tungsten(II) halide

4+ clusters contain [M6(µ3-X8)] cores, while those of rhenium(III) clusters are [M6(µ3-

2+ X8)] cores. The molybdenum(II) and tungsten(II) halide clusters have exceptionally long-lived excited electronic states, and undergo facile ground- and excited-state electron transfer.2 Their chemical, photophysical, and spectroscopic properties have been

thoroughly examined under various conditions for over two decades.3 More recently, use

of these clusters has turned to the photosensitization of cancerous tumors4,5 caused by the

production of singlet oxygen. Chemiluminescence (cl) and electrogenerated chemiluminescence (ecl) are terms used to describe product formation in luminescent excited states from highly exergonic electron-transfer reactions. Various properties can affect electrogenerated chemiluminescence including free energy and oxygen quenching.

2– Figure 1.1: Structure of [Mo6Cl14] , a representative cluster. Mo: violet, Cl, green.

1 Free Energy Effects

For the molybdenum chloride cluster, reaction of electrogenerated intermediates

- 3- Mo6Cl14 and Mo6Cl14 yields red luminescence attributable to an electronically excited

6 - ion. Mussell and Nocera studied oxidation-reduction reactions of Mo6Cl14 and

3- 7 Mo6Cl14 with donors and acceptors through the following methods :

Donor and acceptor reduction potentials are varied with the free-energy driving force of

2- 6 reactions (1) and (2) in order to examine the ecl energy dependence of Mo6Cl14 . It was

- - determined that annihilation between Mo6Cl14 and D to produce chemiluminescence

3- + requires 0.18 V more than that required for chemiluminescence for the Mo6Cl14 -A

system.6 In accordance with Marcus theory8, high exergonicities of chemiluminescence reactions can cause reactants to yield ground-state products (Figure 1). In the case of

these reactions electron-transfer to excited-state species is more favorable than reaction to

the ground-state.6

2

Figure 1.2: Potential energy diagram for reactants (R), products in ground- and excited states (P and P*

o o respectively), and electron-transfer free energies for ground- and excited states (ΔGr and ΔGex

respectively). Figure from Ref. 8.

Oxygen Quenching

Nocera et. al.9 examined oxygen quenching as it pertains to molybdenum and

tungsten halide clusters. Reactions of excited state molecules and oxygen generally

proceed through either energy or electron transfer yielding photoproducts of oxygen.

Energy transfer reactions result in the production of the lowest singlet excited state

1 4,10-11 oxygen species, O2, while those reactions that undergo electron transfer yield

- 12,13,14 superoxide, O2 . Previous studies have shown that cluster luminescence is

efficiently quenched by oxygen.

Studies9 examined the photosensitized reaction of substituted cyclohexenes to determine the primary oxidant generated for yielding various products. Results of this

1 - study demonstrated that photosensitization occurs through O2 and not O2 , which is the

oxidant in radical autooxidation.9

Further investigation involving energy vs. electron transfer using quenching rate

constants were performed through photosensitized reaction of clusters with 2,3-diphenyl-

p-dioxene. Exclusive singlet oxygen quenching mechanism is demonstrated through the

3 2- observed quantum yields for [M6X8]Y6 sensitized reactions with the exception of the

2- 9 [W6I8]Y6 ions. In this case, quenching proceeds by energy transfer with a contribution

from electron transfer as well.9

Phosphines

Phosphines can be used to modulate the lipophilicity or hydrophilicity of metal clusters for cell permeability. Previously phosphine ligand chemistry was explained mainly based on electronic effects produced from their substituents. A review on phosphines emphasizes the importance of steric effects and cone angles, θ, on ligand binding.15 Tolman defines steric effects as the result of forces between parts of a

molecule, while electronic effects result from transmission along the chemical bond. The

cone angle is the apex angle of a cylindrical cone centered 2.28 Å from the center of the

P atom.

The purpose of the work presented herein focuses on the substitution chemistry of

Re(III) and Mo(II) hexanuclear clusters. Previously studies of the reaction of

2+ triethylphosphine with [Re6Q8] (where Q=S, Se) cluster enabled the elucidation of

several clusters with varying amounts of phosphine binding depending upon reaction

times and equivalents. This work mimics that using the tri-n-butylphosphine as the

4+ starting phosphine ligand. Apical halides on the [Mo6Cl8] cluster core are semilabile

rendering further substitution chemistry difficult. This research studies replacement of the

outer chloride ligands with trifluoromethanesulfonate (triflate) ligands in an effort to

increase lability easing further reaction.

4 Transmetallation

Figure 1.3: General reaction cycle Suzuki coupling.

The borylation step of several of these compounds borrows from the transmetallation step of Suzuki coupling (Figure 1.3). Suzuki coupling begins with oxidative addition to a palladium(0) complex. This addition generates a palladium(II) species which can then undergo a transmetalation reaction with an anionic species, generally boronic acid bound to an inorganic base. In the final step, a carbon-carbon bond is formed between the aryl or alkyl groups bound to the palladium(II) intermediate.

Reductive elimination releases the newly formed organic species while regenerating the palladium(0) compound enabling repetition of the cycle.

5 Gold

The element gold, a yellow, ductile and malleable metal, can be found in the third

row of the transition elements. Known as one of the coinage metals (copper and silver

being the other two), gold has an electronegativity of 2.54, a density of 19.30 g cm-3 at

298 K, and an electron affinity of 222.8 kJ mol-1. 16 It complexes in oxidation states I, II,

and III and has been shown to have medicinal uses for certain Au(I) and Au(III) species.

17 In its +1 oxidation state, gold has a d10 electron count. There are several reviews on gold chemistry complexes with carbon, nitrogen, or phosphorus ligands as well as gold clusters.18,19,20 More recently, gold drugs have been shown to have anti-tumor effects prompting further investigation into their anti-cancer activity.21

Aurophilicity

The term ‘aurophilicity’ is used to describe a frequently encountered phenomenon of gold compounds in which the gold atoms arrange themselves within close contact.

These distances range 270-330 pm, shorter than the sum of gold’s 360 pm van der Waals radius, and have been found to be comparable to hydrogen bonds with energies ranging

7-11 kcal mol-1.2 This interaction is attributed to relativistic effects22,23,24 which are

caused by the high speeds of electrons when they move near a heavy nucleus.25 Valence- shell relativistic effects increase roughly like Z2, where Z is the full nuclear charge, and

become comparable in size with various shell structure effects on the 6th row (Z = 55-

86).10 Figure 1.4 gives a visual explanation of relativistic effects for silver hydride versus

gold hydride. The 5d and 6s nonrelativistic orbital energies of gold are approximately

equal to the 4d and 5s nonrelativistic orbital energies of silver. On the other hand, the

relativistic orbital energies differ considerably. For gold, the s and p orbitals experience

6 radial contraction and energy stabilization while the d and f orbitals become destabilized

and expand. Furthermore, in accordance with relativistic bond length contraction, Au—L

(L = ligand) single bonds become shorter and stronger than their corresponding Ag—L

single bonds.26,27 Figure 1.5 displays the more “relativistic” nature of gold in comparison

with elements 55-100 of the periodic table.

Figure 1.4: The relativistic (R) and nonrelativistic (NR) orbital energies of AgH and AuH. Figure taken from Desclaux and Pyykkö.27

Figure 1.5: Relativistic (R) to nonrelativistic (NR) ratio of the 6s-shell radii in the atomic ground states for elements 55-100. Figure adapted from Pyykkö and Desclaux.28

7 Spin-Orbit Coupling

According to McClure, substituting a halogen for a hydrogen on an aromatic

hydrocarbon increases spin-orbit coupling, enhancing the spin-forbidden process.29 El-

Sayed et. al. further explains that in halogen substitution, triplet-singlet π,π* transitions

are attributed to the high degree of forbiddenness of the triplet-singlet transition due to weak radiative spin-orbit perturbation in these molecules.30 The effect of a heavy atom is

to mix singlet and triplet states making intercombination processes allowed.31 The spin-

orbit coupling constant, ζ, for Br and I are 2460 and 5700 cm-1 respectively.32,33 The 5d

orbital of Au(I) has a comparable ζ value of 5090 cm-1.34 There have been several

reports35,36,37 and reviews38,39 on the photophysical properties resulting from the heavy

atom effect of gold(I). Attachment of gold(I) to the pyrene is also expected to induce

heavy atom effects allowing greater access the triplet state of the molecule.

Pyrene

Figure 1.6: Unsubstituted pyrene molecule.

Pyrene is a fluorescent molecule40 with typical absorbance and emission in the

UV range (Figure 1.6). It is a conjugated, aromatic compound that has found many uses

as a fluorescent marker for DNA hybridization41 and fluorescence quenching as a

function of lipid bilayer depth,42 as well as other studies of biological chemistry.43,44

More recently, Venkataramana and Sankararaman investigated bathochromatic shifts in

8 absorbance and emission with the substitution of pyrene’s 1, 3, 6, and 8 positions for

various terminal acetylenes.45 In the third chapter of this thesis, the auration substitution

patterns using iridium catalysis as opposed to palladium catalysis are examined. In this

research, transmetalation reactions are utilized as a means of synthesizing various

phosphinegold(I)-ligated complexes. Reaction conditions explored herein are milder than

harsh lithiation or Grignard sequences. The carbon-gold bond is generally non-polar and

nonchromophoric in the visible region. Gold binding is expected to induce a heavy-atom

effect allowing access to the triplet state. Full characterization of these species allows for

elucidation of their placement on the pyrene as well the number and spectroscopic

properties of the newly formed products. 46

Thiophene

Much interest has been shown to thiophene chemistry due to its favorable

electronic properties and tunability. Applications include organic semiconductors for

organic field effect transistors, organic light-emitting diodes, etc.

(a) (b) (c) (d) (e)

Figure 1.7: IUPAC naming system for naming (a) thiophene, (b)-(d) isomeric bithiophenes, and (e) 3’- substituted terthiophene.

In general, thiophenes are five-membered rings with a sulfur atom bridging four

2 surrounding, conjugated sp px-carbon atoms. Repeating thiophene units stretched in a

planar S-anti conformation with thiophene units approximately 7.8 Å in length are

described as polythiophenes.47 Figure 1.7 displays the IUPAC system for naming various

9 thiophene derivatives. Various types of nomenclature have been used, however, this system enables more accurate notation of ring linkages and substituent positions.

The fourth chapter of this thesis is dedicated to the synthesis and characterization of multi-aurated bithiophene complexes. Using reaction conditions similar to that of the aurated pyrenyls, attempts to add triphenylphosphinegold(I) ligand are documented herein. Again reaction conditions are milder allowing for the bypass of pyrophoric reagents. Binding of gold relaxes normal singlet-triplet spin orthogonality allowing intersystem crossing. Access to the triplet state and longer lifetimes are expected for these compounds. Full characterization will allow complete elucidation of all synthesized products.

10

Cited Work

1 (a) Cotton, F. A. Inorg. Chem. 1964, 3, 1217-1220.; (b) Cotton, F. A. Quart. Rev. 1966,

20, 389-401.

2 Maverick, A. W.; Najdzionek, J. S.; MacKenzie, D.; Nocera, D. G.; Gray, H. B. J. Am.

Chem. Soc., 1983, 105, 1878-1882.

3 Cotton, F. A.; Walton, R. A. Multiple Bonds Between Metal Atoms; Oxford University

Press: New York, 1993.

4 Bennett, L. E.; Ghiggino, K. P.; Henderson, R. W. J. Photochem. Photobiol. B: Biol.,

1989, 3, 81-89.

5 Valduga, G.; Nonell, S.; Reddi, E.; Jori, G.; Braslavsky, S. E. Photochem. Photobiol.,

1988, 48, 1-5.

6 Nocera, D. G.; Gray, H. B. J. Am. Chem. Soc., 1984, 106, 824-825.

7 Mussell, R. D.; Nocera, D. G. Polyhedron, 1986, 5, 47-50.

8 Marcus, R. A. J. Phys. Chem., 1965, 43, 2654-2657.

9 Jackson, J. A.; Turro, C.; Newsham, M. D.; Nocera, D. G. J. Phys. Chem., 1990, 94,

4500-4507.

10 Kirk, A. D.; Namasivayam, C.; Riske, W.; Riske-Petrovic, D. Inorg. Chem., 1989, 28,

972-974.

11 Harriman, A.; Maiya, B. G.; Murai, T.; Hemmi, G.; Sessler, J. L.; Mallouk, T. E. J.

Chem. Soc., Chem. Commun.., 1989, 314-316.

12 Whitten, D. G. Acc. Chem. Res., 1980, 13, 83-90.

13 Kagan, J.; Bazin, M.; Santus, R. J. Photochem. Photobiol. B: Biol., 1989, 3, 165-174.

11

14 (a) Foote, C. S. ACS Symp. Ser., 1987, 339, 22-38. (b) Foote, C. S. Tetrahedron, 1985,

41, 2221-2227.

15 Tolman, C. A. Chem. Rev., 1977, 77, 313-348.

16 http://www.webelements.com/webelements/text/Au/index/.html.

79 17 Ho, S. Y.; Tiekink, E. R. T. “ Au Gold-Based Metallotherapeutics: Use and Potential.”

In: Metallotherapeutic Drugs & Metal-based Diagnostic Agents: The Use of Metals in

Medicine; Gielen, M.; Tiekink, E. R. T., Eds.; Wiley: New York, 2005; pp 507–528.

18 Fernández, E. J.; Laguna, A.; Olmos, M. E. In: Gold: Progress in Chemistry,

Biochemistry and Technology; Schmidbaur, H., Ed.; Wiley: Chichester, 1999.

19 Gimeno, M. C.; Laguna, A. “Silver and Gold.” In: Comprehensive Coordination

Chemistry II. Elsevier: New York; 2003; pp. 911-1145.

20 Puddephatt, R. J. “Gold.” In: Comprehensive Organometallic Chemistry; Wilkinson,

G.; Stone, F. G. A.; Abel, E. W., Eds.; Pergamon Press: Oxford, 1982; pp 765-821.

21 (a) Simon, T. M.; Kunishima, D. H.; Vibert, G. J.; Lorber, A. Cancer, 1979, 44, 1865-

1975. (b) Simon, T. M.; Kunishima, D. H.; Vibert, G. J.; Lorber, A. Cancer Res., 1981,

41, 94-97. (c) Barnard, P. J.; Berners-Price, S. J.; Coord. Chem. Rev., 2007, 251, 1889-

1902.

22 Schwerdtfeger, P.; Dolg, M.; Schwarz, W. H. E.; Bowmaker, G. A.; Boyd, P. D. W, J.

Chem. Phys., 1989, 91, 1762-1774.

23 Schwerdtfeger, P. J. Am. Chem. Soc., 1989, 111, 7261-7262.

24 Schwerdtfeger, P.; Boyd, P. D. W.; Burrell, A. K.; Robinson, W. T.; Taylor, M. J.

Inorg. Chem., 1990, 29, 3593-3607.

25 Pyykkö, P. Angew. Chem. Int. Ed., 2002, 41, 3573-3578.

12

26 Pyykkö, P. Chem. Rev., 1988, 88, 563-594.

27 Desclaux, J. P.; Pyykkö, P. Chem. Phys. Lett., 1976, 39, 300-303.

28 Pyykkö,P.; Desclaux, J. P. Acc. Chem. Res., 1979, 12, 276-281.

29 McClure, D. S. J. Chem. Phys., 1949, 17, 905-913; McClure, D. S. J. Chem. Phys.,

1952, 20, 682-686.

30 El-Sayed, M. A. Acc. Chem. Res., 1968, 1, 8-16.

31 Miller, J. C.; Meek, J. S.; Strickler, S. J. J. Am. Chem. Soc., 1977, 99, 8175-8179.

32 McGlynn, S. P.; Azumi, T.; Kinoshita, M. Molecular Spectroscopy of the Triplet State.

Prentice-Hall, Englewood Cliffs, N. J., 1969.

33 Friedrich, J.; Metz, F.; Dorr, F. Mol. Phys., 1975, 30, 289-312.

34 Griffith, J. S. Theory of Transition Metal Ions; Cambridge University Press:

Cambridge, 1964.

35 Mohamed, A. A.; Rawashdeh-Omary, M. A.; Omary, M. A.; Fackler, J. P., Jr. Dalton

Trans., 2005, 2597-2602.

36 Omary, M. A.; Rawashdeh-Omary, M. A.; Diyabalanage, H. V. K.; Dias, H. V. R.

Inorg. Chem., 2003, 42, 8612-8614.

37 Elbjeirami, O.; Burress, C. N.; Gabbaï, F. P.; Omary, M. A. J. Phys. Chem. C, 2007,

111, 9522-9529.

38 Omary, M. A.; Mohamed, A. A.; Rawashdeh-Omary, M. A.; Fackler, J. P., Jr. Coord.

Chem. Rev., 2005, 249, 1372-1381.

39 Lower, S. K.; El-Sayed, M. A. Chem. Rev., 1968, 66, 199-241.

40 Turro, N. J. Modern Molecular Photochemistry. University Science Books; California,

1991.

13

41 (a) Ebata, K.; Masuko, M.; Ohtani, H.; Kashiwasake-Jibu, M. Photochem. Photobiol.,

1995, 62, 836-839; (b) Lakowicz, J. R. Principles of Fluorescence Spectroscopy, 2nd Ed.,

Kluwer Academic/Plenum Publishers, New York, 1999, pp. 595-614.

42 (a) Sassaroli, M.; Ruonala, M.; Virtanen, M.; Somerharju, P. Biochemistry, 1995, 34,

8843-8851; (b) Ladokhin, A. S. Method Enzymol., 1997, 278, 462-473.

43 Whitaker, J. E.; Haugland, R. P.; Moore, P. L.; Hewitt, P. C.; Reese, M.; Haugland, R.

P. Anal. Biochem., 1991, 198, 119-130.

44 Hermanson, G. T. Bioconjugate Techniques; Academic: San Diego, 1996.

45 Venkataramana, G.; Sankararaman, S. Eur. J. Org. Chem., 2005, 4162-4166.

46 Gao, L.; Peay, M. A.; Partyka, D. V.; Updegraff, J. B., III; Teets, T. S.; Esswein, A. J.;

Zeller, M.; Hunter, A. D.; Gray, T. G. Organometallics, 2009, 28, 5669-5681.

47 Brückner, S.; Porzio, W. Makromol. Chem., 1988, 189, 961-967.

14 Chapter 2

Ligand Substitution on Hexanuclear Rhenium(III) and Molybdenum(II) Clusters

2.1 Introduction

The study of metal-atom clusters reaches back decades. Cluster chemistry encompasses assemblies of di-, tri-, tetra-, hexa-, octa- and higher nuclearity.1-12 By

“nuclearity” is meant the number of metal atoms within the cluster core. Cotton defines

the term cluster to mean “a finite group of metal atoms which are held together mainly, or

at least to a significant extent, by bonds directly between the metal atoms, even though

some nonmetal atoms may also be intimately associated with the cluster.”2 The

hexanuclear d4 clusters of molybdenum(II), tungsten(II), and rhenium(III) are a broad

class of metal-metal bonded assemblies, Figure 2.1. These consist of six octahedral metal

atoms M, inside a “cage” of eight face-capping halides (Mo, W) or chalcogenides (Re),

n- X. Finally six of the halides Y bind as apical ligands. The [M6X8] core is substitutionally inert, while the outer apical ligands are labile allowing for substitution of various ligands including acetonitrile,3 phosphines,3,4 triflates,5 pyridines,6 etc.

2– Figure 2.1: Structure of [Mo6Cl14] , a representative cluster. Mo: violet, Cl, green.

15 Metal clusters most commonly form in uncontrolled, spontaneous self-assembly reactions. These processes can form freestanding clusters or network solids built up of clusters. Network solids may contain (pseudo-) one-dimensional chains, two- dimensional sheets, or three-dimensional of clusters. Bridging ligands link each cluster to its neighbors.

The concept of dimensional reduction relates cluster networks of different connectivities. Since 1995, Long et. al. have reported on the use of dimensional reduction as a means of generating soluble molecular clusters.7 Metal anions, AX, are

used to disrupt the connectivities reducing both the dimension and framework of MX3

units. Intermetal bridges are successively broken via insertion of the halide, X, producing

cluster-containing sheets, chains, and eventually discrete molecular units. Cation A

balances the charge and is positioned externally to the M-X structure. (Bu4N)2[Mo6Cl14] clusters are made by a low-temperature route where MoCl5 is heated with metallic

bismuth to 350 °C over 4.5 days.8 Sublimation of the crude product followed by

recrystallization with concentrated HCl gives the purified chloromolybdic acid. Reaction

+ with excess tetrabutylammonium halide converts the acid to the Bu4N salt. Synthesis of

(Bu4N)2[W6Cl14] clusters is also a low-temperature route involving furnace heating of

9 WCl6 and metallic bismuth to 350 °C. Recrystallization from concentrated HCl and ion

+ exchange resolve the Bu4N salt. Soxhlet extraction follows to yield the purified product.

Hexarhenium clusters are made from high-temperature route heated to 850°C over the

course of 7 days. Acid treatment, ion exchange with (Bu4N)I or (Bu4N)Br, and

evaporation of an acetone solution give the final soluble cluster.

16 Cluster Photoproperties

Molybdenum halide clusters are highly luminescent, as are rhenium(III)

chalcogenide analogues.10,11 Furthermore, lifetime measurements are in the order of

2- 12,13 microseconds (up to 180 μs for [Mo6Br8Cl6] ) with emission quantum yields ranging

1-24%.11,13 Luminescence of these clusters is oxygen quenchable. This observation,

combined with the long emission lifetimes, suggests phosphorescence emission from a

triplet excited state.

Phosphines and cone angles

An objective of this work is the synthesis of site-differentiated M6 clusters. Gray

and Holm14 define site-differentiated as “the controlled and steadfast occupancy of one or

more of the exopolyhedral ligand-binding sites of a cluster, such that all further reactions

of the remaining few ligands occur regioselectively.” Polydentate ligands, usually

elaborately designed, can impart site-differentiation.15,16 The best-studied example is

LS3, a semirigid cavitand trithiolate ligand that binds three apices of cubane-type [Fe4S4] clusters.17,18 The remaining site is available for ligand substitution, or for metal-ion

abstraction. Removal of one iron atom leaves a voided cubane [Fe3S4]-cluster that is a

synthetic analogue of the [3Fe4S] center in inactive aconitase.19

The iron centers in ferredoxin model compounds are substitutionally labile,

whereas Re(III) is inert.14 Organophosphines are preferred ligands for site-differentiation

2+ 20 at [Re6Q8] centers. Phosphine ligands are tight-binders toward substitutionally inert

2+ rhenium clusters. Their character preserves the 24-electron count of the [Re6Q8] core

against oxidation.

17 Most importantly, phosphine ligands have variable sterics, as measured by

Tolman’s cone angle θ.21 Figure 2.2 shows the geometric basis for the definition of θ. A

generic metal-phosphorus bond length of 2.28 Å is presumed; θ is the vertex angle of the

right circular cone swept by the outermost substituent atom. Cone angles are measured

from space-filling models, and have been extensively tabulated. Subtler approaches exist

to quantifying the bulk of phosphines and other ligands, but they have not found wide

favor.22,23

Triethylphosphine is a small, hydrophobic phosphorus ligand for which θ = 132°.

The accumulated result of earlier studies is that triethylphosphine offers a useful balance

2+ of solubility and crystallinity for [Re6Q8] clusters in modestly polar solvents.

Triethylphosphine shows little steric interference with cluster surface, nor do neighboring ligands clash with each other.

Excess quantities of triethylphosphine react with salts of the type

(Bu4N)3[Re6Q8X6] (Q = S, X = Br; Q = Se, X = I) in refluxing N,N-dimethylformamide.

Statistical mixtures of substituted clusters result.3,4 The yield of any one cluster can be

maximized with careful control of reaction times and the loading of PEt3. If

[Re6Se8(PEt3)5I]I is the desired product, then yields of 19% can be achieved with 6 eq

PEt3 after 3d.

The yield of pentaphosphine-substituted clusters calls out for improvement, especially given the scarcity of rhenium. This chapter reports the synthesis, in better

yield, of a penta(tri-n-butylphosphine) cluster with a 1+ charge. This small, delocalized

positive charge supports incorporation in silica by a sol-gel method.24 Like

triethylphosphine, tri-n-butylphosphine also has a cone angle of 132°. The reaction

18 chemistry of the unique rhenium can be more easily studied because the proper, site- differentiated species are more readily available.

P

2.28 Å θ

Figure 2.2: Measurement of cone angle θ.21

19 2.2 Results and Discussion

Tetra- and penta(phosphine)-substituted clusters were synthesized by treating

rhenium chalcogenide clusters with Bu3P in refluxing DMF. Reactions occurred within

24 hours followed by column chromatography to separate the products. Generally trans,

cis, and penta-substituted clusters were produced with yields more favorable for trans

and cis. Longer reaction times or higher phosphine equivalents however, shifted the

reaction to yield higher quantities of the penta-substituted cluster (Equation 1). Reactions

using six equivalents of PBu3 produced cis- and trans-substituted clusters with four phosphines attached, and small amounts of the penta-substituted cluster. Increasing the phosphine load to eight or higher equivalents yielded the penta-substituted cluster only, in high yield (79%).

(Bu4N)3Re6Se8I6 + PBu3 → cis- and trans- Re6Se8(PBu3)4I2 + [Re6Se8(PBu3)5I]I

(Bu4N)3Re6Se8Br6 + PBu3 → cis- and trans- Re6Se8(PBu3)4Br2 + [Re6Se8(PBu3)5Br]Br

Equation 1: Cluster reactions

Figure 2.3 shows the reaction and position of PBu3 substitution on the (Bu4N)3[Re6Se8I6]

cluster. This reaction is identical for the (Bu4N)3[Re6S8Br6] cluster. Substitution patterns for the various clusters were monitored by 1H and 31P NMR (Figures 2.5-13). For both

2+ 2+ 31 the [Re6S8] and [Re6Se8] clusters cores, trans substitution showed a single P peak,

cis gave two peaks of a 1:1 ratio, and penta clusters showed two peaks with a 4:1 ratio.

31 2+ P peaks for the [Re6S8] are all found downfield of the free ligand. On the other hand,

2+ those for the [Re6Se8] are upfield. Resonances occur between -25.0 and -28.7 ppm for

20 2+ 2+ the [Re6S8] and -38.5 and -41.7 ppm (Figures 2.11-13) for the [Re6Se8] clusters in deuterated chloroform solution. Table 2.1 displays the chemical shifts for both sets of clusters. The chemical shifts for both clusters, while consistent in peak patterns, are found

3,4 upfield of the Et3P clusters of Zheng and Willer.

Penta

PBu3 Cis DMF, reflux

2+ = [Re6Se8] Trans P= PBu3

Figure 2.3: Cluster reaction and substitution position.

21 31 Table 2.1: P NMR Chemical Shifts Relative to 85% H3PO4 (aq) of Phosphine-Ligated Clusters.

Complex Solvent 31P δ (ppm and ratios) Starting Material (δ)

2.9a CDCl3 -38.8 PBu3 (-32.5)

2.9b CDCl3 -38.5 (1), -41.7 (1) PBu3 (-32.5)

2.10 CDCl3 -38.0 (4), -39.8 (1) PBu3 (-32.5)

2.11a CDCl3 -25.1 PBu3 (-32.5)

2.11b CDCl3 -25.0 (1), -28.7 (1) PBu3 (-32.5)

2.12 CDCl3 -26.3 (4), -27.6 (1) PBu3 (-32.5)

Mass spectrometry also allowed for the elucidation of the rhenium clusters.

Figures 2.14 and 2.15 show the trans- and cis-[Re6Se8(PBu3)4I2] clusters and the loss of

- Bu3P and I down to the [Re6Se8] cluster core. Figures 2.16 and 2.17 are those for the

trans- and cis-[Re6S8(PBu3)4Br2] clusters.

Crystallographic Analysis

The hexanuclear molybdenum(II) and tungsten(II) halide clusters are 24-electron

2+ 25 –32 metal-metal bonded aggregates, much like [Re6Q8] . Site-differentiated clusters of

the molybdenum(II) series have been slot to develop. However, these clusters react with

silver(I) triflates, with loss of the apical ligands X and formation of AgX. Triflate ligands

bind the six molybdenum(II) apices. The resulting triflato ligands are relatively labile.

22 Such triflate-substituted clusters are essential synthons in the ligand substitution

chemistry of molybdenum(II)- and tungsten(II) halide clusters.

Figure 2.4 shows the crystal structure of (Ph4P)2[Mo6Cl8(O3SCF3)6]. The crystal

used in the single crystal X-ray diffraction experiment was cut from a larger block-like

4+ crystal. This cluster contains an inversion-symmetric cluster core unit [Mo6Cl8] that is

bonded to six trifluoromethanesulfonate ligands. Two tetraphenylphosphonium counter-

cations (not shown) are also present in the structure; they are unremarkable. The axial

trifluoromethanesulfonate ligands are bound to the Mo atoms through O atoms. The

asymmetric unit contains only one-half of a cluster unit and a single cation. The packing diagram of the cations and anions displays the voids that are occupied by disordered dichloromethane and diethyl ether solvent molecules. The Mo—Mo and Mo—Cl bond

4+ distances are in good agreement with the mean Mo—Mo bond lengths and the [Mo6Cl8]

core bond lengths of 2.602 and 2.469 Å, respectively, reported by Prokopuk and Shriver25

2- for the [Mo6Cl14] cluster anion. The three unique Mo—O bond lengths and the Mo—

O—S bond angles [134.15(11) – 139.81(12)°] again are in good agreement with the

ranges 2.119(2)–2.136(2) Å and 135.3(1)–139.9(1)° for the equivalent bond lengths and

angles reported by Prokopuk and Shriver.25 Table 2.2 collects crystallographic data for compound 2.13.

23

Figure 2.4: Crystal structure of the anion of (Ph4P)2[Mo6Cl8(O3SCF3)6] (50%, 100 K). Legend: Mo, gray; Cl, light green, O, red; S, yellow, C, blue; F, lime green.

24 Table 2.2: Crystallographic Data for Compound 2.13 Collected at 100 ± 2 K.

2.13 formula C54H40Cl8F18Mo6O18P2S6 mol wt 2432.40 cryst syst Triclinic space group P -1 a(Å) 11.8710(4) b (Å) 13.8264(5) c (Å) 14.0267(5) α (deg) 74.640(2) β (deg) 75.367(2) γ (deg) 74.263(2) V (Å) 2095.87(13) Z 1 index angles -14≤h≤15 -17≤k≤17 0≤l≤18 ρ (Mg/m3) 1.927 abs coeff (mm-1) 1.412 θ range (deg) 1.57-27.50 F(000) 1184 total no. of rflns 9451 no. of indep rflns 9451 (R(int) = 0.0000) no. of params varied 505 final R indices (I > 2σ(I)) R1 = 0.0318, wR2 = 0.0845 R indices (all data) R1 = 0.0383, wR2 = 0.0886 GOOF 1.019 largest diff peak and hole (e Å-3) 1.392 and -1.233

Table 2.3: Selected Interatomic Distances (Å) and Angles (deg) for 2.13.

Mo-O 2.1257(19) Mo-Cl 2.4497(6) 2.4637(6) 2.4700(6) 2.4774(6) O-Mo-Cl 94.62(5) 93.22(6) 90.99(6) 89.86(5)

25 2.3 Conclusion

The substitution chemistry of rhenium(III) and molybdenum(II) hexanuclear

clusters was investigated. Excess tributylphosphine was used to replace the apical ligands

4- 4- on [Re6Se8I6] and [Re6S8Br6] cluster cores. Different substitution patterns resulted from varying phosphine equivalents or reaction times. Phosphine replacement occurred for either four or five of the outer halides. Cis- and trans-[Re6Se8(PBu3)4I2],

[Re6Se8(PBu3)5I]I, cis- and trans-[Re6S8(PBu3)4Br2], and [Re6S8(PBu3)5Br]Br were

synthesized. 31P NMR and mass spectrometry confirmed trans- and cis-tetraphosphine

substituted clusters as well as penta-phosphine substitution through downfield (for the

2+ 2+ [Re6S8] clusters) and upfield shifting (for the [Re6Se8] clusters) from the free

tributylphosphine ligand. Smaller amounts yield greater cis- and trans-cluster, while

higher equivalents generate the penta-cluster almost exclusively. Mass spectrometry

further confirmed generation of the clusters and the degree of phosphine substitution

2+ while enabling display of its breakdown to the [Re6Q8] core (Q= S or Se).

Studies of the molybdenum chloride cluster were also conducted. Reaction of the

starting cluster with silver trifluoromethanesulfonate enabled generation of the final

- complex. Triflate ligands replaced the six apical Cl ligands on the (Ph4P)2[Mo6Cl14] cluster. Crystallographic analysis enabled confirmation of the triflate-bound Mo(II) complex. Binding of the ligand was determined to be through the oxygen atom with two

tetraphenylphosphonium cations in the structure.

26 2.4 Experimental

All reactions were carried out using standard Schlenk technique. Solvents and

reagents were used as received. Microanalyses (C and H) were performed by Robertson

Microlit Laboratories, Inc. NMR spectra (1H and 31P{1H}) were recorded on a Varian

AS-400 spectrometer operating at 399.7 and 161.8 MHz respectively. For 1H NMR

spectra, chemical shifts were determined relative to the solvent residual peaks. For

31 1 P{ H} NMR spectra, chemical shifts were determined relative to concentrated H3PO4.

(Bu4N)3[Re6Se8I6], (Bu4N)3[Re6S8Br6], and (Ph4P)2[Mo6Cl14] were all prepared in accordance with literature methods.7,8

X-Ray Structure Determination. X-ray was conducted by Dr.

James Updegraff. Products were crystallized by vapor diffusion of diethyl ether into a saturated dichloromethane solution. Single crystal X-ray data were collected on a Bruker

AXS SMART APEX CCD diffractometer using monochromatic Mo Kα radiation with omega scan technique. The unit cells were determined using SMART and SAINT+. Data collection was conducted at 100 K (-173.5° C). Structures were solved by direct methods and refined by full matrix least squares against F2 with all reflections using SHELXTL.

Refinement of extinction coefficients was found to be insignificant. All non-hydrogen

atoms were refined anisotropically. All hydrogen atoms were placed in standard

calculated positions and all hydrogen atoms were refined with an isotropic displacement

parameter 1.2 times that of the adjacent carbon.

[Re6Se8(PBu3)4I2] (2.9): In a 100-mL round bottom flask was dissolved

(Bu4N)3[Re6Se8I6] (200.0 mg, 0.06 mmol) in N’, N’-dimethyl formamide and degassed.

PBu3 (0.09 mL, 0.36 mmol) was added and refluxed 24 h under Ar. The DMF was

27 removed by vacuum pump and the resulting residue was washed several times with

diethyl ether (100 mL total) and dissolved in a small amount of methylene chloride.

Column chromatography was conducted.

(a) trans-[Re6Se8(PBu3)4I2]. This compound was eluted with dichloromethane as a red

solid. (50.6 mg, 29.1% Yield) 31P NMR: δ -38.8 ppm. MALDI-MS m/z 2809.7.

(b) cis-[Re6Se8(PBu3)4I2]. This compound was eluted with 1:20

dichloromethane/acetonitrile (v/v) as a red solid. 31P NMR: δ -38.5 (1), -41.7 (1) ppm.

MALDI-MS m/z 2810.5.

[Re6Se8(PBu3)5I]I (2.10): In a 100-mL round bottom flask was dissolved

(Bu4N)3[Re6Se8I6] (500.0 mg, 0.15 mmol) in N’, N’-dimethyl formamide and degassed.

PBu3 (0.31 mL, 1.24 mmol) was added and refluxed 24 h under Ar. The DMF was removed by vacuum and the resulting deep red residue was washed several times with

diethyl ether (100 mL total) and dissolved in a small amount of methylene chloride.

Column chromatography was conducted. The product was recovered with 1:1

chloromethane: acetonitrile. (79% Yield) 31P NMR: δ -38.0 (4), -39.8 (1) ppm.

[Re6S8(PBu3)4Br2] (2.11): In a 100-mL round bottom flask was dissolved

(Bu4N)3[Re6S8Br6] (200.0 mg, 0.08 mmol) in N’, N’-dimethyl formamide and degassed.

PBu3 (0.12 mL, 0.48 mmol) was added and refluxed 24 h under Ar. The DMF was

removed by vacuum and the resulting residue was washed several times with diethyl

ether (100 mL total) and dissolved in a small amount of methylene chloride. Column

chromatography was conducted.

(a) trans-[Re6S8(PBu3)4Br2]. This compound was eluted with dichloromethane as an orange solid. (47.4 mg, 26.1% Yield) 31P NMR: δ -25.1 ppm. MS m/z 2342.02.

28 (b) cis-[Re6S8(PBu3)4Br2]. This compound was eluted with 1:20

dichloromethane/acetonitrile (v/v) and isolated as an orange solid. (47.8 mg, 26.3%

Yield) 31P NMR: δ -25.0 (1), -28.7 (1) ppm. MS m/z 2344.04.

[Re6S8(PBu3)5Br]Br (2.12): In a 100-mL round bottom flask was dissolved

(Bu4N)3[Re6S8Br6] (200.0 mg, 0.06 mmol) in N’, N’-dimethyl formamide and degassed.

PBu3 (0.12 mL, 0.48 mmol) was added and refluxed 24 h under Ar. The DMF was removed by vaccum and the resulting residue was washed several times with diethyl

ether (100 mL total) and dissolved in a small amount of methylene chloride. Column

chromatography was conducted. 1:1 dichloromethane/acetonitrile (v/v) removed the

product as a dark orange-red solid. 31P NMR: δ -26.3 (4), -27.6 (1) ppm.

(Ph4P)2[Mo6Cl8(O3SCF3)6] (2.13): Compound 2.13 was prepared in a manner similar to

that of Johnston et al. by stirring a solution of (Ph4P)2[Mo6Cl14] (200 mg, 0.11 mmol) and

silver trifluoromethanesulfonate (229.8 mg, 0.89 mmol) with slight heating in CH2Cl2 (80

mL) for 24 h.33 The solution was filtered through Celite to remove precipitated silver

chloride. The filtrate was reduced to 2 mL and then filtered twice more through Celite.

Vapor diffusion with diethyl ether yielded yellow block-like crystals (0.1518 g, 55%).

29 Spectra

31 Figure 2.5: P NMR of trans-Re6Se8(PBu3)4I2

30

1 Figure 2.6: H NMR of trans-Re6Se8(PBu3)4I2

31 31 Figure 2.7: P NMR of cis-Re6Se8(PBu3)4I2

32

1 Figure 2.8: H cis-Re6Se8(PBu3)4I2

33

31 Figure 2.9: P [Re6Se8(PBu3)5I]I

34

1 Figure 2.10: H [Re6Se8(PBu3)5I]I

35

31 Figure 2.11: P NMR of trans-Re6S8(PBu3)4Br2

36

31 Figure 2.12: P NMR of cis-Re6S8(PBu3)4Br2

37

31 Figure 2.13: P NMR of [Re6S8(PBu3)5Br]Br

38

a .i.

MALDI-MS * *[Re6Se8] 1400 Matrix used was: 7,7,8,8-Tetracyano- *[Re6Se8(PBu3)] quinodimethane * *[Re6Se8(PBu3)I] 1200 *[Re6Se8(PBu3)2] [Re Se (PBu ) I] 1000 * 6 8 3 2

*[Re6Se8(PBu3)3I] *

800 *[Re6Se8(PBu3)3I2]

*[Re6Se8(PBu3)4I]

600 * * *[Re6Se8(PBu3)4I2] * * *

400 *

200

0 1000 1500 2000 2500 3000 3500 4000 m /z /// / / /

Figure 2.14: MALDI Mass Spectra of trans-Re6Se8(PBu3)4I2

39 a .i. MALDI-MS *[Re6Se8] Matrix used was: *[Re6Se8(PBu3)] 2500 7,7,8,8-Tetracyano-quinodimethane *[Re6Se8(PBu3)I] * * *[Re6Se8(PBu3)2]

2000 *[Re6Se8(PBu3)2I]

*[Re6Se8(PBu3)3I] * *[Re6Se8(PBu3)4I] 1500 * *[Re6Se8(PBu3)4I2] * 1000 * * *

500

0

1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 m /z

Figure 2.15: MALDI- Mass Spectra cis-Re6Se8(PBu3)4I2

40 * [Re6S8(PBu3)3Br] * [Re6S8(PBu3)4Br] * [Re6S8(PBu3)4Br2]

*

*

*

Figure 2.16: Mass Spectra of trans-Re6S8(PBu3)4Br2

41 *

* [Re6S8(PBu3)3Br] * [Re6S8(PBu3)3Br2] * [Re6S8(PBu3)4Br] * [Re6S8(PBu3)4Br2]

* * *

Figure 2.17: Mass Spectra of cis-Re6S8(PBu3)4Br2

42 2.5 Works cited

1 Lee, S.; Holm, R. H. Angew. Chem. Int. Ed. Engl., 1990, 29, 840-856.

2 (a) Cotton, F. A. Inorg. Chem., 1964, 3, 1217-1220. (b) Cotton, F. A. Quart. Rev., 1966,

20, 389-401.

3 Zheng, Z.; Long, J. R.; Holm, R. H. J. Am. Chem. Soc., 1997, 119, 2163-2171.

4 Willer, M. W.; Long, J. R.; McLauchlan, C. C.; Holm, R. H. Inorg. Chem., 1998, 37,

328-333.

5 Weinert, C. S.; Stern, C. L.; Shriver, D. F. Inorg. Chem., 2000, 39, 240-246.

6 Méry, D.; Plault, L.; Nlate, S.; Astruc, D.; Cordier, S.; Kirakci, K.; Perrin, S. Z. Anorg.

Allg. Chem., 2005, 631, 2746-2750.

7 Long, J. R.; McCarty, L. S.; Holm, R. H. J. Am. Chem. Soc. 1996, 118, 4603-4616.

8 Hay, D. N. T.; Adams, J. A.; Carpenter, J.; DeVries, S. L.; Domyancich, J.; Dumser, B.;

Goldsmith, S.; Kruse, M. A.; Leone, A.; Moussavi-Harami, F.; O’Brien, J. A.; Pfaffly, J.

R.; Sylves, M.; Taravati, P.; Thomas, J. L.; Tiernan, B.; Messerle, L. Inorg. Chimica

Acta, 2004, 357, 644-648.

9 Kolesnichenko, V.; Messerle, L. Inorg. Chem., 1998, 37, 3660-3663.

10 Maverick, A. W.; Najdzionek, J. S.; MacKenzie, D.; Nocera, D. G.; Gray, H. B. J. Am.

Chem. Soc., 1983, 105, 1878-1882.

11 Gray, T. G.; Rudzinski, C. M.; Meyer, E. E.; Holm, R. H.; Nocera, D. G. J. Am. Chem.

Soc., 2003, 125, 4755-4770.

12 Jackson, J. A.; Turro, C.; Newsham, M. D.; Nocera, D. G. J. Phys. Chem., 1990, 94,

4500-4507.

13 Mussell, R. D.; Nocera, D. G. Inorg. Chem., 1990, 29, 3711-3717.

43

14 Gray, T. G.; Holm, R. H. Inorg. Chem. 2002, 41, 4211-4216.

15 Holm, R. H.; Ciurli, S.; Weigel, J. A. Prog. Inorg. Chem. 1990, 38, 1–74.

16 Venkataswara Rao, P.; Holm, R. H. Chem. Rev. 2004,104, 527–559.

17 Stack, T. D. P.; Holm, R. H. J. Am. Chem. Soc. 1987, 109, 2546–2547.

18 Stack, T. D. P.; Holm, R. H. J. Am. Chem. Soc. 1988, 110, 2484–2494.

19 Zhou, J.; Hu, Z.; Münck, E.; Holm, R. H. J. Am. Chem. Soc. 1996, 118, 1966–1980.

20 Gray, T. G. Coord. Chem. Rev. 2003, 243, 213-235.

21 Tolman, C. A. Chem. Rev., 1977, 77, 313-348.

22 Ferguson, G.; Roberts, P. J.; Alyea, E. C.; Khan, M. Inorg. Chem. 1978, 17, 2965–

2967.

23 Smith, J. D.; Oliver, J. D. Inorg. Chem. 1978, 17, 2585–2889.

24 Gao, L.; Peay, M. A.; Gray, T. G. Chem. Mater. 2010, 22, 6240–6245.

25 Prokopuk, N.; Shriver, D. F. Adv. Inorg. Chem., 1999, 46, 1-49.

26 Gray, H. B.; Maverick, A. W. Science 1981, 214, 1201–1205

27 Maverick, A. W.; Gray, H. B. J. Am. Chem. Soc. 1981, 103, 1298–1300.

28 Zietlow, T. C.; Hopkins, M. D.; Gray, H. B. J. Solid State Chem. 1985, 57, 112–119.

29 Zeitlow, T. C.; Nocera, D. G.; Gray, H. B. Inorg. Chem. 1986, 25, 1351–1353.

30 Zeitlow, T. C.; Schaefer, W. P.; Sadeghi, B.; Hua, N.; Gray, H. B. Inorg. Chem. 1986,

25, 2195–2198.

31 Zeitlow, T. C.; Schaefer, W. P.; Sadeghi, B.; Nocera, D. G.; Gray, H. B. Inorg. Chem.

1986, 25, 2198–2201.

32 Franolic, J. D.; Long, J. R.; Holm, R. H. J. Am. Chem. Soc. 1995, 117, 8139–8153.

44

33 Johnston, D. H.; Gaswick, D. C.; Lonergan, M. C.; Stern, C. L.; Shriver, D. F. Inorg.

Chem., 1992, 31, 1869-1873.

45 Chapter 3

Synthesis and Characterization of Mono- and Diaurated Pyrenes

3.1 Introduction

Gold has an electronegativity of 2.54, a density of 19.30 g cm-3 at 298 K, and an

electron affinity of 222.8 kJ mol-1.1 It complexes in oxidation states I, II, and III and has

been shown to have medicinal uses for certain Au(I) and Au(III) species.2 In its +1

oxidation state, gold has a d10 electron count. Gold has been used in many compounds for

the treatment of rheumatoid arthritis (Figure 3.1).2 Compounds 1-5 are first generation,

water soluble drugs, due to their charge and/or hydrophilic groups.2 The disadvantage of

these drugs is the need to be taken intravenously, which necessitates frequent doctor

visits. Nephrotoxicity is also possible as gold accumulates in organs such as the kidney.

On the other hand, compound 6, Auranofin®, is a second generation, lipophilic drug.2 As

such, it can be taken orally decreasing the gold concentration building up in the kidneys.

There are several reviews on gold chemistry complexes with carbon, nitrogen, or

phosphorus ligands as well as gold clusters.3,4,5 More recently, gold drugs have been

shown to have anti-tumor effects prompting further investigation into their anti-cancer

activity.6

46

CH2OH NaO C O 2

OH

OH S Au NaO C S Au 2 n OH n 1 2

HO

Au Na3[O3S-S-Au-S-SO3] S SO3Na n 3 4

CO2H PEt CH OAc 3 S Au 2 Au O S OAc OAc OAc n NH2 6 5

Figure 3.1: First and second generation gold-containing rheumatoid arthritis drugs. (1) Aurothioglucose, (2) disodium aurothiomalate, (3) tri-sodium bis(thiosulfato)gold, (4) aurothiopropanol sulfonate, (5) gold (I) 4-amino-2-mercaptobenzoate, and (6)[tetra-O-acetyl-β-D-(glucopyranosyl)thio]- triethylphosphine)gold(I).

Gold has been called the relativistic element, and various peculiarities, especially

of gold(I) have been attributed to relativity.7,8 The spin-orbit coupling of an electron is a

relativistic property. However, the spin-orbit coupling ζ of a 5d-electron in gold is

unexceptional at 5100 cm–1;9 for comparison, the spin-orbit coupling of a 5p-orbital in

iodine is 5700 cm–1.10,11 Nevertheless, gold(I) exerts the heavy-atom effect when bound

to fluorescent molecules. There have been several reports12,13,14 and reviews15,16 on the photophysical properties resulting from the heavy atom effect of gold(I). Dual

47

luminescence or phosphorescence occurs upon excitation of aromatic hydrocarbons

bearing (phosphine)- or (N-heterocyclic carbene)gold(I) fragments.17–20

Pyrene

Pyrene is a fluorescent molecule21 with absorbance and emission in the UV range.

It is a conjugated, aromatic compound that has found many uses as a fluorescent marker

for DNA hybridization22 and fluorescence quenching as a function of lipid bilayer

depth,23 as well as other studies of biological chemistry.24,25 More recently,

Venkataramana and Sankararaman investigated bathochromatic shifts in absorbance and

emission with the substitution of pyrene’s 1, 3, 6, and 8 positions for various terminal

acetylenes.26

The Gray group has previously demonstrated attachment of gold(I) to the pyrene

scaffold and reported on the photophysics of its placement at the 1-position of the carbon skeleton. 17–19 In this case base-promoted transmetalation27 was used to react a phosphine

and an N-heterocyclic carbene to 1-pyreneboronic acid (Scheme 3.1). Binding of gold(I)

results in a structured luminescence at 77 K. This emission was assigned as a π-π* triplet excited state based on density functional calculations.

48

Cs2CO3 Cy3PAu (1) Cy3PAuBr + (1-pyrenyl)B(OH)2 i-PrOH, 50 °C

i-Pr i-Pr i-Pr i-Pr N Cs2CO3 N Au Au Br + (1-pyrenyl)B(OH) (2) N 2 N i-Pr i-Pr i-PrOH, 55 °C

i-Pr i-Pr

Scheme 3.1: Transmetalation reactions of pyrene. From ref. 17.

Heng et. al. also reported on the auration and platination of pyrene.28 Pyrene was

brominated in the 1-, 1,6-, or 1,8-positions, followed by lithiation reactions to yield

organolithium products. Auration followed with (PPh3)AuCl generating the

corresponding gold products. For the platinated species, oxidative addition of Pt(PPh3)4

with the brominated pyrene gave the complex. A further attempt was made to aurate

pyrene in a third position again using a lithiation reaction. Here pyrene was brominated in

the 1,3,6-positions. Subsequent reaction with gold produced only the diaurated complex

suggesting a limit to the number of gold ligands able to attach to the pyrene. This

observation was made for both the (PPh3)Au- and (PPh3)2PtBr- ligands.

Auration of compounds is carried out by first borylating the substrate. Marder and

coworkers29 reported on the use of Ir catalysis to borylate aromatic compounds.

[Ir(OMe)(COD)]2 and 4,4’-di-tert-butyl-2,2’-bipyridine (DTBpy) are used for C—H activation. Naphthalene, pyrene, and perylene were determined to be borylated at the opposite those resulting from electrophilic aromatic substitution. Positions ortho

49

to ring junctures are not borylated as a result of the bulkiness associated with the suggested [Ir(bpy)(Bpin)3] intermediate, where bpy = 2,2’-bipyridine and Bpin =

pinacolboronato.30 Instead, pyrene is borylated at the 2- and 2,7-positions for yielding

mono- and diborylated products (Scheme 2).

[Ir(OMe)(COD)]2, DTBpy Bpin 16 h, Cyclohexane + O O B B O O

(a)

[Ir(OMe)(1,5-COD)]2, DTBPY Bpin Bpin Cyclohexane, 16 h, + 80 °C O O B B O O

(b)

Scheme 3.2: Ir catalyzed borylation of pyrene. (a) 2-(Bpin)pyrene, (b) 2,7-(Bpin)2pyrene. Ref. 29.

Attachment of gold(I) to the pyrene is also expected to induce heavy atom effects

allowing greater access the triplet state of the molecule. This chapter details the synthesis

and characterization of tertiary phosphinegold(I) pyrenyls.31 Figure 3.2 shows a color- coded view of a phosphinegold(I) pyrenyl accounting for the purpose of each portion of the model.

50

Em issi on n io at cit Ex R

P Au Photoexcitable R organic skeleton Phosphine or carbene R Gold(I) for spin-orbit ancillary ligand for cell- coupling and enhanced penetrability intersystem crossing

Figure 3.2: Detailed pictorial view of a phosphinegold(I) aromatic complex.32

This chapter explores some photophysical consequences of binding gold(I) to the

hydrocarbon pyrene. Syntheses and static emission spectroscopy of gold(I) pyrene derivatives are reported here.

51

3.2 Results and Discussion

Aurated pyrenes were generated from reaction of mono- or di-borylated pyrene derivatives with Cs2CO3 as a base and a LAuX species where L = PPh3, PCy3, and X =

N3, OAc, Br. Iridium catalysis on pyrene resulted in the starting mono- or diborylated

pyrene forming substitution patterns opposite that expected for electrophilic aromatic

substitution using palladium catalysis. Borylation proceeds at the end 2- and 2,7-positions of the pyrene as opposed to those ortho to the ring junctions. Stirring the borylated pyrene, base, and gold(I) ligand in isopropanol (IPA) or 1:2 IPA:THF (v/v)

(tetrahydrofuran) at 50 °C afforded the white to off-white products in moderate to decent

yields. Attempts to produce the corresponding carbenes through a variety of reaction

conditions were unsuccessful. All three pyrenyls were synthesized from different gold(I)

starting material as other gold(I) reactants produced either incomplete or no reaction at

all. In addition, it was also determined that reaction conditions varied depending on

substrate. For the monogold(I) pyrenyls, excess of the pyrene reactant enabled product

formation. On the other hand, digold(I) pyrenyls were generated from excess gold(I)

starting reagent. The products are soluble in chlorinated solvents and slightly soluble in

benzene. All show decomposition in solutions that sat in air over time. Scheme 3 shows

the reactions for the PCy3Au-pyrenyls, PPh3Au-pyrenyls follows a similar reaction

employing phosphinegold(I) azide.

52

Cy3PAuC2H3O2, O Cs2CO3 B AuPCy3 O THF, i-PrOH, 2:1 (v/v), 50 °C 52%

Cy3PAuC2H3O2, s O O C 2CO3 B B Cy3PAu AuPCy3 O O THF, i-PrOH, 2:1 (v/v), 50 °C 79%

Scheme 3.3: Auration of pyrene.

Product formation was monitored by 31P NMR spectroscopy which showed a singlet at δ 57.4 ppm for the 2-[(PCy3)Au]pyrene. This is a downfield shift from the free

ligand at δ 53.9 ppm. This is characteristic for bonding of PCy3Au group with a carbon skeleton.20 Table 3.1 gives 31P NMR chemical shifts for the three aurated products. 1H

NMR displayed the protons of the PCy3 group as well as those of the pyrenyl. The

doublet at δ 8.96 ppm is attributed to the protons adjacent to the attaching gold(I) ligand.

Integrations for the pyrenyl protons are in agreement with expectations for the

monoaurated compound.

Results for the 2,7-[(PCy3)Au]2pyrene resemble that of the monogold(I) pyrenyl.

The 31P NMR singlet is found at δ 57.4 ppm, shifted 9.5 ppm downfield the borylated

1 pyrenyl, and the H NMR gives the PCy3 group at δ 1.06-1.95 ppm, while the eight proton peaks for the pyrenyl in the correct integrations are found at δ 8.08 and 8.91 ppm.

31 Finally P NMR for the 2,7-[(PPh3)Au]2pyrenyl gives the singlet at δ 43.9 ppm in

agreement with the binding of (PPh3)Au- ligand to carbon. Analogous to the mono- and

53

di-(PCy3)Au products, the adjacent pyrenyl proton is that of a doublet and integrations

are approximately 1:1 for the resonances of the eight pyrenyl protons.

31 Table 3.1: P NMR Chemical Shifts Relative to 85% H3PO4 (aq) of Phosphine-Ligated Gold Complexes.

Complex Solvent 31P δ (ppm) Starting Material (δ)

3.7 C6D6 57.4 PCy3AuN3 (53.9)

3.8 C6D6 57.4 PCy3AuOAc (47.9)

3.9 C6D6 43.9 PPh3AuBr (35.2)

54

Absorption and Static Emission Spectroscopy

120000 110000 100000 2-[(PCy )Au]pyrene 90000 3 2,7-[(PCy )Au] pyrene 80000 3 2 ) -1 70000 cm -1 60000 (M

ε 50000 40000 30000 20000 10000 0 300 400 500 600 700 800 Wavelength (nm)

Figure 3.3: Absorption spectra of 2-[(PCy3)Au]pyrene and 2,7-[(PCy3)Au]2pyrene in CH2Cl2.

Figure 3.3 shows the absorption spectra of the mono- and digold(I) pyrenyls. The spectrum demonstrates a red-shifting of the absorbance from the bare pyrenyl. This red- shift is also determined to be additive with increasing number of gold(I) ligand attachment. This is in agreement with Heng et. al. who reported on the photophysics of pyrenes aurated in the 1-, 1,6-, and 1,8-positions. Heng noted both the red-shift in absorbance upon binding of the (PPh)3Au- ligand as well as its additive attribute with the binding of additional gold(I) ligands.28

55

100

20000 Solvent: CHCl3 5 x 10-5 M 80 Ex. 333 nm

15000 ) -1 60 cm -1 10000 (Mol

ε 40 Intensity (a.u.)

5000 20

0 0 300 400 500 600 700 800 Wavelength (nm)

Figure 3.4: Absorption and emission of 2-[(PCy3)Au]pyrene in CHCl3.

Figures 3.4 and 3.5 plot the absorbance and emission spectra of the 2-mono and

2,7-bis(tricyclohexylphosphine)gold(I) pyrenyls in CHCl3. Both compounds were excited

at 333 nm, producing slightly structured luminescence peaks rising around 330 nm. For

2-[(PCy3)Au]pyrene luminescence maximizes at 373 nm, 383 nm, 389 nm, and 393 nm.

For 2,7-[(PCy3)Au]2pyrene luminescence maximizes at 374 nm, 389 nm, 393 nm. Figure

6 also reproduces the emission spectrum of the digold complex at 77 K in 2-

methyltetrahydrofuran glass. Emission is sharply structured with maxima at 591 and 640

nm. The 77 K lifetime of emission collected at 600 nm is 13 μs. The red emission near

600 nm has been assigned as a triplet-state ππ* transition, and the higher-energy

56

luminescence as intraligand fluorescence in agreement with other work18,28 and time- dependent density-functional theory calculations.18

25000 100 Solvent: CHCl3 5 x 10-5 M 20000 Ex. 333 nm 80 ) -1 15000 60 cm -1 (Mol

ε 10000 40 Intensity (a. u.)

5000 20

0 0 300 400 500 600 700 800 Wavelength (nm)

Figure 3.5: Absorption and emission of 2,7-[(PCy3)Au]2pyrene in CHCl3.

57

Emission intensity (a.u.)

400 450 500 550 600 650 700 Wavelength (nm)

Figure 3.6: Emission spectrum of digold(I) pyrene in a 2-methyltetrahydrofuran glass at 77 K.

Crystallographic analysis

Figure 3.7 displays the crystal structure of 2-[(PCy3)Au]pyrene. Evaporation of an acetone solution produced colorless diffraction quality crystals of the monoclinic, C2/c space group with Z = 8. The ∠C1-Au1-P1 is near linear at 173.6(2)° which is expected for two-coordinate gold(I). The Au1—C1 bond length is 2.046(7) Å and the Au1—P1 bond length is 2.300(2) Å. The C—C and C—H bond lengths and angles are normal for both the cyclohexyl groups and the pyrenyl. There are no aurophilic interactions observed for this compound.

58

Figure 3.7: 2-[(PCy3)Au]pyrene (50%, 100 K). Hydrogen atoms are omitted for clarity. Unlabeled atoms are carbon.

Slow evaporation of a xylenes solution produced colorless crystals for diffraction

(Figure 3.8). 2,7-[(PCy3)Au]2pyrene gave the monoclinic P2(1)/n space group with Z = 2.

The ∠C1-Au1-P1 angle is linear at 176.09(7)°. The Au1—C1 bond length is 2.046(2) Å

and the Au1—P1 bond length is 2.3044(6) Å. Again all angles and bond lengths are

normal with no aurophilic interactions observed. Table 3.2 collects crystallographic data

for the two pyrenyls.

59

Figure 3.8: 2,7-[(PCy3)Au]2pyrene (50%, 100 K). Hydrogen atoms and one toluene molecule of crystallization are omitted for clarity. Unlabeled atoms are carbon.

60

Table 3.2: Crystallographic Data for New Compounds Collected at 100 ± 2 K.

3.7·C6H5Me 3.8·C6H6·C8H10 formula C34H42AuP C52H74Au2P2 mol wt 678.61 1155.22 cryst syst monoclinic monoclinic space group C2/c P21/n a(Å) 25.024(5) 9.5322(9) b (Å) 13.5950(19) 16.7591(15) c (Å) 17.044(2) 17.4417(16) α (deg) 90 90 β (deg) 101.493(2) 94.5900(10) γ (deg) 90 90 V (Å) 5682.1(15) 2777.4(4) Z 8 2 index angles -32≤ h ≤32 -12≤ h ≤11 -17≤ k ≤17 -21≤ k ≤21 -22≤ l ≤22 -22≤ l ≤22 ρ (Mg/m3) 1.587 1.601 abs coeff (mm-1) 5.255 5.374 θ range (deg) 1.71-27.50 2.34-26.92 F(000) 2720 1348 total no. of rflns 33 510 30 206 no. of indep rflns 6526 (R(int) = 0.0456) 5929 (R(int) = 0.0297) no. of params varied 325 317 final R indices (I > 2σ(I)) R1 = 0.0502 wR2 = 0.1059 R1 = 0.0183 wR2 = 0.0422 R indices (all data) R1 = 0.0732 wR2 = 0.1187 R1 = 0.0213 wR2 = 0.0435 GOF 1.058 1.104 largest diff peak and hole (e 2.475 and -1.837 0.816 and -0.935 Å-3)

Table 3.3: Selected Interatomic Distances (Å) and Angles (deg) for 3.7 and 3.8.

3.7 3.8 C-Au 2.046(7) 2.046(2) Au-P 2.300(2) 2.3044(6) ∟C-Au-P 173.6(2) 176.09(7)

61

3.3 Conclusion

Mono- and digold(I) pyrenes were generated through transmetalation reactions of boronic esters, base, and LAuX where L = PCy3 or PPh3 and X = N3, OAc, or Br. Further

reaction with Cs2CO3 and the phosphinegold(I) ligand yielded the final complexes. Both

31P and 1H NMR are in agreement with expectations for attachment of one or two

31 PCy3Au- or PPh3Au- ligands to the pyrene skeleton. P chemical shifts are found

downfield that of the free ligand in all cases. Phosphinegold(I) ligand attachment replaces

that of the boryl ligand and is found at pyrene ends as opposed to positions ortho to the

ring junctures. Crystal structures of two of the complexes displayed the compounds with

both one and two phosphinegold(I) ligands attached. No aurophilic interactions were

observed for any of the complexes. 2-mono and 2,7-bis(tricyclohexylphosphine)gold(I)

pyrenyls are both shown to be luminescent. Red emission of the 2,7-[(PCy3)Au]2pyrene is

assigned as a triplet-state ππ* transition with a lifetime measurement of 13 μs at 77K.

Finally, absorption spectra of the 2-mono and 2,7-bis(tricyclohexylphosphine)gold(I)

pyrenyls demonstrate a red shift in absorption as well as the additive effect as the number

of tricyclohexylphosphinegold(I) ligands on the pyrene increases.

62

3.4 Experimental

All reactions were carried out using standard Schlenk technique. Solvents and

reagents were used as received with no further purification. Microanalyses (C and H)

were performed by Robertson Microlit Laboratories, Inc. NMR spectra (1H and 31P{1H})

were recorded on a Varian AS-400 spectrometer operating at 399.7 and 161.8 MHz respectively. For 1H NMR spectra, chemical shifts were determined relative to the solvent

residual peaks. For 31P{1H} NMR spectra, chemical shifts were determined relative to

85% aqueous H3PO4. Cy3PAuBr was synthesized in relation to similar preparations for

33 phosphine-ligated gold(I) chlorides. Cy3PAuN3 was prepared according to literature

34,35 preparations. Cy3PAuOAc was prepared analogously to the triphenylphosphine

complex.36 2- and 2,7-borylated pyrenes were prepared in accordance with literature preparation.29

Luminescence Measurements. Steady-state emission spectra were recorded at room temperature on a Cary Eclipse fluorescence spectrophotometer.

X-Ray Structure Determinations. X-ray crystallography was conducted by Dr. James

Updegraff and Nihal Deligonul. Single-crystal X-ray data were collected on a Bruker

AXS SMART APEX CCD diffractometer using monochromatic Mo Kα radiation with the omega scan technique. The unit cells were determined using SMART37 and

SAINT+.38 Data collection for all crystals was conducted at 100 K (-173.5 °C). All

structures were solved by direct methods and refined by full matrix least-squares against

F2 with all reflections using SHELXTL.39 Refinement of extinction coefficients was

found to be insignificant. All non-hydrogen atoms were refined anisotropically. All

63

hydrogen atoms were placed in standard calculated positions, and all hydrogen atoms

were refined with an isotropic displacement parameter 1.2 times that of the adjacent

carbon (1.5 times for methyl hydrogen atoms).

2-[(PCy3)Au]pyrene (3.7). To a 100-mL Schlenk flask pyrene-2-boronate (60.0 mg, 0.18 mmol), Cs2CO3 (65.5 mg, 0.20 mmol), and (PCy3)AuN3 (68.7 mg, 0.13 mmol) were added. 8 mL degassed isopropanol was added to the flask which was then stirred 24 h under argon at 50° C. Formation of a white precipitate resulted. Solvent was removed under rotary evaporation and resulting white powder was dissolved in dichloromethane

(10 mL) and extracted three times with H2O (10 mL portions). DCM solution was dried

with Na2SO4 and solvent was removed via rotary evaporation. Trituration was performed

with pentane and solvent was removed via rotary evaporation. Colorless crystals were

1 formed from evaporation of an acetone solution (42.8 mg, 51.8% yield). H NMR (C6D6):

δ 8.94 (d, 2H, J = 4.8 Hz, pyrenyl), 8.05 (d, 2H, J = 8.8 Hz, pyrenyl), 7.94 (d, 2H, J = 7.6

Hz, pyrenyl), 7.86 (d, 2H, J = 8.8 Hz, pyrenyl), 7.76 (t, 1H, J = 7.2 Hz, pyrenyl), 1.95-

31 1 1.05 (m, 33H, C6H11) ppm. P{ H} NMR: δ 57.4 ppm. Anal. Calcd. for C34H42AuP: C:

60.17, H: 6.24, Found C: 59.95, H: 6.48. m/z Calcd. 678.65, Found 679.30. UV-vis

4 -1 -1 4 -1 -1 (CH2Cl2): λ (ε) 264 nm (5.3 x 10 M cm ), 328 nm (2.7 x 10 M cm ), 343 nm (3.7 x

4 -1 -1 10 M cm ). Emission (CHCl3, ex. 333 nm): 373 nm, 383 nm, 389 nm, 393 nm.

2,7-[(PCy3)Au]2pyrene (3.8). A 100-mL Schlenk flask was charged with Cs2CO3 (90.4

mg, 0.28 mmol) in 4 mL isopropanol (IPA). In a separate round bottom flask, pyrene-2,7-

bis(boronate) (60.0 mg, 0.13 mmol) and (PCy3)Au(OAc) (212.6 mg, 0.40 mmol) were

dissolved in 8 mL THF. After degassing both solutions, the THF solution was cannulated

into the Schlenk flask containing the IPA suspension and stirred 24 h under argon at 50°

64

C. The white precipitate formed during the course of the reaction was collected by

filtration and washed with IPA and THF. Colorless crystals were formed from slow

1 evaporation of a xylene solution (120.0 mg, 78.6% yield). H NMR (C6D6): δ 8.90 (d,

4H, J = 4.8 Hz, pyrenyl), 8.07 (s, 4H, pyrenyl), 1.95-1.06 (m, 66H, (C6H11)2) ppm.

31 1 P{ H} NMR: δ 57.4 ppm. Anal. Calcd. for C52H74Au2P2: C: 54.07 H: 6.46, Found C:

54.05, H: 6.39. m/z Calcd. 1155.2, Found 1155.3. UV-vis (CH2Cl2): λ (ε) 287 nm (1.1 x

5 -1 -1 4 -1 -1 4 -1 -1 10 M cm ), 332 nm (3.7 x 10 M cm ), 348 nm (5.9 x 10 M cm ). Emission (CHCl3,

ex. 333 nm): 374 nm, 389 nm, 393 nm, 593 nm.

2,7-[(PPh3)Au]2pyrene (3.9). A 100-mL Schlenk flask was charged with Cs2CO3 (60.3

mg, 0.19 mmol) in 4 mL isopropanol (IPA). In a separate round bottom flask, pyrene-2,7-

bis(boronate) (40.0 mg, 0.09 mmol) and (PPh3)AuBr (142.5 mg, 0.26 mmol) were

dissolved in 8 mL THF. After degassing both solutions, the THF solution was cannulated

into the Schlenk flask containing the IPA suspension and stirred 24 h under Argon at 50°

C. The white precipitate formed during the course of the reaction was collected by

1 filtration and washed with IPA and THF (97.2 mg, 98.6%). H NMR (C6D6): δ 8.91 (d,

4H, J = 5.6 Hz), 8.13 (s, 4H), 7.71-7.48 (m, 30H) ppm. 31P NMR: δ 43.9 ppm.

65

Spectra

31 Figure 3.9: P NMR 2-[(PCy3)Au]pyrene

66

1 Figure 3.10: H NMR 2-[(PCy3)Au]pyrene

67

31 Figure 3.11: P NMR 2,7-[(PCy3)Au]2pyrene

68

1 Figure 3.12: H NMR 2,7-[(PCy3)Au]2pyrene

69

31 Figure 3.13: P NMR 2,7-[(PPh3)Au]2pyrene

70

1 Figure 3.14: H NMR 2,7-[(PPh3)Au]2pyrene

71

Cy3PAu AuPCy3

Figure 3.15: Mass Spectra of 2,7-[(PCy3)Au]2pyrene.

72

3.5 Cited Work

1 http://www.webelements.com/webelements/text/Au/index/.html.

79 2 Ho, S. Y.; Tiekink, E. R. T. “ Au Gold-Based Metallotherapeutics: Use and Potential.”

In: Metallotherapeutic Drugs & Metal-based Diagnostic Agents: The Use of Metals in

Medicine; Gielen, M.; Tiekink, E. R. T., Eds.; Wiley: New York, 2005; pp 507–528.

3 Fernández, E. J.; Laguna, A.; Olmos, M. E. In: Gold: Progress in Chemistry,

Biochemistry and Technology; Schmidbaur, H., Ed.; Wiley: Chichester, 1999.

4 Gimeno, M. C.; Laguna, A. “Silver and Gold.” In: Comprehensive Coordination

Chemistry II. Elsevier: New York; 2003; pp. 911-1145.

5 Puddephatt, R. J. “Gold.” In: Comprehensive Organometallic Chemistry; Wilkinson, G.;

Stone, F. G. A.; Abel, E. W., Eds.; Pergamon Press: Oxford, 1982; pp 765-821.

6 (a) Simon, T. M.; Kunishima, D. H.; Vibert, G. J.; Lorber, A. Cancer, 1979, 44, 1865-

1975. (b) Simon, T. M.; Kunishima, D. H.; Vibert, G. J.; Lorber, A. Cancer Res., 1981,

41, 94-97. (c) Barnard, P. J.; Berners-Price, S. J.; Coord. Chem. Rev., 2007, 251, 1889-

1902.

7 Gorin, D. J.; Toste, F. D. Nature, 2007, 446, 395–403.

8 Kaltsoyannis, N. J. Chem. Soc., Dalton Trans. 1997, 1–11.

9 Griffith, J. S. Theory of Transition Metal Ions; Cambridge University Press, Cambridge,

1964, pp. 437–439.

10 Friedrich, J.; Metz, F.; Dörr, F. Mol. Phys. 1975, 30, 289–312.

11 Omary, M. A.; Mohamed, A. A.; Rawashdeh-Omary, M. A.; Fackler, J. P., Jr. Coord.

Chem. Rev. 2005, 249, 1372–1381.

73

12 Mohamed, A. A.; Rawashdeh-Omary, M. A.; Omary, M. A.; Fackler, J. P., Jr. Dalton

Trans., 2005, 2597-2602.

13 Omary, M. A.; Rawashdeh-Omary, M. A.; Diyabalanage, H. V. K.; Dias, H. V. R.

Inorg. Chem., 2003, 42, 8612-8614.

14 Elbjeirami, O.; Burress, C. N.; Gabbaï, F. P.; Omary, M. A. J. Phys. Chem. C, 2007,

111, 9522-9529.

15 Omary, M. A.; Mohamed, A. A.; Rawashdeh-Omary, M. A.; Fackler, J. P., Jr. Coord.

Chem. Rev., 2005, 249, 1372-1381.

16 Lower, S. K.; El-Sayed, M. A. Chem. Rev., 1968, 66, 199-241.

17 Partyka, D. V.; Esswein, A. J.; Zeller, M.; Hunter, A. D.; Gray, T. G. Organometallics 2007,

26, 3279–3282.

18 Gao, L.; Peay, M. A.; Partyka, D. V.; Updegraff, J. B., III; Teets, T. S.; Esswein, A. J.; Zeller,

M.; Hunter, A. D.; Gray, T. G. Organometallics 2009, 28, 5669–5681

19 Vogt, R. A.; Peay, M. A.; Gray, T. G.; Crespo-Hernández, C. E. J. Phys. Chem. Lett. 2010, 1,

1205–1211.

20 Partyka, D. V.; Updegraff, J. B. III; Zeller, M.; Hunter, A. D.; Gray, T. G. Organometallics

2007, 26, 183–186.

21 Turro, N. J. Modern Molecular Photochemistry. University Science Books; California,

1991.

22 (a) Ebata, K.; Masuko, M.; Ohtani, H.; Kashiwasake-Jibu, M. Photochem. Photobiol.,

1995, 62, 836-839; (b) Lakowicz, J. R. Principles of Fluorescence Spectroscopy, 2nd Ed.,

Kluwer Academic/Plenum Publishers, New York, 1999, pp. 595-614.

23 (a) Sassaroli, M.; Ruonala, M.; Virtanen, M.; Somerharju, P. Biochemistry, 1995, 34,

8843-8851; (b) Ladokhin, A. S. Method Enzymol., 1997, 278, 462-473.

74

24 Whitaker, J. E.; Haugland, R. P.; Moore, P. L.; Hewitt, P. C.; Reese, M.; Haugland, R.

P. Anal. Biochem., 1991, 198, 119-130.

25 Hermanson, G. T. Bioconjugate Techniques; Academic: San Diego, 1996.

26 Venkataramana, G.; Sankararaman, S. Eur. J. Org. Chem., 2005, 4162-4166.

27 Partyka, D. V.; Zeller, M.; Hunter, A. D.; Gray, T. G. Angew. Chem., Int. Ed., 2006, 45,

8188-8191.

28 Heng, W. Y.; Hu, J.; Yip, J. H. K. Organometallics, 2007, 26, 6760–6768.

29 Coventry, D. N.; Batsanov, A. S.; Goeta, A. E.; Howard, J. A. K.; Marder, T. B.;

Perutz, R. N. Chem. Commun., 2005, 2172-2174.

30 Tamura, H.; Yamazaki, H.; Sato, H.; Sakaki, S. J. Am. Chem. Soc., 2003, 125, 16114-

16126.

31 Gao, L.; Peay, M. A.; Partyka, D. V.; Updegraff, J. B., III; Teets, T. S.; Esswein, A. J.;

Zeller, M.; Hunter, A. D.; Gray, T. G. Organometallics, 2009, 28, 5669-5681.

32 Schmidbaur, H.; Grohmann, A.; Olmos, M. E. Organogold Chemistry. In Gold:

Progress in Chemistry, Biochemistry and Technology; H. Schmidbaur, Ed.; Wiley:

Chichester, 1999.

33 Schneider, D.; Schier, A.; Schmidbaur, H. Dalton Trans., 2004, 1995-2005.

34 Partyka, D. V.; Robilotto, T. J.; Zeller, M.; Hunter, A. D.; Gray, T. G. Proc. Natl. Acad.

Sci., U. S. A., 2008, 105, 14293-14297.

35 Partyka, D. V.; Robilotto, T. J.; Updegraff, J. B. III; Zeller, M.; Hunter, A. D.; Gray, T.

G. Organometallics, 2009, 28, 795-801.

36 Fackler, J. P., Jr.; Khan, M. N. I.; King, C.; Staples, R. J.; Winpenney, R. E. P.,

Organometallics, 1991, 10, 2178-2183.

75

37 Bruker Advanced X-ray Solutions. SMART for WNT/2000 (Version 5.628); Bruker

AXS Inc.; Madison, WI, 1997-2002.

38 Bruker Advanced X-ray Solutions. SAINT (Version 6.45); Bruker AXS Inc.; Madison,

WI, 1997-2003.

39 Bruker Advanced X-ray Solutions. SHELXTL (Version 6.10); Bruker AXS Inc.;

Madison, WI, 2000.

76

Chapter 4

Synthesis and Crystal Structure of a Centrosymmetric, Di-Gold(I) Disubstituted

Bithiophene

4.1 Introduction

Thiophenes are interesting due to their structural and electronic tunability. They

show application in organic semiconductors in electronic devices such as organic light-

emitting diodes (OLEDs),1,2 organic field effect transistors (OFETs), organic solar cells

(OSCs), spatial light modulators,3 electro-optical modulators,4,5 and photovoltaic cells6.

Bi- and terthiophenes have been given greater interest because they occur frequently as

acetylenic derivatives in certain plants.7 In addition, biological activity has been seen in

several isolated or synthesized α-conjugated oligothiophenes. These include skin pigmentation generation and herbicide function or inhibition of feed germination.8

Phototoxicity against nematodes, algae, human erythrocytes, insect larvae and eggs has

also been seen, but is dependent on singlet oxygen generation of the oligomers upon

illumination.9

Structure

Polythiophenes form a stretched S-anti conformation where the repeat units are generated from planar thiophene units approximately 7.8 Å in length.10 van der Waals forces weakly bind the thiophene chains but are destroyed through interchain rotation about the σ-bound interconnecting thiophene rings. These compounds can be regarded as

2 conjugated chains with sp px-carbon atoms stabilized by sulfur atoms with an analogous structure to cis-polyacetylenes (Figure 4.1). Delocalization of charge carriers on the

77 conjugated system enable transduction of electronic effects and are represented by resonance structures.

Figure 4.1: Resonance structures of polyenes, oligothiophenes, and oligo-p-phenylenes. Figure from ref, 11.

Positive charges in oligothiophenes are called radical cations.121314151617 Addition of an oxidizing agent such as ferric chloride or photochemical methods produce these cations in solution. Introduction of a charge onto a chain induces a structural, geometric change also known as a polaron. The spatial extension of polarons was calculated for various π-conjugated polymers.18,19,20 Five monomer units make up that in polythiophenes, however due to the short length of the oligomer segment, polarons are not free to move along the chain and the concept was changed to a radical cation.

Synthesis

The first synthesis of polythiophenes was reported by two separate groups in

1980.21,22 Formation of the polythiophene involved the use of metal-catalyzed polycondensation polymerization of 2,5-dibromothiophene. Magnesium in

78 tetrahydrofuran reacts with the dibromothiophene to yield a low molecular weight

polythiophene along with 1-3% impurities as determined by elemental analysis. The

reaction differs in catalyst, Yamamoto used Ni(bipy)Cl2 while Lin and Dudek used

M(acac)2 where M=Pd, Ni, or Co, or Fe(acac)3. The resulting polymer is insoluble in

THF and as such, precipitates out of solution for a 78% yield. Steinkopf synthesized a

series of α-oligothiophenes up to the heptamer in order to study the difference between

them and corresponding benzenes with aliphatic conjugated chains.23

Oligothiophenes can be generated through two methods: conjugated polymers can

be produced through polymerization of the corresponding monomer and processed from

solution or built up through multi-step syntheses and processed through vacuum

evaporation techniques, the latter of which results in more defect-free layers and films.

More specifically the first method involves either C-C linkage reactions between thiophenes and/or oligothiophenes, or ring closure from acylic precursor molecules. A recent review reports on the various syntheses and structure-function relationships of oligothiophenes generated on through 2007. Figure 4.2 displays several substituted thiophenes. Halogenated thiophenes such as compound A are often used as the precursor to alternate thiophenes such as thiol derivatives. Product B, 3,3’’’-dihexyl-

2,2’:5’2’’:5’’,2’’’-quaterthiophene, was generated from nickel-catalyzed coupling of

5,5’-dibromo-2,2’-bithiophene and 3-hexyl-2-thienylmagnesium bromide in ether/benzene.24 Lithiation followed by oxidative coupling with copper(II) chloride

resulted in a mixture of tetrahexylocti- and hexahexylduodecithiophene derivatives.

Separation by column chromatography, formylation, and treatment with fullerene and N- methylglycine gave the final products. Complex C was synthesized from a condensation

79 reaction of 3’-formyl-2,2’:5’2’’-terthiophene with pyrrole using Lewis acid catalyst

boron trifluoride diethyl etherate.25 The reaction was heated with zinc acetate yielding the metalated compound. Finally, McMurray reaction of 5-(2-ferrocenylvinyl)thiophene-2-

carboxaldehyde and TlCl4 in THF resulted in compound D where the ferrocene groups

are attached through vinyl linkage.26 Addition of zinc powder followed by column

chromatography isolated the pure product.

(a) (b)

(c) (d)

Figure 4.2: Examples of various oligothiophenes used or synthesized for use in electronic applications. Figure from Ref. 27.

Gold

Third row transition metal gold is one of the coinage metals. It complexes in

oxidation states I, II, and III and has been shown to have medicinal uses for certain Au(I)

and Au(III) species.28 Gold has a d10 electron count and has found many uses for the

treatment of rheumatoid arthritis (Figure 4.3).28 Compounds 1-5 are first generation,

80 water soluble drugs.28 The need to be taken intravenously, as well as the risk of

nephrotoxicity lead to the generation of compound 6, Auranofin®, a lipophilic drug.28

This drug can be taken orally decreasing the gold concentration building up in the kidneys. There are several reviews on gold chemistry complexes with carbon, nitrogen, or phosphorus ligands as well as gold clusters.29,30,31 Anti-tumor effects using gold drugs

has prompted further investigation into their anti-cancer activity.32

CH2OH NaO C O 2

OH

OH S Au NaO C S Au 2 n OH n 1 2

HO

Au Na3[O3S-S-Au-S-SO3] S SO3Na n 3 4

CO2H PEt CH OAc 3 S Au 2 Au O S OAc OAc OAc n NH2 6 5

Figure 4.3: First and second generation gold-containing rheumatoid arthritis drugs. (1) Aurothioglucose, (2) disodium aurothiomalate, (3) tri-sodium bis(thiosulphato)gold, (4) aurothiopropanol sulphonate, (5) gold (I) 4-amino-2-mercaptobenzoate, and (6)[tetra-O-acetyl-β-D-(glucopyranosyl)thio]-triethyl-phosphine)gold(I).

Gold has found usage in many instances of thiophene chemistry.33343536 Gold

nanoparticles have been attached to thiophenes to form self-assembled monolayers

81 (SAMs).37 The thiophenes are anchored via sulfur–gold bond. Photochemical studies use

gold electrodes to study the morphology and currentvoltage (I–V) characteristics of

self-assembled films.38 Finally, Clot and coworkers synthesized aurated bi- and

quaterthiophenes (Figure 4.4).39 Reaction of the starting bi- or quaterthiophene with

Au(tht)Cl results in the aurated species. Aurophilic interactions are seen only in the

quaterthiophene where the P-Au-Cl bond angles deviate from linearity at 174.28° and

176.87°. Metal complexation results in a blue shift of the π-π* absorption band and an

increase in the oxidation potential. Increasing the length of the thiophene red-shifts the

absorption spectrum and decreases the potential. The purpose of the research of this

chapter is the synthesis of aurated thiophenes where phosphinegold(I) ligands are bound

to the periphery of the thiophene unit.

(b) (a)

Figure 4.4: (a) 3,3’-Bis(diphenylphosphino)-2,2’-bithiophene gold(I) chloride and (b) 3,3’’’-Dihexyl-3’,3’’- bis(diphenylphosphino)-2,5’:2’,2’’:5’’,2’’’-quaterthiophene gold(I) chloride. Figure from Ref. 27.

82 4.2 Results and Discussion

Aurated thiophene was generated from reaction of di-borylated thiophene with

cesium carbonate as a base and triphenylphosphinegold(I) bromide. Stirring of borylated

bithiophene, base, and gold(I) ligand in isopropanol (IPA) solution at 50 °C afforded the

white product in decent yield (98.6%). Attempts to aurate terthiophenes were also made

but required the need to synthesize the borylated derivative. Unfortunately several

attempts did not successfully generate the borylated terthiophene preventing the

preparation of this product. Scheme 4.1 shows the actual reaction conditions for

generation of the aurated bithiophene.

O PPh AuBr S 3 B O Cs2CO3 S B Ph3PAu O S S AuPPh3 O IPA, 50 °C, 24h 7

Scheme 4.1: Auration of thiophene.

Product formation was monitored by 31P NMR spectroscopy which showed a singlet at δ 44.0 ppm for the 5,5’-[(PPh3)Au]2-2, 2’-bithiophene. This is a downfield shift from the free ligand at δ 35.2 ppm. This is characteristic for bonding of PPh3Au group

20 1 with a carbon skeleton. H NMR displayed the protons of the PPh3 group as well as

those of the thiophene.

83 Spectroscopic Data

30000

5,5'-[(PPh3)Au]2-2,2'-bithiophene 25000 5,5'-(Bpin)2-2,2'-bithiophene

20000 ) -1

cm 15000 -1 (Mol ε 10000

5000

0

300 400 500 600 700 800 Wavelength (nm)

Figure 4.5: Absorption spectra of 5,5’-[(PPh3)Au]2-2,2’-bithiophene and 5,5’-(Bpin)2-2,2’-bithiophene in CH2Cl2.

Figure 4.5 shows the absorption spectra of the starting bisboropinacolato- and

digold(I) thiophenyls. The spectrum demonstrates a red-shifting of the absorbance from

the borylated thiophene. An increase in absorbance is also observed with attachment of the gold(I) ligand. This is in agreement with Heng et. al. who reported on the

photophysics of aurated pyrenes noting both the red-shift in absorbance upon binding of

40 the (PPh)3Au- ligand as well as its additive attribute. This is also in accord with red- shifting and additive affects seen for gold(I) attachment to pyrene as determined in the previous chapter.

84

Figure 4.6: Crystal structure of 5,5’-[(PPh3)Au]2-2,2’-bithiophene (50%, 100 K) probability ellipsoids are shown. Hydrogen atoms are omitted for clarity. Unlabeled atoms are carbon.

Vapor diffusion of diethyl ether into a chloroform solution produced colorless

crystals for diffraction (Figure 4.6). 5,5’-[(PPh3)Au]2-2, 2’-bithiophene gave the monoclinic C2/c space group with Z = 4. The ∠C1-Au1-P1 angle is linear at 174.7(3)°.

The Au1—C1 bond length is 2.023(9) Å and the Au1—P1 bond length is 2.277(2) Å. All angles and bond lengths are normal with no aurophilic interactions observed. This is in agreement with that seen for auration of pyrene from Chapter 2. Table 4.1 collects crystallographic data for 4.7.

85 Table 4.1: Crystallographic Data for Compound 4.7 Collected at 100 ± 2 K.

4.7 formula C44H34Au2P2S2 mol wt 1082.70 cryst syst Monoclinic space group C2/c a(Å) 17.453(3) b (Å) 13.060(3) c (Å) 16.282(3) α (deg) 90 β (deg) 95.362(3) γ (deg) 90 V (Å) 3695.0(11) Z 4 index angles -22≤h≤22 -16≤k≤16 -21≤l≤21 ρ (Mg/m3) 1.946 abs coeff (mm-1) 8.164 θ range (deg) 1.95-27.53 F(000) 2072 total no. of rflns 20969 no. of indep rflns 4214 (R(int) = 0.0661) no. of params varied 226 final R indices (I > 2σ(I)) R1 = 0.0376, wR2 = 0.1062 R indices (all data) R1 = 0.0710, wR2 = 0.1404 GOOF 1.004 largest diff peak and hole (e Å-3) 2.406 and -1.843

Table 4.2: Selected Interatomic Distances (Å) and Angles (deg) for 4.7.

Au1–C1 2.023(9) Au1–P1 2.277(2) S1–C1 1.729(9) S1–C4 1.735(8) ∟C1–Au1–P1 174.7(3) ∟C1–S1–C4 94.1(4)

86 4.3 Conclusion

Triphenylphosphinegold(I) thiophene was generated from a base catalyzed reaction of borylated thiophene and a triphenylphosphinegold(I) ligand. 31P and 1H NMR are in agreement with the expected binding positions of the ligand. Binding of the gold causes a red-shift and increase of the absorbance spectra. Crystallographic analysis of the new compound prove attachment of the gold(I) ligands to the carbon atom adjacent to the sulfur atom as opposed to binding to it. No aurophilic interactions were revealed in this compound. Further investigation is needed to study the electronic characteristics of the complex.

87 4.4 Experimental

All reactions were carried out using standard Schlenk technique. Solvents and

reagents were used as received. Microanalyses (C and H) were performed by Robertson

Microlit Laboratories, Inc. NMR spectra (1H and 31P{1H}) were recorded on a Varian

AS-400 spectrometer operating at 399.7 and 161.8 MHz respectively. For 1H NMR

spectra, chemical shifts were determined relative to the solvent residual peaks. For

31 1 P{ H} NMR spectra, chemical shifts were determined relative to 85% aqueous H3PO4.

X-Ray Structure Determinations. X-ray crystallography was conducted by Nihal

Deligonul. Single-crystal X-ray data were collected on a Bruker AXS SMART APEX

CCD diffractometer using monochromatic Mo Kα radiation with the omega scan

technique. The unit cells were determined using SMART41 and SAINT+.42 Data collection for all crystals was conducted at 100 K (-173.5 °C). All structures were solved by direct methods and refined by full matrix least-squares against F2 with all reflections

using SHELXTL.43 Refinement of extinction coefficients was found to be insignificant.

All non-hydrogen atoms were refined anisotropically. All hydrogen atoms were placed in standard calculated positions, and all hydrogen atoms were refined with an isotropic displacement parameter 1.2 times that of the adjacent carbon (1.5 times for methyl hydrogen atoms).

5,5’-[(PPh3)Au]2-2, 2’-bithiophene (4.7)- To a 100-mL Schlenk flask 5, 5’-

(bisboropinacolato)-2, 2’-bithiophene (40.0 mg, 0.10 mmol), Cs2CO3 (65.4 mg, 0.20

mmol), and (PPh3)AuBr (154.7 mg, 0.29 mmol) were added. 8 mL degassed isopropanol was added to the flask which was then stirred 24 h under Argon. Formation of a white precipitate resulted. Solvent was removed under rotary evaporation and resulting white

88 powder was dissolved in chloroform (20 mL) and extracted four times with H2O (20 mL

portions). Chloroform solution was dried with Na2SO4 and solvent was removed via rotary evaporation. Trituration was performed twice with pentane resulting in a slightly yellow powder which was further washed with benzene. A white powder remained.

Colorless crystals formed from vapor diffusion of diethyl ether into a chloroform

1 solution. (97.2 mg, 98.6% Yield) H NMR (CDCl3): δ 7.62-7.57 (m), 7.50-7.43 (m), 7.04

(t) ppm. 31P{1H} NMR: δ 44.0 ppm. m/z Calcd. 1083.10, Found 1083.14.

89 Spectra

31 Figure 4.7: P NMR for 5,5’-[(PPh3)Au]2-2, 2’-bithiophene

90

1 Figure 4.8: H NMR for 5,5’-[(PPh3)Au]2-2, 2’-bithiophene.

91

Figure 4.9: Mass Spectra of 5,5’-[(PPh3)Au]2-2, 2’-bithiophene.

92 4.5 Cited Work

1 Geiger, F.; Stoldt, M.; Schweizer, H.; Bauerle, P.; Umbach, E. Adv. Mater., 1993, 5,

922-925.

2 Horowitz, G.; Delannoy, P.; Bouchriha, H., et. al., Adv. Mater., 1994, 6, 752-755.

3 Fichou, D.; Nunzi, J. -M.; Charra, F.; Pfeffer, N. Adv. Mater., 1994, 6, 64-67.

4 Charra, F.; Lavie, M. -P.; Lorin, A.; Fichou, D. Synth. Met., 1994, 65, 13-17.

5 Harrison, M. G.; Friend, R. H.; Garnier, F.; Yassar, A. Synth. Met., 1994, 67, 215-221.

6 Noma, N.; Tsuzuki, T.; Shirota, Y. Adv. Mater., 1995, 7, 647-648.

7 (a) Downum, K. R.; Provost, D.; Swain, L. Bioact. Mol., 1988, 7, 151-158.; (b) Jente,

R.; Olatunji, G. A.; Bosold, F. Phytochemistry, 1981, 20, 2169-2175.; (c) Bohlmann, F.;

Zdero, C. Chem. Ber., 1976, 109, 901-905.

8 (a) Marles, R. J.; Compadre, R. L.; Compadre, C. M. et. al., Pestic. Biochem. Physiol.,

1991, 41, 89-100. (b) Scaiano, J. C.; MacEacherri, A.; Arnason, J. T.; Morand, P.; Weir,

D. Photochem. Photobiol., 1987, 46, 193-199. (c) Arnason, J. T.; Philogene, B. J. R.;

Berg, C. et. al., Phytochemistry, 1986, 25, 1609-1611. (d) Kagan, J.; Arora, S. K. J. Org.

Chem., 1983, 48, 4317-4320.

9 (a) Bakker, J.; Gommers, F. J.; Nieuwenhuis, I.; Wynberg, H. J. Biol. Chem., 1979, 254,

1841-1844. (b) Arnason, J. T.; Chan, G. F. Q.; Wat, C. K.; Downum, K.; Towers, G. H.

N. Photochem, Photobiol., 1981, 33, 821-824.

10 Brückner, S.; Porzio, W. Makromol. Chem., 1988, 189, 961-967.

11 Bäuerle, P. “Synthesis of Oligothiophenes.” In: Handbook of Oligo- and Polythiophenes;

Fichou, D., Ed.; Wiley-VCH: Weinheim, 1999.

93

12 (a) Fichou, D.; Horowitz, G.; Garnier, F. Synth. Met., 1990, 39, 125-131.; (b) Fichou,

D.; Horowitz, G.; Xu, B.; Garnier, F. Synth. Met., 1990, 39, 243-259.

13 (a) Horowitz, G.; Yassar, A.; von Bardeleben, H. J. Synth. Met., 1994, 62, 245-252.;

(b)Nessakh, B.; Horowitz, G.; Garnier, F.; Deloffre, F.; Srivastava, P.; Yassar, A. J.

Electroanal. Chem., 1995, 399, 97-103.

14 Hotta, S.; Waragai, K. J. Mater. Chem., 1991, 1, 835-842.

15 (a) Guay, J.; Diaz, A.; Wu, R. L.; Tour, J. M.; Dao, L. H. Chem. Mater., 1992, 4, 254-

255. (b) Guay, J.; Kasai, P.; Diaz, A.; Wu, L.; Tour, J. M.; Dao, L. H. Chem. Mater.,

1992, 4, 1097-1105.

16 Caspar, J. V.; Ramamurthy, V.; Corbin, D. R. J. Am. Chem. Soc., 1991, 113, 600-610.

17 Evans, C. H.; Scaiano, J. C. J. Am. Chem. Soc., 1990, 112, 2694-2701.

18 (a) Cornil, J.; Bredas, J. L. Adv. Mater., 1995, 7, 295-297. (b) Cornil, J.; Beljonne, D.;

Bredas, J. L. J. Chem. Phys., 1995, 103, 842-849.

19 Ehrendorfer, C.; Karpfen, A. J. Phys. Chem., 1994, 98, 7492-7496.

20 Tol, A. J. W. Chem. Phys., 1996, 208, 73-79.

21 Yamamoto, T.; Sanechika, k.; Yamamoto, A. J. Polym. Sci, Polym. Lett. Ed., 1980, 18,

9-12.

22 Lin, J. W. P.; Dudek, L. P. J. Polym. Sci. Polym. Chem. Ed., 1980, 18, 2869-2873.

23 (a) Steinkopf, W.; Kohler, W. Lieb. Ann. Chem., 1936, 522, 17-31.; (b) Steinkopf, W.;

Petersdorf, H. -J.v.; Gording, R. Lieb. Ann. Chem., 1937, 527, 272-274. (c) Steinkopf,

W.; Leitsmann, R.; Hoffmann, K. -H. Lieb. Ann. Chem., 1941, 546, 180-184.

24 Yamashiro, T.; Aso, Y.; Otsubo, T. Chem. Lett., 1999, 28, 443-444.

94

25 Collis, G. E.; Campbell, W. M.; Officer, D. L.; Burrell, A. K. Org. Biomol. Chem.,

2005, 3, 2075-2084.

26 Justin Thomas, K. R.; Lin, J. T.; Wen, Y. S. Organometallics, 2000, 19, 1008-1012.

27 Mishra, A.; Ma, C.-Q.; Bäuerle, P. Chem. Rev. 2009, 109, 1141–1276.

79 28 Ho, S. Y.; Tiekink, E. R. T. “ Au Gold-Based Metallotherapeutics: Use and Potential.”

In: Metallotherapeutic Drugs & Metal-based Diagnostic Agents: The Use of Metals in

Medicine; Gielen, M.; Tiekink, E. R. T., Eds.; Wiley: New York, 2005; pp 507–528.

29 Fernández, E. J.; Laguna, A.; Olmos, M. E. In: Gold: Progress in Chemistry,

Biochemistry and Technology; Schmidbaur, H., Ed.; Wiley: Chichester, 1999.

30 Gimeno, M. C.; Laguna, A. “Silver and Gold.” In: Comprehensive Coordination

Chemistry II. Elsevier: New York; 2003; pp. 911-1145.

31 Puddephatt, R. J. “Gold.” In: Comprehensive Organometallic Chemistry; Wilkinson,

G.; Stone, F. G. A.; Abel, E. W., Eds.; Pergamon Press: Oxford, 1982; pp 765-821.

32 (a) Simon, T. M.; Kunishima, D. H.; Vibert, G. J.; Lorber, A. Cancer, 1979, 44, 1865-

1975. (b) Simon, T. M.; Kunishima, D. H.; Vibert, G. J.; Lorber, A. Cancer Res., 1981,

41, 94-97. (c) Barnard, P. J.; Berners-Price, S. J.; Coord. Chem. Rev., 2007, 251, 1889-

1902.

33 Zhu, L.; Tang, H.; Harima, Y.; Yamashita, K.; Hirayama, D.; Aso, Y.; Otsubo, T.

Chem. Commun. 2001, 1830–1831.

34 Michalitsch, R.; Nogues, C.; Najari, A.; El Kassmi, A.; Yassar, A.; Lang, P.; Garnier,

F. Synth. Met. 1999, 101, 5–6.

35 Negishi, N.; Yamada, K.; Takimiya, K.; Aso, Y.; Otsubo, T.; Harima, Y. Chem. Lett.

2003, 32, 404–405.

95

36 Negishi, N.; Takimiya, K.; Otsubo, T.; Harima, Y.; Aso, Y. Chem. Lett. 2004, 33, 654–

655.

37 Liedberg, B.; Yang, Z.; Engquist, I.; Wirde, M.; Gelius, U.; Götz, G.; Bäuerle, P.;

Rummel, R. M.; Ziegler, C.; Gopel, W. J. Phys. Chem. B, 1997, 101, 5951–5962.

38 Huang, W.; Masuda, G.; Maeda, S.; Tanaka, H.; Ogawa, T. Chem.-Eur. J. 2006, 12,

607–619.

39 Clot, O.; Akahori, Y.; Moorlag, C.; Leznoff, D. B.; Wolf, M. O.; Batchelor, R. J.;

Patrick, B. O.; Ishii, M. Inorg. Chem. 2003, 42, 2704–2713.

40 Heng, W. Y.; Hu, J.; Yip, J. H. K. Organometallics, 2007, 26, 6760–6768.

41 Bruker Advanced X-ray Solutions. SMART for WNT/2000 (Version 5.628); Bruker

AXS Inc.; Madison, WI, 1997-2002.

42 Bruker Advanced X-ray Solutions. SAINT (Version 6.45); Bruker AXS Inc.; Madison,

WI, 1997-2003.

43 Bruker Advanced X-ray Solutions. SHELXTL (Version 6.10); Bruker AXS Inc.;

Madison, WI, 2000.

96 Chapter 5

Conclusion

The substitution chemistry of rhenium(III) and molybdenum(II) hexanuclear clusters was investigated. Tributylphosphine was used to replace the apical ligands on

4- 4- [Re6Se8I6] and [Re6S8Br6] cluster cores. Different substitution patterns resulted from

varying phosphine equivalents or reaction times. 31P NMR and mass spectrometry

confirmed trans- and cis-tetraphosphine substituted clusters as well as penta-phosphine substitution. Smaller amounts yield greater cis- and trans-cluster, while higher equivalents generate the penta-cluster almost exclusively.

Studies of the molybdenum chloride cluster were also conducted. Triflate ligands

- replaced the six apical Cl ligands on the (Ph4P)2[Mo6Cl14] cluster. Triflate ligands are

more labile than chloride ligands and can allow for further substitution in future

endeavors.

Mono- and digold(I) pyrenes were generated through transmetalation reactions of boronic esters, base, and LAuX where L = PCy3 or PPh3 and X = N3, OAc, or Br. The

crystal structures of two of the compounds were solved as proof of the structures. Both

31P and 1H NMR are in agreement with expectations for attachment of one or two

PCy3Au- or PPh3Au- ligands to the pyrene skeleton as well as completion of the

reactions. Phosphinegold(I) ligand attachment replaces that of the boryl ligand and is

found at pyrene ends as opposed to positions ortho to the ring junctures. Crystal

structures of two of the complexes were generated displaying compounds with both one

and two phosphinegold(I) ligands attached. No aurophilic interactions were observed for

97 any of the complexes. Finally, absorption spectra demonstrate a red shift in absorption as

well as the additive effect as the number of ligands on the pyrene increases.

Lastly, triphenylphosphinegold(I) thiophene was generated from a base catalyzed reaction of borylated thiophene and a triphenylphosphinegold(I) ligand. 31P and 1H NMR

are in agreement with the expected binding positions of the ligand. Binding of the gold

causes a red-shift and increase of the absorbance spectra. Crystals of the new compound

prove attachment of the gold(I) ligands to the carbon atom adjacent to the sulfur atom as

opposed to binding to it. No aurophilic interactions were demonstrated in this compound.

98 X-Ray Crystallographic Data

Table 2.2. Crystal data and structure refinement for 2.13.

Compound 2.13

Empirical formula C54H40Cl8F18Mo6O18P2S6

Formula weight 2432.40

Temperature 373(2) K

Wavelength 0.71073 A

Crystal system, space group Triclinic, P -1

Unit cell dimensions a = 11.8710(4) A alpha = 74.640(2) deg.

b = 13.8264(5) A beta = 75.367(2) deg.

c = 14.0267(5) A gamma = 74.263(2) deg.

Volume 2095.87(13) A3

99 Z, Calculated density 1, 1.927 Mg/m3

Absorption coefficient 1.412 mm-1

F(000) 1184

Crystal size 0.26 x 0.20 x 0.20 mm

θ range for data collection 1.57 to 27.50 deg.

Limiting indices -14≤h≤15, -17≤k≤17, 0≤l≤18

Reflections collected / unique 9451 / 9451 [R(int) = 0.0000]

Completeness to theta 25.00 98.9 %

Absorption correction Multi-Scan

Max. and min. transmission 0.757746 and 0.703197

Refinement method Full-matrix least-squares on F2

Data / restraints / parameters 9451 / 0 / 505

Goodness-of-fit on F2 1.019

Final R indices [I>2σ(I)] R1 = 0.0318, wR2 = 0.0845

R indices (all data) R1 = 0.0383, wR2 = 0.0886

Largest diff. peak and hole 1.392 and -1.233 e.Å-3

100 Table 2.3. Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2 x 103) for 2.13. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

______

x y z U(eq)

______

Mo(1) 10086(1) -878(1) 4189(1) 15(1)

Mo(2) 10941(1) 730(1) 3972(1) 15(1)

Mo(3) 8672(1) 833(1) 4553(1) 15(1)

Cl(8) 10460(1) -2320(1) 5631(1) 18(1)

Cl(3) 7931(1) -725(1) 4776(1) 18(1)

Cl(2) 9709(1) 647(1) 2830(1) 19(1)

Cl(1) 12254(1) -932(1) 3674(1) 18(1)

S(3) 6344(1) 1905(1) 3417(1) 19(1)

P(1) 5093(1) 6707(1) 2018(1) 18(1)

C(8) 7476(2) 6585(2) 1145(2) 24(1)

C(12) 6968(2) 5007(2) 2199(2) 22(1)

C(19) 4359(2) 6626(2) 1079(2) 22(1)

C(11) 8155(3) 4501(2) 1977(2) 26(1)

C(7) 6633(2) 6047(2) 1788(2) 19(1)

C(2) 4330(3) 8815(2) 1389(2) 26(1)

C(18) 4137(2) 6516(2) 4071(2) 22(1)

101 C(13) 4336(2) 6110(2) 3223(2) 20(1)

C(4) 4992(3) 10058(2) 1909(2) 33(1)

C(14) 3942(2) 5224(2) 3302(2) 24(1)

C(1) 5041(2) 8026(2) 1972(2) 20(1)

C(15) 3370(2) 4745(2) 4224(2) 26(1)

C(5) 5708(3) 9275(2) 2485(2) 29(1)

C(20) 5021(3) 6415(2) 159(2) 27(1)

C(22) 3207(3) 6607(3) -395(3) 44(1)

C(16) 3182(2) 5153(2) 5068(2) 25(1)

C(3) 4308(3) 9833(2) 1365(2) 32(1)

C(6) 5736(2) 8263(2) 2514(2) 24(1)

C(23) 2551(3) 6795(4) 521(3) 51(1)

C(21) 4435(3) 6412(3) -568(2) 36(1)

C(10) 8996(3) 5033(2) 1336(2) 27(1)

C(9) 8658(3) 6070(2) 925(2) 28(1)

O(2) 12106(2) 1550(1) 2832(1) 21(1)

O(5) 7154(2) 1896(1) 4076(2) 21(1)

O(6) 6753(2) 1074(2) 2908(2) 29(1)

O(7) 5939(2) 2921(2) 2869(2) 27(1)

O(1) 10268(2) -1918(1) 3256(2) 24(1)

O(4) 10736(2) 2728(2) 1798(2) 31(1)

O(3) 12881(2) 2264(2) 1101(2) 30(1)

S(2) 11943(1) 2409(1) 1945(1) 21(1)

102 S(1) 9514(1) -2413(1) 2913(1) 26(1)

F(1) 5363(2) 812(1) 5081(1) 32(1)

F(2) 4292(2) 1395(2) 3935(2) 38(1)

F(3) 4479(2) 2399(1) 4799(2) 39(1)

C(27) 5043(2) 1612(2) 4362(2) 24(1)

C(24) 3113(3) 6823(3) 1263(3) 37(1)

C(25) 12191(3) 3465(2) 2370(3) 29(1)

C(26) 9832(3) -3716(3) 3661(3) 42(1)

F(5) 12105(2) 4309(1) 1642(2) 43(1)

F(4) 13278(2) 3247(1) 2577(2) 39(1)

F(6) 11404(2) 3661(2) 3184(2) 49(1)

F(8) 9272(2) -4305(2) 3428(2) 52(1)

F(7) 10979(2) -4125(2) 3481(3) 82(1)

F(9) 9461(3) -3709(2) 4628(2) 84(1)

O(8) 9962(3) -2520(2) 1897(2) 49(1)

O(9) 8278(2) -2033(2) 3217(3) 55(1)

C(17) 3571(3) 6030(2) 4994(2) 24(1)

______

103 Table 2.4. Bond lengths [Å] and angles [°] for 2.13.

______

Mo(1)-O(1) 2.1257(19)

Mo(1)-Cl(3) 2.4497(6)

Mo(1)-Cl(2) 2.4637(6)

Mo(1)-Cl(8) 2.4700(6)

Mo(1)-Cl(1) 2.4774(6)

Mo(1)-Mo(3)#1 2.5908(3)

Mo(1)-Mo(3) 2.5931(3)

Mo(1)-Mo(2)#1 2.5951(3)

Mo(1)-Mo(2) 2.6032(3)

Mo(2)-O(2) 2.1274(17)

Mo(2)-Cl(3)#1 2.4610(7)

Mo(2)-Cl(2) 2.4684(7)

Mo(2)-Cl(8)#1 2.4702(6)

Mo(2)-Cl(1) 2.4745(6)

Mo(2)-Mo(3) 2.5855(3)

Mo(2)-Mo(1)#1 2.5951(3)

Mo(2)-Mo(3)#1 2.5948(3)

Mo(3)-O(5) 2.1228(18)

Mo(3)-Cl(3) 2.4581(6)

Mo(3)-Cl(2) 2.4664(7)

Mo(3)-Cl(8)#1 2.4671(6)

104 Mo(3)-Cl(1)#1 2.4753(7)

Mo(3)-Mo(1)#1 2.5908(3)

Mo(3)-Mo(2)#1 2.5948(3)

Cl(8)-Mo(3)#1 2.4671(6)

Cl(8)-Mo(2)#1 2.4702(6)

Cl(3)-Mo(2)#1 2.4610(7)

Cl(1)-Mo(3)#1 2.4753(7)

S(3)-O(6) 1.421(2)

S(3)-O(7) 1.430(2)

S(3)-O(5) 1.4890(19)

S(3)-C(27) 1.823(3)

P(1)-C(19) 1.793(3)

P(1)-C(1) 1.794(3)

P(1)-C(7) 1.798(3)

P(1)-C(13) 1.801(3)

C(8)-C(9) 1.389(4)

C(8)-C(7) 1.400(4)

C(8)-H(8) 0.9300

C(12)-C(11) 1.389(4)

C(12)-C(7) 1.388(4)

C(12)-H(12) 0.9300

C(19)-C(20) 1.388(4)

C(19)-C(24) 1.398(4)

105 C(11)-C(10) 1.393(4)

C(11)-H(11) 0.9300

C(2)-C(3) 1.392(4)

C(2)-C(1) 1.396(4)

C(2)-H(2) 0.9300

C(18)-C(17) 1.387(4)

C(18)-C(13) 1.388(4)

C(18)-H(18) 0.9300

C(13)-C(14) 1.395(4)

C(4)-C(3) 1.383(5)

C(4)-C(5) 1.390(5)

C(4)-H(4) 0.9300

C(14)-C(15) 1.385(4)

C(14)-H(14) 0.9300

C(1)-C(6) 1.401(4)

C(15)-C(16) 1.386(4)

C(15)-H(15) 0.9300

C(5)-C(6) 1.379(4)

C(5)-H(5) 0.9300

C(20)-C(21) 1.373(4)

C(20)-H(20) 0.9300

C(22)-C(23) 1.373(5)

C(22)-C(21) 1.378(5)

106 C(22)-H(22) 0.9300

C(16)-C(17) 1.381(4)

C(16)-H(16) 0.9300

C(3)-H(3) 0.9300

C(6)-H(6) 0.9300

C(23)-C(24) 1.383(5)

C(23)-H(23) 0.9300

C(21)-H(21) 0.9300

C(10)-C(9) 1.385(4)

C(10)-H(10) 0.9300

C(9)-H(9) 0.9300

O(2)-S(2) 1.4868(19)

O(1)-S(1) 1.491(2)

O(4)-S(2) 1.431(2)

O(3)-S(2) 1.422(2)

S(2)-C(25) 1.832(3)

S(1)-O(9) 1.413(2)

S(1)-O(8) 1.421(3)

S(1)-C(26) 1.822(4)

F(1)-C(27) 1.327(3)

F(2)-C(27) 1.325(3)

F(3)-C(27) 1.326(3)

C(24)-H(24) 0.9300

107 C(25)-F(6) 1.319(4)

C(25)-F(4) 1.331(4)

C(25)-F(5) 1.331(4)

C(26)-F(7) 1.312(5)

C(26)-F(9) 1.317(5)

C(26)-F(8) 1.327(4)

C(17)-H(17) 0.9300

O(1)-Mo(1)-Cl(3) 94.62(5)

O(1)-Mo(1)-Cl(2) 93.22(6)

Cl(3)-Mo(1)-Cl(2) 89.77(2)

O(1)-Mo(1)-Cl(8) 90.99(6)

Cl(3)-Mo(1)-Cl(8) 90.21(2)

Cl(2)-Mo(1)-Cl(8) 175.77(2)

O(1)-Mo(1)-Cl(1) 89.86(5)

Cl(3)-Mo(1)-Cl(1) 175.51(2)

Cl(2)-Mo(1)-Cl(1) 89.75(2)

Cl(8)-Mo(1)-Cl(1) 89.94(2)

O(1)-Mo(1)-Mo(3)#1 132.74(6)

Cl(3)-Mo(1)-Mo(3)#1 118.098(18)

Cl(2)-Mo(1)-Mo(3)#1 118.159(17)

Cl(8)-Mo(1)-Mo(3)#1 58.294(15)

Cl(1)-Mo(1)-Mo(3)#1 58.419(17)

108 O(1)-Mo(1)-Mo(3) 137.64(6)

Cl(3)-Mo(1)-Mo(3) 58.263(15)

Cl(2)-Mo(1)-Mo(3) 58.317(16)

Cl(8)-Mo(1)-Mo(3) 118.310(17)

Cl(1)-Mo(1)-Mo(3) 117.894(16)

Mo(3)#1-Mo(1)-Mo(3) 89.604(10)

O(1)-Mo(1)-Mo(2)#1 135.83(5)

Cl(3)-Mo(1)-Mo(2)#1 58.313(17)

Cl(2)-Mo(1)-Mo(2)#1 118.323(17)

Cl(8)-Mo(1)-Mo(2)#1 58.315(16)

Cl(1)-Mo(1)-Mo(2)#1 118.215(18)

Mo(3)#1-Mo(1)-Mo(2)#1 59.811(9)

Mo(3)-Mo(1)-Mo(2)#1 60.018(8)

O(1)-Mo(1)-Mo(2) 134.15(5)

Cl(3)-Mo(1)-Mo(2) 117.930(16)

Cl(2)-Mo(1)-Mo(2) 58.232(16)

Cl(8)-Mo(1)-Mo(2) 118.226(17)

Cl(1)-Mo(1)-Mo(2) 58.230(15)

Mo(3)#1-Mo(1)-Mo(2) 59.943(8)

Mo(3)-Mo(1)-Mo(2) 59.679(8)

Mo(2)#1-Mo(1)-Mo(2) 89.920(9)

O(2)-Mo(2)-Cl(3)#1 89.48(6)

O(2)-Mo(2)-Cl(2) 95.30(6)

109 Cl(3)#1-Mo(2)-Cl(2) 175.21(2)

O(2)-Mo(2)-Cl(8)#1 93.08(5)

Cl(3)#1-Mo(2)-Cl(8)#1 89.95(2)

Cl(2)-Mo(2)-Cl(8)#1 90.14(2)

O(2)-Mo(2)-Cl(1) 91.01(5)

Cl(3)#1-Mo(2)-Cl(1) 89.87(2)

Cl(2)-Mo(2)-Cl(1) 89.71(2)

Cl(8)#1-Mo(2)-Cl(1) 175.90(2)

O(2)-Mo(2)-Mo(3) 137.95(5)

Cl(3)#1-Mo(2)-Mo(3) 117.874(17)

Cl(2)-Mo(2)-Mo(3) 58.365(15)

Cl(8)#1-Mo(2)-Mo(3) 58.364(14)

Cl(1)-Mo(2)-Mo(3) 118.292(16)

O(2)-Mo(2)-Mo(1)#1 133.41(5)

Cl(3)#1-Mo(2)-Mo(1)#1 57.886(15)

Cl(2)-Mo(2)-Mo(1)#1 118.360(16)

Cl(8)#1-Mo(2)-Mo(1)#1 58.309(16)

Cl(1)-Mo(2)-Mo(1)#1 118.347(17)

Mo(3)-Mo(2)-Mo(1)#1 60.013(8)

O(2)-Mo(2)-Mo(3)#1 132.33(5)

Cl(3)#1-Mo(2)-Mo(3)#1 58.109(15)

Cl(2)-Mo(2)-Mo(3)#1 117.831(16)

Cl(8)#1-Mo(2)-Mo(3)#1 118.241(18)

110 Cl(1)-Mo(2)-Mo(3)#1 58.400(16)

Mo(3)-Mo(2)-Mo(3)#1 89.684(9)

Mo(1)#1-Mo(2)-Mo(3)#1 59.954(8)

O(2)-Mo(2)-Mo(1) 136.36(5)

Cl(3)#1-Mo(2)-Mo(1) 117.885(16)

Cl(2)-Mo(2)-Mo(1) 58.054(15)

Cl(8)#1-Mo(2)-Mo(1) 118.319(16)

Cl(1)-Mo(2)-Mo(1) 58.340(15)

Mo(3)-Mo(2)-Mo(1) 59.968(8)

Mo(1)#1-Mo(2)-Mo(1) 90.080(9)

Mo(3)#1-Mo(2)-Mo(1) 59.793(8)

O(5)-Mo(3)-Cl(3) 96.34(5)

O(5)-Mo(3)-Cl(2) 93.99(6)

Cl(3)-Mo(3)-Cl(2) 89.51(2)

O(5)-Mo(3)-Cl(8)#1 87.56(5)

Cl(3)-Mo(3)-Cl(8)#1 176.10(2)

Cl(2)-Mo(3)-Cl(8)#1 90.26(2)

O(5)-Mo(3)-Cl(1)#1 89.90(6)

Cl(3)-Mo(3)-Cl(1)#1 89.91(2)

Cl(2)-Mo(3)-Cl(1)#1 176.11(2)

Cl(8)#1-Mo(3)-Cl(1)#1 90.05(2)

O(5)-Mo(3)-Mo(2) 133.08(5)

Cl(3)-Mo(3)-Mo(2) 118.288(16)

111 Cl(2)-Mo(3)-Mo(2) 58.441(16)

Cl(8)#1-Mo(3)-Mo(2) 58.479(15)

Cl(1)#1-Mo(3)-Mo(2) 118.658(17)

O(5)-Mo(3)-Mo(1)#1 130.42(5)

Cl(3)-Mo(3)-Mo(1)#1 118.467(17)

Cl(2)-Mo(3)-Mo(1)#1 118.598(16)

Cl(8)#1-Mo(3)-Mo(1)#1 58.402(16)

Cl(1)#1-Mo(3)-Mo(1)#1 58.498(15)

Mo(2)-Mo(3)-Mo(1)#1 60.175(9)

O(5)-Mo(3)-Mo(1) 139.14(5)

Cl(3)-Mo(3)-Mo(1) 57.946(15)

Cl(2)-Mo(3)-Mo(1) 58.215(15)

Cl(8)#1-Mo(3)-Mo(1) 118.819(16)

Cl(1)#1-Mo(3)-Mo(1) 118.389(16)

Mo(2)-Mo(3)-Mo(1) 60.353(8)

Mo(1)#1-Mo(3)-Mo(1) 90.396(10)

O(5)-Mo(3)-Mo(2)#1 136.28(5)

Cl(3)-Mo(3)-Mo(2)#1 58.219(16)

Cl(2)-Mo(3)-Mo(2)#1 118.231(17)

Cl(8)#1-Mo(3)-Mo(2)#1 118.655(18)

Cl(1)#1-Mo(3)-Mo(2)#1 58.368(15)

Mo(2)-Mo(3)-Mo(2)#1 90.316(9)

Mo(1)#1-Mo(3)-Mo(2)#1 60.264(8)

112 Mo(1)-Mo(3)-Mo(2)#1 60.028(9)

Mo(3)#1-Cl(8)-Mo(1) 63.304(15)

Mo(3)#1-Cl(8)-Mo(2)#1 63.158(15)

Mo(1)-Cl(8)-Mo(2)#1 63.376(16)

Mo(1)-Cl(3)-Mo(3) 63.791(15)

Mo(1)-Cl(3)-Mo(2)#1 63.801(16)

Mo(3)-Cl(3)-Mo(2)#1 63.672(16)

Mo(1)-Cl(2)-Mo(3) 63.469(17)

Mo(1)-Cl(2)-Mo(2) 63.714(17)

Mo(3)-Cl(2)-Mo(2) 63.194(17)

Mo(2)-Cl(1)-Mo(3)#1 63.232(16)

Mo(2)-Cl(1)-Mo(1) 63.430(15)

Mo(3)#1-Cl(1)-Mo(1) 63.083(16)

O(6)-S(3)-O(7) 119.60(13)

O(6)-S(3)-O(5) 112.73(12)

O(7)-S(3)-O(5) 111.27(11)

O(6)-S(3)-C(27) 105.44(13)

O(7)-S(3)-C(27) 104.84(12)

O(5)-S(3)-C(27) 100.58(12)

C(19)-P(1)-C(1) 109.90(13)

C(19)-P(1)-C(7) 110.28(13)

C(1)-P(1)-C(7) 108.06(12)

C(19)-P(1)-C(13) 107.42(12)

113 C(1)-P(1)-C(13) 111.22(12)

C(7)-P(1)-C(13) 109.98(12)

C(9)-C(8)-C(7) 119.4(3)

C(9)-C(8)-H(8) 120.3

C(7)-C(8)-H(8) 120.3

C(11)-C(12)-C(7) 119.5(3)

C(11)-C(12)-H(12) 120.3

C(7)-C(12)-H(12) 120.3

C(20)-C(19)-C(24) 120.3(3)

C(20)-C(19)-P(1) 120.2(2)

C(24)-C(19)-P(1) 119.4(2)

C(12)-C(11)-C(10) 120.1(3)

C(12)-C(11)-H(11) 119.9

C(10)-C(11)-H(11) 119.9

C(12)-C(7)-C(8) 120.6(2)

C(12)-C(7)-P(1) 120.3(2)

C(8)-C(7)-P(1) 119.0(2)

C(3)-C(2)-C(1) 119.3(3)

C(3)-C(2)-H(2) 120.3

C(1)-C(2)-H(2) 120.3

C(17)-C(18)-C(13) 120.0(2)

C(17)-C(18)-H(18) 120.0

C(13)-C(18)-H(18) 120.0

114 C(18)-C(13)-C(14) 119.6(2)

C(18)-C(13)-P(1) 121.3(2)

C(14)-C(13)-P(1) 119.1(2)

C(3)-C(4)-C(5) 120.6(3)

C(3)-C(4)-H(4) 119.7

C(5)-C(4)-H(4) 119.7

C(15)-C(14)-C(13) 120.1(3)

C(15)-C(14)-H(14) 119.9

C(13)-C(14)-H(14) 119.9

C(2)-C(1)-C(6) 120.0(2)

C(2)-C(1)-P(1) 120.5(2)

C(6)-C(1)-P(1) 119.5(2)

C(16)-C(15)-C(14) 119.8(3)

C(16)-C(15)-H(15) 120.1

C(14)-C(15)-H(15) 120.1

C(6)-C(5)-C(4) 119.7(3)

C(6)-C(5)-H(5) 120.2

C(4)-C(5)-H(5) 120.2

C(21)-C(20)-C(19) 119.2(3)

C(21)-C(20)-H(20) 120.4

C(19)-C(20)-H(20) 120.4

C(23)-C(22)-C(21) 120.0(3)

C(23)-C(22)-H(22) 120.0

115 C(21)-C(22)-H(22) 120.0

C(15)-C(16)-C(17) 120.3(3)

C(15)-C(16)-H(16) 119.9

C(17)-C(16)-H(16) 119.9

C(4)-C(3)-C(2) 120.2(3)

C(4)-C(3)-H(3) 119.9

C(2)-C(3)-H(3) 119.9

C(5)-C(6)-C(1) 120.2(3)

C(5)-C(6)-H(6) 119.9

C(1)-C(6)-H(6) 119.9

C(22)-C(23)-C(24) 120.4(3)

C(22)-C(23)-H(23) 119.8

C(24)-C(23)-H(23) 119.8

C(20)-C(21)-C(22) 121.0(3)

C(20)-C(21)-H(21) 119.5

C(22)-C(21)-H(21) 119.5

C(9)-C(10)-C(11) 120.3(3)

C(9)-C(10)-H(10) 119.8

C(11)-C(10)-H(10) 119.8

C(10)-C(9)-C(8) 120.1(3)

C(10)-C(9)-H(9) 120.0

C(8)-C(9)-H(9) 120.0

S(2)-O(2)-Mo(2) 134.60(11)

116 S(3)-O(5)-Mo(3) 134.17(11)

S(1)-O(1)-Mo(1) 139.76(12)

O(3)-S(2)-O(4) 118.95(14)

O(3)-S(2)-O(2) 111.97(11)

O(4)-S(2)-O(2) 112.75(11)

O(3)-S(2)-C(25) 104.59(13)

O(4)-S(2)-C(25) 104.94(13)

O(2)-S(2)-C(25) 101.39(13)

O(9)-S(1)-O(8) 118.62(18)

O(9)-S(1)-O(1) 113.22(13)

O(8)-S(1)-O(1) 111.64(14)

O(9)-S(1)-C(26) 105.47(19)

O(8)-S(1)-C(26) 104.77(17)

O(1)-S(1)-C(26) 100.86(14)

F(2)-C(27)-F(3) 108.7(2)

F(2)-C(27)-F(1) 108.7(2)

F(3)-C(27)-F(1) 107.4(2)

F(2)-C(27)-S(3) 109.9(2)

F(3)-C(27)-S(3) 111.28(19)

F(1)-C(27)-S(3) 110.79(18)

C(23)-C(24)-C(19) 119.1(3)

C(23)-C(24)-H(24) 120.4

C(19)-C(24)-H(24) 120.4

117 F(6)-C(25)-F(4) 108.3(3)

F(6)-C(25)-F(5) 108.8(2)

F(4)-C(25)-F(5) 107.5(2)

F(6)-C(25)-S(2) 111.39(19)

F(4)-C(25)-S(2) 111.2(2)

F(5)-C(25)-S(2) 109.6(2)

F(7)-C(26)-F(9) 109.8(4)

F(7)-C(26)-F(8) 107.6(3)

F(9)-C(26)-F(8) 108.3(3)

F(7)-C(26)-S(1) 110.7(3)

F(9)-C(26)-S(1) 110.1(3)

F(8)-C(26)-S(1) 110.2(3)

C(18)-C(17)-C(16) 120.2(3)

C(18)-C(17)-H(17) 119.9

C(16)-C(17)-H(17) 119.9

______

Symmetry transformations used to generate equivalent atoms:

#1 -x+2,-y,-z+1

118

Table 2.5. Anisotropic displacement parameters (A2 x 103) for 2.13. The anisotropic displacement factor exponent takes the form: -2 pi2 [ h2 a*2 U11 + ... + 2 h k a* b* U12 ]

______

U11 U22 U33 U23 U13 U12

______

Mo(1) 13(1) 14(1) 19(1) -4(1) -4(1) -2(1)

Mo(2) 12(1) 14(1) 19(1) -2(1) -4(1) -2(1)

Mo(3) 12(1) 14(1) 20(1) -3(1) -5(1) -1(1)

Cl(8) 15(1) 14(1) 24(1) -3(1) -6(1) -2(1)

Cl(3) 15(1) 17(1) 24(1) -4(1) -6(1) -4(1)

Cl(2) 18(1) 19(1) 20(1) -3(1) -6(1) -3(1)

Cl(1) 14(1) 18(1) 22(1) -5(1) -3(1) -1(1)

S(3) 18(1) 19(1) 20(1) -2(1) -8(1) -6(1)

P(1) 18(1) 19(1) 18(1) -4(1) -7(1) -2(1)

C(8) 25(1) 20(1) 25(2) -3(1) -7(1) -2(1)

C(12) 23(1) 22(1) 23(1) -5(1) -8(1) -3(1)

C(19) 21(1) 26(1) 20(1) -3(1) -8(1) -6(1)

C(11) 27(1) 21(1) 30(2) -6(1) -11(1) -1(1)

C(7) 20(1) 20(1) 18(1) -5(1) -9(1) -1(1)

C(2) 26(1) 29(1) 23(2) -6(1) -9(1) 1(1)

C(18) 24(1) 20(1) 24(2) -6(1) -8(1) -3(1)

C(13) 19(1) 20(1) 20(1) -3(1) -5(1) -2(1)

119 C(4) 44(2) 20(1) 32(2) -8(1) 0(1) -5(1)

C(14) 27(1) 26(1) 23(2) -9(1) -6(1) -7(1)

C(1) 20(1) 19(1) 19(1) -4(1) -5(1) -2(1)

C(15) 24(1) 26(1) 30(2) -4(1) -5(1) -9(1)

C(5) 30(2) 30(2) 30(2) -10(1) -4(1) -9(1)

C(20) 24(1) 35(2) 23(2) -6(1) -6(1) -8(1)

C(22) 40(2) 76(3) 27(2) -9(2) -14(2) -25(2)

C(16) 23(1) 26(1) 23(2) -2(1) -5(1) -2(1)

C(3) 40(2) 20(1) 29(2) -3(1) -9(1) 5(1)

C(6) 24(1) 25(1) 23(2) -3(1) -8(1) -5(1)

C(23) 26(2) 100(3) 36(2) -16(2) -11(2) -20(2)

C(21) 38(2) 55(2) 18(2) -8(1) -6(1) -14(2)

C(10) 23(1) 31(2) 27(2) -10(1) -9(1) 1(1)

C(9) 22(1) 30(1) 31(2) -4(1) -3(1) -7(1)

O(2) 18(1) 18(1) 22(1) 3(1) -4(1) -2(1)

O(5) 18(1) 20(1) 31(1) -7(1) -14(1) 1(1)

O(6) 28(1) 31(1) 33(1) -14(1) -7(1) -7(1)

O(7) 29(1) 24(1) 30(1) 5(1) -16(1) -8(1)

O(1) 24(1) 21(1) 31(1) -11(1) -6(1) -4(1)

O(4) 24(1) 23(1) 43(1) 4(1) -16(1) -2(1)

O(3) 35(1) 24(1) 26(1) -1(1) 0(1) -7(1)

S(2) 20(1) 16(1) 23(1) 0(1) -6(1) -2(1)

S(1) 25(1) 26(1) 32(1) -13(1) -12(1) 0(1)

120 F(1) 32(1) 34(1) 26(1) 7(1) -8(1) -8(1)

F(2) 26(1) 52(1) 41(1) 0(1) -14(1) -20(1)

F(3) 30(1) 38(1) 41(1) -13(1) 1(1) 2(1)

C(27) 21(1) 24(1) 26(2) 1(1) -8(1) -5(1)

C(24) 22(2) 69(2) 23(2) -14(2) -7(1) -8(1)

C(25) 26(1) 23(1) 38(2) -5(1) -3(1) -8(1)

C(26) 54(2) 36(2) 48(2) -6(2) -17(2) -25(2)

F(5) 46(1) 20(1) 61(1) 3(1) -16(1) -10(1)

F(4) 35(1) 39(1) 50(1) -6(1) -18(1) -12(1)

F(6) 51(1) 42(1) 57(1) -30(1) 15(1) -22(1)

F(8) 69(1) 46(1) 59(1) -16(1) -11(1) -37(1)

F(7) 54(1) 28(1) 174(3) -18(2) -61(2) 6(1)

F(9) 170(3) 72(2) 37(1) 9(1) -32(2) -81(2)

O(8) 75(2) 54(2) 29(1) -15(1) -9(1) -27(1)

O(9) 24(1) 69(2) 92(2) -56(2) -26(1) 11(1)

C(17) 29(1) 24(1) 19(1) -7(1) -6(1) 0(1)

______

121 Table 2.6. Hydrogen coordinates (x 104) and isotropic displacement parameters (A2 x

103) for 2.13.

______

x y z U(eq)

______

H(8) 7246 7282 869 29

H(12) 6403 4651 2620 27

H(11) 8388 3806 2256 31

H(2) 3876 8662 1019 31

H(18) 4384 7115 4021 26

H(4) 4972 10740 1890 40

H(14) 4064 4954 2734 29

H(15) 3113 4151 4277 32

H(5) 6165 9432 2849 35

H(20) 5850 6278 37 32

H(22) 2823 6610 -897 53

H(16) 2793 4835 5686 30

H(3) 3832 10363 983 38

H(6) 6218 7737 2895 28

H(23) 1724 6905 644 62

H(21) 4874 6276 -1187 43

H(10) 9788 4690 1184 32

122 H(9) 9224 6423 500 33

H(24) 2668 6972 1875 45

H(17) 3453 6295 5564 29

______

123 Table 3.3. Crystal data and structure refinement for 3.7.

Identification code 3.7

Empirical formula C34H42AuP

Formula weight 678.61

Temperature 100(2) K

Wavelength 0.71073 A

Crystal system, space group Monoclinic, C2/c

Unit cell dimensions a = 25.024(5) A alpha = 90 deg.

b = 13.5950(19) A beta = 101.493(2) deg.

c = 17.044(2) A gamma = 90 deg.

Volume 5682.1(15) A3

Z, Calculated density 8, 1.587 Mg/m3

Absorption coefficient 5.255 mm-1

F(000) 2720

Crystal size 0.39 x 0.17 x 0.08 mm

Theta range for data collection 1.71 to 27.50 deg.

124 Limiting indices -32≤h≤32, -17≤k≤17, -22≤l≤22

Reflections collected / unique 33510 / 6526 [R(int) = 0.0456]

Completeness to theta 27.50 99.9 %

Absorption correction Multi-scan

Max. and min. transmission 0.6785 and 0.2337

Refinement method Full-matrix least-squares on F2

Data / restraints / parameters 6526 / 509 / 325

Goodness-of-fit on F2 1.058

Final R indices [I>2σ(I)] R1 = 0.0502, wR2 = 0.1059

R indices (all data) R1 = 0.0732, wR2 = 0.1187

Largest diff. peak and hole 2.475 and -1.837 e.A-3

125 Table 3.4. Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (A2 x 103) for 3.7. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

______

x y z U(eq)

______

Au(1) 143(1) 8724(1) 1517(1) 44(1)

C(16) 1341(3) 8788(5) 2286(4) 41(1)

C(1) 856(3) 9341(5) 2106(4) 40(2)

C(12) 1858(3) 10189(5) 2918(4) 39(1)

C(10) 2826(3) 10017(7) 3540(4) 54(2)

C(14) 2324(3) 8614(6) 2894(4) 48(2)

C(13) 2793(3) 9009(7) 3294(5) 56(2)

C(4) 1414(4) 11779(7) 2952(6) 65(2)

C(11) 2352(3) 10606(6) 3343(4) 45(2)

C(3) 1382(3) 10766(6) 2730(5) 46(2)

C(15) 1833(3) 9183(5) 2692(4) 39(1)

C(2) 891(3) 10321(5) 2343(4) 45(2)

C(9) 3308(4) 10448(9) 3974(6) 76(2)

C(5) 1880(4) 12183(7) 3356(6) 70(2)

C(7) 2855(4) 11992(9) 4002(6) 81(3)

C(6) 2369(4) 11612(7) 3573(5) 60(2)

C(8) 3312(4) 11428(9) 4197(7) 88(3)

126 P(1) -605(1) 7963(2) 754(2) 64(1)

C(29) -1183(4) 8747(7) 416(6) 69(2)

C(34) -1034(4) 9745(7) 248(7) 81(3)

C(17) -385(3) 7369(7) -112(6) 65(2)

C(22) 50(4) 6631(7) 163(6) 69(2)

C(23) -920(6) 6992(10) 1306(10) 118(4)

C(18) -176(5) 8128(8) -635(6) 84(3)

C(30) -1612(4) 8398(9) -296(8) 107(4)

C(31) -2103(5) 9014(9) -464(9) 108(4)

C(28) -1249(5) 6168(9) 759(9) 111(4)

C(33) -1507(4) 10499(8) 18(5) 69(2)

C(32) -1934(3) 10007(8) -693(6) 89(3)

C(21) 240(4) 6137(8) -531(7) 84(3)

C(27) -1475(4) 5414(8) 1411(11) 124(5)

C(20) 450(5) 6889(9) -1057(7) 88(3)

C(19) 31(6) 7651(10) -1341(7) 108(4)

C(26) -1078(7) 5054(10) 2115(11) 139(5)

C(25) -952(8) 6006(11) 2463(11) 167(6)

C(24) -645(9) 6726(13) 1988(11) 168(7)

______

127 Table 3.5. Bond lengths [Å] and angles [°] for 3.7.

______

Au(1)-C(1) 2.046(7)

Au(1)-P(1) 2.300(2)

C(16)-C(15) 1.394(9)

C(16)-C(1) 1.410(10)

C(16)-H(16) 0.9500

C(1)-C(2) 1.390(10)

C(12)-C(3) 1.408(10)

C(12)-C(15) 1.418(10)

C(12)-C(11) 1.421(9)

C(10)-C(9) 1.410(12)

C(10)-C(11) 1.416(11)

C(10)-C(13) 1.431(12)

C(14)-C(13) 1.346(11)

C(14)-C(15) 1.436(10)

C(14)-H(14) 0.9500

C(13)-H(13) 0.9500

C(4)-C(5) 1.349(12)

C(4)-C(3) 1.426(11)

C(4)-H(4) 0.9500

C(11)-C(6) 1.420(12)

C(3)-C(2) 1.410(10)

128 C(2)-H(2) 0.9500

C(9)-C(8) 1.384(15)

C(9)-H(9) 0.9500

C(5)-C(6) 1.434(13)

C(5)-H(5) 0.9500

C(7)-C(8) 1.364(15)

C(7)-C(6) 1.387(12)

C(7)-H(7) 0.9500

C(8)-H(8) 0.9500

P(1)-C(29) 1.797(9)

P(1)-C(17) 1.859(9)

P(1)-C(23) 1.884(14)

C(29)-C(34) 1.450(13)

C(29)-C(30) 1.527(13)

C(29)-H(29) 1.0000

C(34)-C(33) 1.557(12)

C(34)-H(34A) 0.9900

C(34)-H(34B) 0.9900

C(17)-C(22) 1.486(12)

C(17)-C(18) 1.522(14)

C(17)-H(17) 1.0000

C(22)-C(21) 1.518(14)

C(22)-H(22A) 0.9900

129 C(22)-H(22B) 0.9900

C(23)-C(24) 1.28(2)

C(23)-C(28) 1.580(16)

C(23)-H(23) 1.0000

C(18)-C(19) 1.545(14)

C(18)-H(18A) 0.9900

C(18)-H(18B) 0.9900

C(30)-C(31) 1.468(15)

C(30)-H(30A) 0.9900

C(30)-H(30B) 0.9900

C(31)-C(32) 1.489(14)

C(31)-H(31A) 0.9900

C(31)-H(31B) 0.9900

C(28)-C(27) 1.690(18)

C(28)-H(28A) 0.9900

C(28)-H(28B) 0.9900

C(33)-C(32) 1.594(14)

C(33)-H(33A) 0.9900

C(33)-H(33B) 0.9900

C(32)-H(32A) 0.9900

C(32)-H(32B) 0.9900

C(21)-C(20) 1.522(15)

C(21)-H(21A) 0.9900

130 C(21)-H(21B) 0.9900

C(27)-C(26) 1.48(2)

C(27)-H(27A) 0.9900

C(27)-H(27B) 0.9900

C(20)-C(19) 1.486(14)

C(20)-H(20A) 0.9900

C(20)-H(20B) 0.9900

C(19)-H(19A) 0.9900

C(19)-H(19B) 0.9900

C(26)-C(25) 1.433(17)

C(26)-H(26A) 0.9900

C(26)-H(26B) 0.9900

C(25)-C(24) 1.57(2)

C(25)-H(25A) 0.9900

C(25)-H(25B) 0.9900

C(24)-H(24A) 0.9900

C(24)-H(24B) 0.9900

C(1)-Au(1)-P(1) 173.6(2)

C(15)-C(16)-C(1) 122.6(7)

C(15)-C(16)-H(16) 118.7

C(1)-C(16)-H(16) 118.7

C(2)-C(1)-C(16) 116.5(6)

131 C(2)-C(1)-Au(1) 122.3(5)

C(16)-C(1)-Au(1) 121.2(5)

C(3)-C(12)-C(15) 119.1(6)

C(3)-C(12)-C(11) 120.3(7)

C(15)-C(12)-C(11) 120.6(7)

C(9)-C(10)-C(11) 118.5(9)

C(9)-C(10)-C(13) 123.1(9)

C(11)-C(10)-C(13) 118.4(7)

C(13)-C(14)-C(15) 121.7(8)

C(13)-C(14)-H(14) 119.2

C(15)-C(14)-H(14) 119.2

C(14)-C(13)-C(10) 121.6(8)

C(14)-C(13)-H(13) 119.2

C(10)-C(13)-H(13) 119.2

C(5)-C(4)-C(3) 121.7(9)

C(5)-C(4)-H(4) 119.2

C(3)-C(4)-H(4) 119.2

C(10)-C(11)-C(6) 120.1(7)

C(10)-C(11)-C(12) 119.9(7)

C(6)-C(11)-C(12) 120.0(7)

C(12)-C(3)-C(2) 119.1(7)

C(12)-C(3)-C(4) 118.6(7)

C(2)-C(3)-C(4) 122.3(7)

132 C(16)-C(15)-C(12) 119.6(6)

C(16)-C(15)-C(14) 122.7(7)

C(12)-C(15)-C(14) 117.7(7)

C(1)-C(2)-C(3) 123.1(7)

C(1)-C(2)-H(2) 118.4

C(3)-C(2)-H(2) 118.4

C(8)-C(9)-C(10) 120.2(10)

C(8)-C(9)-H(9) 119.9

C(10)-C(9)-H(9) 119.9

C(4)-C(5)-C(6) 121.3(9)

C(4)-C(5)-H(5) 119.4

C(6)-C(5)-H(5) 119.4

C(8)-C(7)-C(6) 121.5(10)

C(8)-C(7)-H(7) 119.2

C(6)-C(7)-H(7) 119.2

C(7)-C(6)-C(11) 118.7(9)

C(7)-C(6)-C(5) 123.1(9)

C(11)-C(6)-C(5) 118.2(7)

C(7)-C(8)-C(9) 121.0(9)

C(7)-C(8)-H(8) 119.5

C(9)-C(8)-H(8) 119.5

C(29)-P(1)-C(17) 110.5(4)

C(29)-P(1)-C(23) 100.7(6)

133 C(17)-P(1)-C(23) 108.2(5)

C(29)-P(1)-Au(1) 115.2(3)

C(17)-P(1)-Au(1) 108.0(3)

C(23)-P(1)-Au(1) 114.0(5)

C(34)-C(29)-C(30) 107.6(9)

C(34)-C(29)-P(1) 113.3(7)

C(30)-C(29)-P(1) 117.6(7)

C(34)-C(29)-H(29) 105.8

C(30)-C(29)-H(29) 105.8

P(1)-C(29)-H(29) 105.8

C(29)-C(34)-C(33) 116.9(8)

C(29)-C(34)-H(34A) 108.1

C(33)-C(34)-H(34A) 108.1

C(29)-C(34)-H(34B) 108.1

C(33)-C(34)-H(34B) 108.1

H(34A)-C(34)-H(34B) 107.3

C(22)-C(17)-C(18) 109.1(8)

C(22)-C(17)-P(1) 110.8(7)

C(18)-C(17)-P(1) 111.1(6)

C(22)-C(17)-H(17) 108.5

C(18)-C(17)-H(17) 108.5

P(1)-C(17)-H(17) 108.5

C(17)-C(22)-C(21) 112.1(9)

134 C(17)-C(22)-H(22A) 109.2

C(21)-C(22)-H(22A) 109.2

C(17)-C(22)-H(22B) 109.2

C(21)-C(22)-H(22B) 109.2

H(22A)-C(22)-H(22B) 107.9

C(24)-C(23)-C(28) 117.3(15)

C(24)-C(23)-P(1) 116.6(12)

C(28)-C(23)-P(1) 115.0(11)

C(24)-C(23)-H(23) 101.2

C(28)-C(23)-H(23) 101.2

P(1)-C(23)-H(23) 101.2

C(17)-C(18)-C(19) 112.2(9)

C(17)-C(18)-H(18A) 109.2

C(19)-C(18)-H(18A) 109.2

C(17)-C(18)-H(18B) 109.2

C(19)-C(18)-H(18B) 109.2

H(18A)-C(18)-H(18B) 107.9

C(31)-C(30)-C(29) 114.0(10)

C(31)-C(30)-H(30A) 108.8

C(29)-C(30)-H(30A) 108.8

C(31)-C(30)-H(30B) 108.8

C(29)-C(30)-H(30B) 108.8

H(30A)-C(30)-H(30B) 107.6

135 C(30)-C(31)-C(32) 107.3(11)

C(30)-C(31)-H(31A) 110.3

C(32)-C(31)-H(31A) 110.3

C(30)-C(31)-H(31B) 110.3

C(32)-C(31)-H(31B) 110.3

H(31A)-C(31)-H(31B) 108.5

C(23)-C(28)-C(27) 104.2(11)

C(23)-C(28)-H(28A) 110.9

C(27)-C(28)-H(28A) 110.9

C(23)-C(28)-H(28B) 110.9

C(27)-C(28)-H(28B) 110.9

H(28A)-C(28)-H(28B) 108.9

C(34)-C(33)-C(32) 106.0(8)

C(34)-C(33)-H(33A) 110.5

C(32)-C(33)-H(33A) 110.5

C(34)-C(33)-H(33B) 110.5

C(32)-C(33)-H(33B) 110.5

H(33A)-C(33)-H(33B) 108.7

C(31)-C(32)-C(33) 111.3(8)

C(31)-C(32)-H(32A) 109.4

C(33)-C(32)-H(32A) 109.4

C(31)-C(32)-H(32B) 109.4

C(33)-C(32)-H(32B) 109.4

136 H(32A)-C(32)-H(32B) 108.0

C(22)-C(21)-C(20) 111.2(9)

C(22)-C(21)-H(21A) 109.4

C(20)-C(21)-H(21A) 109.4

C(22)-C(21)-H(21B) 109.4

C(20)-C(21)-H(21B) 109.4

H(21A)-C(21)-H(21B) 108.0

C(26)-C(27)-C(28) 118.3(10)

C(26)-C(27)-H(27A) 107.7

C(28)-C(27)-H(27A) 107.7

C(26)-C(27)-H(27B) 107.7

C(28)-C(27)-H(27B) 107.7

H(27A)-C(27)-H(27B) 107.1

C(19)-C(20)-C(21) 110.8(10)

C(19)-C(20)-H(20A) 109.5

C(21)-C(20)-H(20A) 109.5

C(19)-C(20)-H(20B) 109.5

C(21)-C(20)-H(20B) 109.5

H(20A)-C(20)-H(20B) 108.1

C(20)-C(19)-C(18) 111.3(9)

C(20)-C(19)-H(19A) 109.4

C(18)-C(19)-H(19A) 109.4

C(20)-C(19)-H(19B) 109.4

137 C(18)-C(19)-H(19B) 109.4

H(19A)-C(19)-H(19B) 108.0

C(25)-C(26)-C(27) 95.3(14)

C(25)-C(26)-H(26A) 112.7

C(27)-C(26)-H(26A) 112.7

C(25)-C(26)-H(26B) 112.7

C(27)-C(26)-H(26B) 112.7

H(26A)-C(26)-H(26B) 110.2

C(26)-C(25)-C(24) 116.1(14)

C(26)-C(25)-H(25A) 108.3

C(24)-C(25)-H(25A) 108.3

C(26)-C(25)-H(25B) 108.3

C(24)-C(25)-H(25B) 108.3

H(25A)-C(25)-H(25B) 107.4

C(23)-C(24)-C(25) 114.5(18)

C(23)-C(24)-H(24A) 108.6

C(25)-C(24)-H(24A) 108.6

C(23)-C(24)-H(24B) 108.6

C(25)-C(24)-H(24B) 108.6

H(24A)-C(24)-H(24B) 107.6

______

Symmetry transformations used to generate equivalent atoms:

138 Table 3.6. Anisotropic displacement parameters (A2 x 103) for 3.7. The anisotropic displacement factor exponent takes the form: -2 pi2 [ h2 a*2 U11 + ... + 2 h k a* b* U12 ]

______

U11 U22 U33 U23 U13 U12

______

Au(1) 40(1) 45(1) 41(1) -1(1) -5(1) -4(1)

C(16) 46(3) 42(3) 32(3) 0(3) 5(3) 0(3)

C(1) 41(3) 47(4) 28(3) 1(3) -3(3) -2(3)

C(12) 40(3) 50(3) 24(3) 0(3) 4(3) -2(3)

C(10) 40(4) 84(5) 37(4) 7(4) 6(3) -7(3)

C(14) 47(4) 56(4) 42(4) 11(3) 10(3) 9(3)

C(13) 37(3) 80(5) 51(4) 17(4) 8(3) 11(3)

C(4) 62(5) 55(4) 74(6) -21(4) 2(4) 0(4)

C(11) 42(3) 62(4) 30(3) 5(3) 6(3) -8(3)

C(3) 43(4) 48(4) 45(4) -9(3) 2(3) -1(3)

C(15) 41(3) 49(3) 27(3) 5(3) 4(3) 5(3)

C(2) 44(4) 48(4) 38(4) -3(3) -4(3) 5(3)

C(9) 44(4) 108(6) 70(6) 9(5) -1(4) -12(5)

C(5) 69(5) 56(5) 81(6) -22(5) 5(5) -11(4)

C(7) 62(5) 89(6) 86(7) -17(6) 2(5) -32(4)

C(6) 57(4) 66(4) 55(5) -6(4) 5(4) -20(3)

C(8) 54(5) 114(7) 90(7) -7(6) -4(5) -35(5)

P(1) 40(1) 66(1) 80(2) -29(1) -4(1) -2(1)

139 C(29) 68(5) 66(5) 68(5) -5(5) 4(4) 8(4)

C(34) 49(5) 82(6) 97(7) 46(6) -23(5) -9(4)

C(17) 44(4) 57(5) 87(6) -31(4) -8(4) 5(3)

C(22) 49(5) 55(5) 103(7) 3(4) 12(5) 1(4)

C(23) 106(10) 93(8) 178(11) -63(8) 80(9) -56(7)

C(18) 117(8) 73(6) 53(5) -8(4) -3(5) 41(5)

C(30) 63(6) 93(6) 141(10) -42(7) -38(6) 12(5)

C(31) 74(7) 83(7) 149(11) 23(7) -22(7) 1(5)

C(28) 88(7) 84(7) 179(10) -60(6) 71(7) -34(6)

C(33) 63(5) 83(6) 60(5) 21(5) 13(4) 14(4)

C(32) 38(4) 115(7) 99(7) 78(6) -19(4) -19(5)

C(21) 55(5) 66(6) 129(8) -16(5) 16(5) 16(5)

C(27) 52(6) 48(6) 267(14) 32(7) 21(7) -8(4)

C(20) 86(7) 85(7) 92(7) 5(5) 12(5) 32(5)

C(19) 139(10) 115(9) 67(6) -7(5) 10(6) 69(8)

C(26) 142(12) 75(7) 204(13) -17(8) 48(9) -14(8)

C(25) 248(15) 100(9) 198(11) -66(8) 151(10) -83(10)

C(24) 250(18) 123(11) 150(11) -55(10) 85(10) -111(11)

______

140 Table 3.7. Hydrogen coordinates (x 104) and isotropic displacement parameters (A2 x 103) for 3.7.

______

x y z U(eq)

______

H(16) 1333 8119 2123 49

H(14) 2318 7941 2742 58

H(13) 3110 8608 3416 67

H(4) 1098 12179 2811 78

H(2) 569 10710 2240 54

H(9) 3630 10065 4115 91

H(5) 1885 12858 3500 84

H(7) 2868 12662 4165 97

H(8) 3639 11711 4489 106

H(29) -1375 8799 875 82

H(34A) -831 9720 -194 98

H(34B) -780 9997 727 98

H(17) -706 7026 -443 79

H(22A) -90 6125 488 83

H(22B) 364 6959 510 83

H(23) -1223 7371 1469 142

H(18A) 125 8506 -303 100

H(18B) -473 8595 -847 100

141 H(30A) -1447 8384 -778 129

H(30B) -1720 7717 -192 129

H(31A) -2268 9061 17 129

H(31B) -2376 8727 -906 129

H(28A) -1010 5809 458 133

H(28B) -1558 6456 373 133

H(33A) -1370 11127 -161 82

H(33B) -1680 10633 481 82

H(32A) -2260 10434 -833 106

H(32B) -1768 9948 -1171 106

H(21A) -67 5767 -856 101

H(21B) 534 5662 -321 101

H(27A) -1769 5763 1611 149

H(27B) -1643 4833 1108 149

H(20A) 783 7207 -749 106

H(20B) 549 6553 -1524 106

H(19A) -280 7347 -1713 130

H(19B) 188 8165 -1639 130

H(26A) -1245 4612 2460 166

H(26B) -757 4731 1966 166

H(25A) -727 5917 3006 200

H(25B) -1298 6323 2526 200

H(24A) -539 7320 2318 202

142 H(24B) -305 6403 1906 202

______

143 Table 3.8. Crystal data and structure refinement for 3.8.

Identification code 3.8

Empirical formula C66H90Au2P2

Formula weight 1339.25

Temperature 100(2) K

Wavelength 0.71073 A

Crystal system, space group Monoclinic, P2(1)/n

Unit cell dimensions a = 9.5322(9) A alpha = 90 deg.

b = 16.7591(15) A beta = 94.5900(10) deg.

c = 17.4417(16) A gamma = 90 deg.

Volume 2777.4(4) A3

Z, Calculated density 2, 1.601 Mg/m3

Absorption coefficient 5.374 mm-1

F(000) 1348

Crystal size 0.52 x 0.17 x 0.11 mm

144 Theta range for data collection 2.34 to 26.92 deg.

Limiting indices -12≤h≤11, -21≤k≤21, -22≤l≤22

Reflections collected / unique 30206 / 5929 [R(int) = 0.0297]

Completeness to theta 26.92 98.5 %

Absorption correction Multi-scan

Max. and min. transmission 0.5894 and 0.1665

Refinement method Full-matrix least-squares on F2

Data / restraints / parameters 5929 / 0 / 317

Goodness-of-fit on F2 1.104

Final R indices [I>2σ(I)] R1 = 0.0183, wR2 = 0.0422

R indices (all data) R1 = 0.0213, wR2 = 0.0435

Largest diff. peak and hole 0.816 and -0.935 e.A-3

145 Table 3.9. Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (A2 x 103) for 3.8. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

______

x y z U(eq)

______

Au(1) 3378(1) 7976(1) 2329(1) 15(1)

C(22) -50(3) 8001(2) 2798(1) 20(1)

P(1) 2469(1) 7225(1) 3279(1) 14(1)

C(1) 4052(3) 8676(1) 1470(1) 17(1)

C(20) 3808(3) 5803(1) 3041(1) 19(1)

C(26) -267(3) 7021(2) 3856(2) 22(1)

C(15) 2321(2) 6165(1) 3021(1) 16(1)

C(19) 3817(3) 4964(2) 2709(2) 22(1)

C(6) 5756(2) 9583(1) 943(1) 15(1)

C(18) 3070(3) 4927(2) 1907(2) 24(1)

C(16) 1548(3) 6083(2) 2218(1) 19(1)

C(10) 3976(3) 8109(2) 4433(1) 20(1)

C(17) 1568(3) 5229(2) 1922(2) 22(1)

C(25) -1575(3) 7460(2) 4080(2) 25(1)

C(13) 4106(3) 6779(2) 5541(1) 24(1)

C(5) 4811(2) 9738(1) 296(1) 14(1)

C(3) 3480(2) 9363(1) 238(1) 16(1)

146 C(24) -2335(3) 7898(2) 3403(2) 25(1)

C(9) 3577(3) 7256(1) 4187(1) 17(1)

C(2) 3140(2) 8841(1) 819(1) 17(1)

C(8) 5353(2) 9060(1) 1510(1) 17(1)

C(21) 729(2) 7606(1) 3498(1) 17(1)

C(12) 4595(3) 7609(2) 5780(2) 24(1)

C(4) 2536(2) 9532(1) -426(1) 17(1)

C(7) 7100(2) 9975(1) 988(1) 17(1)

C(14) 3005(3) 6805(2) 4860(1) 20(1)

C(11) 5073(3) 8094(2) 5116(2) 23(1)

C(23) -1337(3) 8450(2) 3027(2) 24(1)

C(28) 6145(3) 6642(2) 1669(2) 31(1)

C(29) 7114(3) 6104(2) 1987(2) 30(1)

C(27) 5621(3) 6558(2) 913(2) 32(1)

C(31) 7117(3) 5412(2) 779(2) 30(1)

C(30) 7611(3) 5500(2) 1551(2) 28(1)

C(32) 6108(3) 5940(2) 477(2) 32(1)

C(33) 7689(4) 4782(2) 300(2) 41(1)

______

147 Table 3.10. Bond lengths [Å] and angles [°] for 3.8.

______

Au(1)-C(1) 2.046(2)

Au(1)-P(1) 2.3044(6)

C(22)-C(23) 1.520(3)

C(22)-C(21) 1.528(3)

C(22)-H(22A) 0.9900

C(22)-H(22B) 0.9900

P(1)-C(9) 1.831(2)

P(1)-C(15) 1.837(2)

P(1)-C(21) 1.845(2)

C(1)-C(8) 1.394(3)

C(1)-C(2) 1.401(3)

C(20)-C(19) 1.520(3)

C(20)-C(15) 1.539(3)

C(20)-H(20A) 0.9900

C(20)-H(20B) 0.9900

C(26)-C(25) 1.526(3)

C(26)-C(21) 1.533(3)

C(26)-H(26A) 0.9900

C(26)-H(26B) 0.9900

C(15)-C(16) 1.535(3)

C(15)-H(15) 1.0000

148 C(19)-C(18) 1.519(4)

C(19)-H(19A) 0.9900

C(19)-H(19B) 0.9900

C(6)-C(8) 1.398(3)

C(6)-C(5) 1.411(3)

C(6)-C(7) 1.437(3)

C(18)-C(17) 1.521(4)

C(18)-H(18A) 0.9900

C(18)-H(18B) 0.9900

C(16)-C(17) 1.521(3)

C(16)-H(16A) 0.9900

C(16)-H(16B) 0.9900

C(10)-C(11) 1.522(4)

C(10)-C(9) 1.531(3)

C(10)-H(10A) 0.9900

C(10)-H(10B) 0.9900

C(17)-H(17A) 0.9900

C(17)-H(17B) 0.9900

C(25)-C(24) 1.522(4)

C(25)-H(25A) 0.9900

C(25)-H(25B) 0.9900

C(13)-C(12) 1.514(4)

C(13)-C(14) 1.520(3)

149 C(13)-H(13A) 0.9900

C(13)-H(13B) 0.9900

C(5)-C(3) 1.412(3)

C(5)-C(5)#1 1.424(4)

C(3)-C(2) 1.398(3)

C(3)-C(4) 1.435(3)

C(24)-C(23) 1.514(4)

C(24)-H(24A) 0.9900

C(24)-H(24B) 0.9900

C(9)-C(14) 1.533(3)

C(9)-H(9) 1.0000

C(2)-H(2) 0.9500

C(8)-H(8) 0.9500

C(21)-H(21) 1.0000

C(12)-C(11) 1.514(4)

C(12)-H(12A) 0.9900

C(12)-H(12B) 0.9900

C(4)-C(7)#1 1.349(3)

C(4)-H(4) 0.9500

C(7)-C(4)#1 1.349(3)

C(7)-H(7) 0.9500

C(14)-H(14A) 0.9900

C(14)-H(14B) 0.9900

150 C(11)-H(11A) 0.9900

C(11)-H(11B) 0.9900

C(23)-H(23A) 0.9900

C(23)-H(23B) 0.9900

C(28)-C(29) 1.376(4)

C(28)-C(27) 1.379(4)

C(28)-H(28) 0.9500

C(29)-C(30) 1.372(4)

C(29)-H(29) 0.9500

C(27)-C(32) 1.386(4)

C(27)-H(27) 0.9500

C(31)-C(32) 1.380(4)

C(31)-C(30) 1.398(4)

C(31)-C(33) 1.478(4)

C(30)-H(30) 0.9500

C(32)-H(32) 0.9500

C(33)-H(33A) 0.9800

C(33)-H(33B) 0.9800

C(33)-H(33C) 0.9800

C(1)-Au(1)-P(1) 176.09(7)

C(23)-C(22)-C(21) 110.9(2)

C(23)-C(22)-H(22A) 109.5

C(21)-C(22)-H(22A) 109.5

151 C(23)-C(22)-H(22B) 109.5

C(21)-C(22)-H(22B) 109.5

H(22A)-C(22)-H(22B) 108.0

C(9)-P(1)-C(15) 105.50(11)

C(9)-P(1)-C(21) 106.11(11)

C(15)-P(1)-C(21) 109.42(11)

C(9)-P(1)-Au(1) 112.47(8)

C(15)-P(1)-Au(1) 112.17(8)

C(21)-P(1)-Au(1) 110.85(8)

C(8)-C(1)-C(2) 116.2(2)

C(8)-C(1)-Au(1) 123.93(17)

C(2)-C(1)-Au(1) 119.73(17)

C(19)-C(20)-C(15) 112.9(2)

C(19)-C(20)-H(20A) 109.0

C(15)-C(20)-H(20A) 109.0

C(19)-C(20)-H(20B) 109.0

C(15)-C(20)-H(20B) 109.0

H(20A)-C(20)-H(20B) 107.8

C(25)-C(26)-C(21) 109.9(2)

C(25)-C(26)-H(26A) 109.7

C(21)-C(26)-H(26A) 109.7

C(25)-C(26)-H(26B) 109.7

C(21)-C(26)-H(26B) 109.7

152 H(26A)-C(26)-H(26B) 108.2

C(16)-C(15)-C(20) 111.08(19)

C(16)-C(15)-P(1) 109.43(16)

C(20)-C(15)-P(1) 108.86(16)

C(16)-C(15)-H(15) 109.1

C(20)-C(15)-H(15) 109.1

P(1)-C(15)-H(15) 109.1

C(18)-C(19)-C(20) 111.8(2)

C(18)-C(19)-H(19A) 109.2

C(20)-C(19)-H(19A) 109.2

C(18)-C(19)-H(19B) 109.2

C(20)-C(19)-H(19B) 109.2

H(19A)-C(19)-H(19B) 107.9

C(8)-C(6)-C(5) 119.1(2)

C(8)-C(6)-C(7) 122.9(2)

C(5)-C(6)-C(7) 118.0(2)

C(19)-C(18)-C(17) 110.0(2)

C(19)-C(18)-H(18A) 109.7

C(17)-C(18)-H(18A) 109.7

C(19)-C(18)-H(18B) 109.7

C(17)-C(18)-H(18B) 109.7

H(18A)-C(18)-H(18B) 108.2

C(17)-C(16)-C(15) 112.1(2)

153 C(17)-C(16)-H(16A) 109.2

C(15)-C(16)-H(16A) 109.2

C(17)-C(16)-H(16B) 109.2

C(15)-C(16)-H(16B) 109.2

H(16A)-C(16)-H(16B) 107.9

C(11)-C(10)-C(9) 110.2(2)

C(11)-C(10)-H(10A) 109.6

C(9)-C(10)-H(10A) 109.6

C(11)-C(10)-H(10B) 109.6

C(9)-C(10)-H(10B) 109.6

H(10A)-C(10)-H(10B) 108.1

C(18)-C(17)-C(16) 110.9(2)

C(18)-C(17)-H(17A) 109.5

C(16)-C(17)-H(17A) 109.5

C(18)-C(17)-H(17B) 109.5

C(16)-C(17)-H(17B) 109.5

H(17A)-C(17)-H(17B) 108.1

C(24)-C(25)-C(26) 112.5(2)

C(24)-C(25)-H(25A) 109.1

C(26)-C(25)-H(25A) 109.1

C(24)-C(25)-H(25B) 109.1

C(26)-C(25)-H(25B) 109.1

H(25A)-C(25)-H(25B) 107.8

154 C(12)-C(13)-C(14) 111.6(2)

C(12)-C(13)-H(13A) 109.3

C(14)-C(13)-H(13A) 109.3

C(12)-C(13)-H(13B) 109.3

C(14)-C(13)-H(13B) 109.3

H(13A)-C(13)-H(13B) 108.0

C(6)-C(5)-C(3) 119.3(2)

C(6)-C(5)-C(5)#1 120.7(3)

C(3)-C(5)-C(5)#1 120.0(3)

C(2)-C(3)-C(5) 119.0(2)

C(2)-C(3)-C(4) 122.8(2)

C(5)-C(3)-C(4) 118.2(2)

C(23)-C(24)-C(25) 110.7(2)

C(23)-C(24)-H(24A) 109.5

C(25)-C(24)-H(24A) 109.5

C(23)-C(24)-H(24B) 109.5

C(25)-C(24)-H(24B) 109.5

H(24A)-C(24)-H(24B) 108.1

C(10)-C(9)-C(14) 109.9(2)

C(10)-C(9)-P(1) 112.44(17)

C(14)-C(9)-P(1) 115.61(17)

C(10)-C(9)-H(9) 106.0

C(14)-C(9)-H(9) 106.0

155 P(1)-C(9)-H(9) 106.0

C(3)-C(2)-C(1) 123.2(2)

C(3)-C(2)-H(2) 118.4

C(1)-C(2)-H(2) 118.4

C(1)-C(8)-C(6) 123.3(2)

C(1)-C(8)-H(8) 118.4

C(6)-C(8)-H(8) 118.4

C(22)-C(21)-C(26) 109.0(2)

C(22)-C(21)-P(1) 111.89(17)

C(26)-C(21)-P(1) 117.37(17)

C(22)-C(21)-H(21) 105.9

C(26)-C(21)-H(21) 105.9

P(1)-C(21)-H(21) 105.9

C(13)-C(12)-C(11) 112.8(2)

C(13)-C(12)-H(12A) 109.0

C(11)-C(12)-H(12A) 109.0

C(13)-C(12)-H(12B) 109.0

C(11)-C(12)-H(12B) 109.0

H(12A)-C(12)-H(12B) 107.8

C(7)#1-C(4)-C(3) 121.7(2)

C(7)#1-C(4)-H(4) 119.1

C(3)-C(4)-H(4) 119.1

C(4)#1-C(7)-C(6) 121.4(2)

156 C(4)#1-C(7)-H(7) 119.3

C(6)-C(7)-H(7) 119.3

C(13)-C(14)-C(9) 110.3(2)

C(13)-C(14)-H(14A) 109.6

C(9)-C(14)-H(14A) 109.6

C(13)-C(14)-H(14B) 109.6

C(9)-C(14)-H(14B) 109.6

H(14A)-C(14)-H(14B) 108.1

C(12)-C(11)-C(10) 112.1(2)

C(12)-C(11)-H(11A) 109.2

C(10)-C(11)-H(11A) 109.2

C(12)-C(11)-H(11B) 109.2

C(10)-C(11)-H(11B) 109.2

H(11A)-C(11)-H(11B) 107.9

C(24)-C(23)-C(22) 111.0(2)

C(24)-C(23)-H(23A) 109.4

C(22)-C(23)-H(23A) 109.4

C(24)-C(23)-H(23B) 109.4

C(22)-C(23)-H(23B) 109.4

H(23A)-C(23)-H(23B) 108.0

C(29)-C(28)-C(27) 119.9(3)

C(29)-C(28)-H(28) 120.1

C(27)-C(28)-H(28) 120.1

157 C(30)-C(29)-C(28) 120.8(3)

C(30)-C(29)-H(29) 119.6

C(28)-C(29)-H(29) 119.6

C(28)-C(27)-C(32) 119.2(3)

C(28)-C(27)-H(27) 120.4

C(32)-C(27)-H(27) 120.4

C(32)-C(31)-C(30) 118.1(3)

C(32)-C(31)-C(33) 121.3(3)

C(30)-C(31)-C(33) 120.6(3)

C(29)-C(30)-C(31) 120.4(3)

C(29)-C(30)-H(30) 119.8

C(31)-C(30)-H(30) 119.8

C(31)-C(32)-C(27) 121.6(3)

C(31)-C(32)-H(32) 119.2

C(27)-C(32)-H(32) 119.2

C(31)-C(33)-H(33A) 109.5

C(31)-C(33)-H(33B) 109.5

H(33A)-C(33)-H(33B) 109.5

C(31)-C(33)-H(33C) 109.5

H(33A)-C(33)-H(33C) 109.5

H(33B)-C(33)-H(33C) 109.5

______

Symmetry transformations used to generate equivalent atoms:

158 #1 -x+1,-y+2,-z

159 Table 3.11. Anisotropic displacement parameters (A2 x 103) for 3.8. The anisotropic displacement factor exponent takes the form: -2 pi2 [ h2 a*2 U11 + ... + 2 h k a* b* U12 ]

______

U11 U22 U33 U23 U13 U12

______

Au(1) 17(1) 14(1) 14(1) 2(1) 5(1) 0(1)

C(22) 22(1) 21(1) 18(1) 4(1) 1(1) 2(1)

P(1) 16(1) 13(1) 14(1) 2(1) 3(1) 0(1)

C(1) 21(1) 15(1) 16(1) 2(1) 5(1) 2(1)

C(20) 19(1) 17(1) 21(1) -1(1) 1(1) 2(1)

C(26) 19(1) 23(1) 24(1) 7(1) 5(1) 2(1)

C(15) 18(1) 14(1) 17(1) 1(1) 2(1) 1(1)

C(19) 22(1) 17(1) 27(1) -2(1) 2(1) 3(1)

C(6) 16(1) 13(1) 16(1) 0(1) 3(1) 3(1)

C(18) 31(1) 20(1) 23(1) -5(1) 4(1) 1(1)

C(16) 21(1) 19(1) 18(1) 2(1) 0(1) 0(1)

C(10) 22(1) 19(1) 19(1) 0(1) 3(1) -3(1)

C(17) 29(1) 18(1) 19(1) -1(1) -1(1) -1(1)

C(25) 18(1) 29(2) 29(1) 7(1) 6(1) 3(1)

C(13) 26(1) 28(1) 17(1) 3(1) -1(1) -1(1)

C(5) 16(1) 13(1) 13(1) -2(1) 4(1) 1(1)

C(3) 16(1) 16(1) 15(1) -1(1) 5(1) 1(1)

C(24) 17(1) 28(1) 29(1) -1(1) 2(1) 3(1)

160 C(9) 18(1) 17(1) 15(1) -1(1) 2(1) 0(1)

C(2) 16(1) 19(1) 18(1) 1(1) 4(1) -2(1)

C(8) 18(1) 18(1) 13(1) 2(1) 0(1) 3(1)

C(21) 17(1) 17(1) 17(1) 0(1) 1(1) 2(1)

C(12) 26(1) 28(1) 17(1) -1(1) 1(1) -2(1)

C(4) 12(1) 21(1) 18(1) 1(1) 0(1) -2(1)

C(7) 16(1) 21(1) 15(1) 1(1) 0(1) 1(1)

C(14) 21(1) 22(1) 18(1) 2(1) 2(1) -2(1)

C(11) 23(1) 24(1) 22(1) -4(1) 3(1) -7(1)

C(23) 23(1) 25(1) 25(1) 6(1) 3(1) 6(1)

C(28) 29(2) 29(2) 36(2) 1(1) 9(1) -1(1)

C(29) 28(1) 31(2) 29(1) 4(1) 2(1) -3(1)

C(27) 28(2) 35(2) 34(2) 9(1) 3(1) 0(1)

C(31) 33(2) 27(2) 33(2) 3(1) 12(1) -7(1)

C(30) 28(2) 26(2) 31(2) 5(1) 4(1) -4(1)

C(32) 30(2) 39(2) 26(1) 7(1) 0(1) -7(1)

C(33) 51(2) 36(2) 36(2) -2(1) 12(2) -3(2)

______

161 Table 3.12. Hydrogen coordinates ( x 104) and isotropic displacement parameters

(A2 x 103) for 3.8.

______

x y z U(eq)

______

H(22A) 590 8375 2560 24

H(22B) -346 7587 2413 24

H(20A) 4409 6151 2747 23

H(20B) 4219 5788 3581 23

H(26A) -544 6593 3483 26

H(26B) 221 6771 4318 26

H(15) 1772 5882 3403 20

H(19A) 4802 4784 2688 26

H(19B) 3348 4596 3051 26

H(18A) 3061 4370 1717 29

H(18B) 3582 5259 1551 29

H(16A) 560 6258 2239 23

H(16B) 1998 6437 1855 23

H(10A) 4356 8395 3999 24

H(10B) 3127 8397 4575 24

H(17A) 1045 4881 2258 26

H(17B) 1093 5207 1396 26

H(25A) -2229 7071 4288 30

162 H(25B) -1298 7849 4491 30

H(13A) 3703 6513 5980 28

H(13B) 4923 6461 5401 28

H(24A) -2731 7505 3021 30

H(24B) -3124 8211 3585 30

H(9) 4478 6985 4084 20

H(2) 2248 8585 771 20

H(8) 5997 8961 1944 20

H(21) 919 8040 3885 20

H(12A) 5383 7564 6183 29

H(12B) 3815 7893 6005 29

H(4) 1631 9291 -469 21

H(7) 7747 9886 1423 21

H(14A) 2146 7073 5014 24

H(14B) 2750 6254 4698 24

H(11A) 5959 7866 4952 28

H(11B) 5269 8648 5292 28

H(23A) -1036 8884 3389 29

H(23B) -1831 8696 2565 29

H(28) 5837 7071 1969 37

H(29) 7443 6151 2513 35

H(27) 4934 6920 693 38

H(30) 8295 5139 1776 34

163 H(32) 5739 5879 -42 38

H(33A) 6911 4493 23 61

H(33B) 8255 4410 629 61

H(33C) 8280 5025 -71 61

______

164 Table 4.2. Crystal data and structure refinement for 4.7.

Identification code 4.7

Empirical formula C44H34Au2P2S2

Formula weight 1082.70

Temperature 100(2) K

Wavelength 0.71073 A

Crystal system, space group Monoclinic, C2/c

Unit cell dimensions a = 17.453(3) A alpha = 90 deg.

b = 13.060(3) A beta = 95.362(3) deg.

c = 16.282(3) A gamma = 90 deg.

Volume 3695.0(11) A3

Z, Calculated density 4, 1.946 Mg/m3

Absorption coefficient 8.164 mm-1

F(000) 2072

Crystal size 0.26 x 0.15 x 0.06 mm

Theta range for data collection 1.95 to 27.53 deg.

165 Limiting indices -22≤h≤22, -16≤k≤16, -21≤l≤21

Reflections collected / unique 20969 / 4214 [R(int) = 0.0661]

Completeness to theta 27.53 99.0 %

Absorption correction Multi-scan

Max. and min. transmission 0.6445 and 0.2245

Refinement method Full-matrix least-squares on F2

Data / restraints / parameters 4214 / 0 / 226

Goodness-of-fit on F2 1.004

Final R indices [I>2σ(I)] R1 = 0.0376, wR2 = 0.1062

R indices (all data) R1 = 0.0710, wR2 = 0.1404

Largest diff. peak and hole 2.406 and -1.843 e.A-3

166 Table 4.3. Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (A2 x 103) for 4.7. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

______

x y z U(eq)

______

Au(1) 3378(1) 7976(1) 2329(1) 15(1)

Au(1) 1621(1) 7088(1) 1432(1) 19(1)

S(1) 356(1) 8835(2) 929(1) 23(1)

P(1) 2260(1) 6009(2) 2357(1) 19(1)

C(16) 3342(5) 4449(6) 2230(5) 25(2)

C(11) 2670(5) 4918(6) 1893(5) 24(2)

C(12) 2295(5) 4541(6) 1165(5) 24(2)

C(15) 3625(5) 3606(7) 1849(5) 26(2)

C(14) 3255(6) 3230(7) 1124(6) 30(2)

C(13) 2591(5) 3688(7) 782(5) 28(2)

C(4) 296(5) 9612(6) 61(5) 20(2)

C(2) 1322(5) 8513(6) -93(5) 23(2)

C(1) 1130(5) 8142(6) 638(5) 25(2)

C(3) 851(5) 9330(6) -420(5) 25(2)

C(10) 3362(5) 6441(7) 3698(5) 24(2)

C(5) 3065(5) 6663(7) 2906(5) 23(2)

167 C(17) 1698(5) 5466(6) 3128(5) 21(2)

C(18) 959(5) 5843(7) 3201(6) 26(2)

C(6) 3417(5) 7436(7) 2469(5) 27(2)

C(9) 4002(6) 6972(7) 4049(6) 31(2)

C(8) 4348(6) 7711(8) 3606(7) 39(2)

C(22) 1975(5) 4680(6) 3646(5) 23(2)

C(21) 1525(5) 4291(7) 4246(5) 27(2)

C(19) 519(5) 5466(7) 3792(6) 32(2)

C(20) 801(6) 4691(7) 4306(6) 32(2)

C(7) 4043(6) 7943(7) 2818(6) 35(2)

______

168 Table 4.4. Bond lengths [Å] and angles [°] for 4.7.

______

Au(1)-C(1) 2.023(9)

Au(1)-P(1) 2.277(2)

S(1)-C(1) 1.729(9)

S(1)-C(4) 1.735(8)

P(1)-C(11) 1.794(9)

P(1)-C(17) 1.808(8)

P(1)-C(5) 1.808(9)

C(16)-C(15) 1.378(12)

C(16)-C(11) 1.390(12)

C(16)-H(16) 0.9500

C(11)-C(12) 1.389(12)

C(12)-C(13) 1.399(12)

C(12)-H(12) 0.9500

C(15)-C(14) 1.381(12)

C(15)-H(15) 0.9500

C(14)-C(13) 1.376(13)

C(14)-H(14) 0.9500

C(13)-H(13) 0.9500

C(4)-C(3) 1.354(12)

C(4)-C(4)#1 1.447(15)

C(2)-C(1) 1.356(11)

169 C(2)-C(3) 1.418(11)

C(2)-H(2) 0.9500

C(3)-H(3) 0.9500

C(10)-C(5) 1.376(11)

C(10)-C(9) 1.391(13)

C(10)-H(10) 0.9500

C(5)-C(6) 1.408(12)

C(17)-C(22) 1.387(12)

C(17)-C(18) 1.395(12)

C(18)-C(19) 1.378(12)

C(18)-H(18) 0.9500

C(6)-C(7) 1.355(13)

C(6)-H(6) 0.9500

C(9)-C(8) 1.377(15)

C(9)-H(9) 0.9500

C(8)-C(7) 1.376(15)

C(8)-H(8) 0.9500

C(22)-C(21) 1.404(11)

C(22)-H(22) 0.9500

C(21)-C(20) 1.379(13)

C(21)-H(21) 0.9500

C(19)-C(20) 1.374(13)

C(19)-H(19) 0.9500

170 C(20)-H(20) 0.9500

C(7)-H(7) 0.9500

C(1)-Au(1)-P(1) 174.7(3)

C(1)-S(1)-C(4) 94.1(4)

C(11)-P(1)-C(17) 104.2(4)

C(11)-P(1)-C(5) 105.1(4)

C(17)-P(1)-C(5) 106.8(4)

C(11)-P(1)-Au(1) 113.7(3)

C(17)-P(1)-Au(1) 116.0(3)

C(5)-P(1)-Au(1) 110.2(3)

C(15)-C(16)-C(11) 119.9(9)

C(15)-C(16)-H(16) 120.0

C(11)-C(16)-H(16) 120.0

C(12)-C(11)-C(16) 119.6(8)

C(12)-C(11)-P(1) 117.8(7)

C(16)-C(11)-P(1) 122.6(7)

C(11)-C(12)-C(13) 119.9(8)

C(11)-C(12)-H(12) 120.0

C(13)-C(12)-H(12) 120.0

C(16)-C(15)-C(14) 120.7(9)

C(16)-C(15)-H(15) 119.7

C(14)-C(15)-H(15) 119.7

171 C(13)-C(14)-C(15) 120.0(9)

C(13)-C(14)-H(14) 120.0

C(15)-C(14)-H(14) 120.0

C(14)-C(13)-C(12) 119.9(9)

C(14)-C(13)-H(13) 120.1

C(12)-C(13)-H(13) 120.1

C(3)-C(4)-C(4)#1 130.6(9)

C(3)-C(4)-S(1) 108.7(6)

C(4)#1-C(4)-S(1) 120.7(8)

C(1)-C(2)-C(3) 114.6(7)

C(1)-C(2)-H(2) 122.7

C(3)-C(2)-H(2) 122.7

C(2)-C(1)-S(1) 108.5(6)

C(2)-C(1)-Au(1) 132.8(7)

S(1)-C(1)-Au(1) 118.4(5)

C(4)-C(3)-C(2) 114.1(7)

C(4)-C(3)-H(3) 122.9

C(2)-C(3)-H(3) 122.9

C(5)-C(10)-C(9) 119.8(8)

C(5)-C(10)-H(10) 120.1

C(9)-C(10)-H(10) 120.1

C(10)-C(5)-C(6) 118.7(8)

C(10)-C(5)-P(1) 124.8(7)

172 C(6)-C(5)-P(1) 116.4(7)

C(22)-C(17)-C(18) 118.8(8)

C(22)-C(17)-P(1) 122.1(6)

C(18)-C(17)-P(1) 119.1(7)

C(19)-C(18)-C(17) 120.9(8)

C(19)-C(18)-H(18) 119.5

C(17)-C(18)-H(18) 119.5

C(7)-C(6)-C(5) 120.7(9)

C(7)-C(6)-H(6) 119.7

C(5)-C(6)-H(6) 119.7

C(8)-C(9)-C(10) 120.6(10)

C(8)-C(9)-H(9) 119.7

C(10)-C(9)-H(9) 119.7

C(7)-C(8)-C(9) 119.5(10)

C(7)-C(8)-H(8) 120.3

C(9)-C(8)-H(8) 120.3

C(17)-C(22)-C(21) 120.3(8)

C(17)-C(22)-H(22) 119.9

C(21)-C(22)-H(22) 119.9

C(20)-C(21)-C(22) 119.3(8)

C(20)-C(21)-H(21) 120.4

C(22)-C(21)-H(21) 120.4

C(20)-C(19)-C(18) 119.8(9)

173 C(20)-C(19)-H(19) 120.1

C(18)-C(19)-H(19) 120.1

C(19)-C(20)-C(21) 120.9(8)

C(19)-C(20)-H(20) 119.5

C(21)-C(20)-H(20) 119.5

C(6)-C(7)-C(8) 120.7(9)

C(6)-C(7)-H(7) 119.7

C(8)-C(7)-H(7) 119.7

______

Symmetry transformations used to generate equivalent atoms: #1 -x,-y+2,-z

174 Table 4.5. Anisotropic displacement parameters (A2 x 103) for 4.7. The anisotropic displacement factor exponent takes the form: -2 pi2 [ h2 a*2 U11 + ... + 2 h k a* b* U12 ]

______

U11 U22 U33 U23 U13 U12

______

Au(1) 20(1) 16(1) 21(1) 3(1) 4(1) 4(1)

S(1) 23(1) 24(1) 22(1) 5(1) 6(1) 6(1)

P(1) 19(1) 18(1) 20(1) 3(1) 6(1) 3(1)

C(16) 32(5) 21(4) 24(4) 6(3) 10(4) 2(4)

C(11) 39(5) 21(4) 13(4) 5(3) 10(4) -2(4)

C(12) 25(5) 20(4) 28(5) 2(3) 4(4) -2(4)

C(15) 30(5) 27(5) 24(4) 2(4) 8(4) 2(4)

C(14) 39(6) 20(4) 31(5) -2(4) 15(4) -1(4)

C(13) 41(5) 21(4) 23(4) 1(4) 10(4) -1(4)

C(4) 23(4) 15(4) 22(4) 4(3) -1(3) 1(3)

C(2) 21(4) 19(4) 29(4) 8(3) 9(3) 7(3)

C(1) 29(5) 21(4) 24(4) -1(3) 5(4) 7(4)

C(3) 34(5) 17(4) 23(4) 4(3) 4(4) 0(4)

C(10) 29(5) 20(4) 24(4) 4(3) 5(4) 1(3)

C(5) 21(4) 17(4) 32(5) 0(3) 6(4) 2(3)

C(17) 22(4) 22(4) 19(4) -5(3) 7(3) -4(3)

C(18) 25(5) 22(4) 32(5) 1(4) 7(4) -3(4)

C(6) 31(5) 28(5) 23(5) 1(4) 5(4) -7(4)

175 C(9) 32(5) 28(5) 33(5) 6(4) 2(4) 7(4)

C(8) 24(5) 43(6) 49(7) -6(5) 3(5) -1(4)

C(22) 28(5) 19(4) 22(4) 3(3) 10(3) 5(4)

C(21) 38(5) 19(4) 25(4) -3(3) 7(4) -3(4)

C(19) 26(5) 31(5) 42(5) 2(4) 16(4) 0(4)

C(20) 37(5) 30(5) 30(5) -4(4) 15(4) -12(4)

C(7) 33(5) 35(6) 36(6) 5(4) 4(4) -11(4)

______

176 Table 4.6. Hydrogen coordinates ( x 104) and isotropic displacement parameters (A2 x

103) for 4.7.

______

x y z U(eq)

______

H(16) 3605 4709 2723 30

H(12) 1838 4862 928 29

H(15) 4079 3279 2087 32

H(14) 3459 2655 861 36

H(13) 2333 3426 286 34

H(2) 1738 8248 -365 27

H(3) 920 9650 -932 30

H(10) 3131 5926 4005 29

H(18) 758 6368 2839 31

H(6) 3213 7605 1925 33

H(9) 4202 6824 4599 38

H(8) 4793 8058 3842 47

H(22) 2472 4403 3596 27

H(21) 1717 3760 4606 32

H(19) 22 5740 3845 39

H(20) 493 4426 4707 38

H(7) 4273 8463 2515 42

______

177

178 Bibliography http://www.webelements.com/webelements/text/Au/index/.html.

Arnason, J. T.; Chan, G. F. Q.; Wat, C. K.; Downum, K.; Towers, G. H. N. Photochem, Photobiol., 1981, 33, 821-824.

Arnason, J. T.; Philogene, B. J. R.; Berg, C. et. al., Phytochemistry, 1986, 25, 1609-1611.

Bakker, J.; Gommers, F. J.; Nieuwenhuis, I.; Wynberg, H. J. Biol. Chem., 1979, 254, 1841-1844.

Barnard, P. J.; Berners-Price, S. J.; Coord. Chem. Rev., 2007, 251, 1889-1902.

Bäuerle, P. “Synthesis of Oligothiophenes.” In: Handbook of Oligo- and Polythiophenes; Fichou, D., Ed.; Wiley-VCH: Weinheim, 1999.

Bennett, L. E.; Ghiggino, K. P.; Henderson, R. W. J. Photochem. Photobiol. B: Biol., 1989, 3, 81-89.

Bohlmann, F.; Zdero, C. Chem. Ber., 1976, 109, 901-905.

Brückner, S.; Porzio, W. Makromol. Chem., 1988, 189, 961-967.

Bruker Advanced X-ray Solutions. SAINT (Version 6.45); Bruker AXS Inc.; Madison, WI, 1997-2003.

Bruker Advanced X-ray Solutions. SHELXTL (Version 6.10); Bruker AXS Inc.; Madison, WI, 2000.

Bruker Advanced X-ray Solutions. SMART for WNT/2000 (Version 5.628); Bruker AXS Inc.; Madison, WI, 1997-2002.

Caspar, J. V.; Ramamurthy, V.; Corbin, D. R. J. Am. Chem. Soc., 1991, 113, 600-610.

Charra, F.; Lavie, M. -P.; Lorin, A.; Fichou, D. Synth. Met., 1994, 65, 13-17.

Clot, O.; Akahori, Y.; Moorlag, C.; Leznoff, D. B.; Wolf, M. O.; Batchelor, R. J.; Patrick, B. O.; Ishii, M. Inorg. Chem. 2003, 42, 2704–2713.

Collis, G. E.; Campbell, W. M.; Officer, D. L.; Burrell, A. K. Org. Biomol. Chem., 2005, 3, 2075-2084.

Cornil, J.; Beljonne, D.; Bredas, J. L. J. Chem. Phys., 1995, 103, 842-849.

Cornil, J.; Bredas, J. L. Adv. Mater., 1995, 7, 295-297.

179 Cotton, F. A. Inorg. Chem., 1964, 3, 1217-1220.

Cotton, F. A. Quart. Rev. 1966, 20, 389-401.

Cotton, F. A.; Walton, R. A. Multiple Bonds Between Metal Atoms; Oxford University Press: New York, 1993.

Coventry, D. N.; Batsanov, A. S.; Goeta, A. E.; Howard, J. A. K.; Marder, T. B.; Perutz, R. N. Chem. Commun., 2005, 2172-2174.

Desclaux, J. P.; Pyykkö, P. Chem. Phys. Lett., 1976, 39, 300-303.

Downum, K. R.; Provost, D.; Swain, L. Bioact. Mol., 1988, 7, 151-158.

Ebata, K.; Masuko, M.; Ohtani, H.; Kashiwasake-Jibu, M. Photochem. Photobiol., 1995, 62, 836-839.

Ehrendorfer, C.; Karpfen, A. J. Phys. Chem., 1994, 98, 7492-7496.

El-Sayed, M. A. Acc. Chem. Res., 1968, 1, 8-16.

Elbjeirami, O.; Burress, C. N.; Gabbaï, F. P.; Omary, M. A. J. Phys. Chem. C, 2007, 111, 9522-9529.

Evans, C. H.; Scaiano, J. C. J. Am. Chem. Soc., 1990, 112, 2694-2701.

Fackler, J. P., Jr.; Khan, M. N. I.; King, C.; Staples, R. J.; Winpenney, R. E. P., Organometallics, 1991, 10, 2178-2183.

Ferguson, G.; Roberts, P. J.; Alyea, E. C.; Khan, M. Inorg. Chem. 1978, 17, 2965–2967.

Fernández, E. J.; Laguna, A.; Olmos, M. E. In Gold: Progress in Chemistry, Biochemistry and Technology; Schmidbaur, H., Ed.; Wiley: Chichester, 1999.

Fichou, D.; Horowitz, G.; Garnier, F. Synth. Met., 1990, 39, 125-131.

Fichou, D.; Horowitz, G.; Xu, B.; Garnier, F. Synth. Met., 1990, 39, 243-259.

Fichou, D.; Nunzi, J. -M.; Charra, F.; Pfeffer, N. Adv. Mater., 1994, 6, 64-67.

Foote, C. S. ACS Symp. Ser., 1987, 339, 22-38.

Foote, C. S. Tetrahedron, 1985, 41, 2221-2227.

Franolic, J. D.; Long, J. R.; Holm, R. H. J. Am. Chem. Soc. 1995, 117, 8139–8153.

180 Friedrich, J.; Metz, F.; Dorr, F. Mol. Phys., 1975, 30, 289-312.

Gao, L.; Peay, M. A.; Gray, T. G. Chem. Mater. 2010, 22, 6240–6245.

Gao, L.; Peay, M. A.; Partyka, D. V.; Updegraff, J. B., III; Teets, T. S.; Esswein, A. J.; Zeller, M.; Hunter, A. D.; Gray, T. G. Organometallics, 2009, 28, 5669-5681.

Geiger, F.; Stoldt, M.; Schweizer, H.; Bauerle, P.; Umbach, E. Adv. Mater., 1993, 5, 922- 925.

Gimeno, M. C.; Laguna, A. “Silver and Gold.” In: Comprehensive Coordination Chemistry II. Elsevier: New York; 2003; pp. 911-1145.

Gorin, D. J.; Toste, F. D. Nature, 2007, 446, 395–403.

Gray, T. G. Coord. Chem. Rev. 2003, 243, 213-235.

Gray, T. G.; Holm, R. H. Inorg. Chem. 2002, 41, 4211-4216.

Gray, T. G.; Rudzinski, C. M.; Meyer, E. E.; Holm, R. H.; Nocera, D. G. J. Am. Chem. Soc., 2003, 125, 4755-4770.

Griffith, J. S. Theory of Transition Metal Ions; Cambridge University Press, Cambridge, 1964, pp. 437–439.

Guay, J.; Diaz, A.; Wu, R. L.; Tour, J. M.; Dao, L. H. Chem. Mater., 1992, 4, 254-255.

Guay, J.; Kasai, P.; Diaz, A.; Wu, L.; Tour, J. M.; Dao, L. H. Chem. Mater., 1992, 4, 1097-1105.

Harriman, A.; Maiya, B. G.; Murai, T.; Hemmi, G.; Sessler, J. L.; Mallouk, T. E. J. Chem. Soc., Chem. Commun.., 1989, 314-316.

Harrison, M. G.; Friend, R. H.; Garnier, F.; Yassar, A. Synth. Met., 1994, 67, 215-221.

Hay, D. N. T.; Adams, J. A.; Carpenter, J.; DeVries, S. L.; Domyancich, J.; Dumser, B.; Goldsmith, S.; Kruse, M. A.; Leone, A.; Moussavi-Harami, F.; O’Brien, J. A.; Pfaffly, J. R.; Sylves, M.; Taravati, P.; Thomas, J. L.; Tiernan, B.; Messerle, L. Inorg. Chimica Acta, 2004, 357, 644-648.

Heng, W. Y.; Hu, J.; Yip, J. H. K. Organometallics, 2007, 26, 6760–6768.

Hermanson, G. T. Bioconjugate Techniques; Academic: San Diego, 1996.

181 Ho, S. Y.; Tiekink, E. R. T. “79Au Gold-Based Metallotherapeutics: Use and Potential.” In Metallotherapeutic Drugs & Metal-based Diagnostic Agents: The Use of Metals in Medicine; Gielen, M.; Tiekink, E. R. T., Eds.; Wiley: New York, 2005; pp 507–528.

Holm, R. H.; Ciurli, S.; Weigel, J. A. Prog. Inorg. Chem. 1990, 38, 1–74.

Horowitz, G.; Delannoy, P.; Bouchriha, H., et. al., Adv. Mater., 1994, 6, 752-755.

Horowitz, G.; Yassar, A.; von Bardeleben, H. J. Synth. Met., 1994, 62, 245-252.

Hotta, S.; Waragai, K. J. Mater. Chem., 1991, 1, 835-842.

Huang, W.; Masuda, G.; Maeda, S.; Tanaka, H.; Ogawa, T. Chem.-Eur. J. 2006, 12, 607– 619.

Jackson, J. A.; Turro, C.; Newsham, M. D.; Nocera, D. G. J. Phys. Chem., 1990, 94, 4500-4507.

Jente, R.; Olatunji, G. A.; Bosold, F. Phytochemistry, 1981, 20, 2169-2175.

Johnston, D. H.; Gaswick, D. C.; Lonergan, M. C.; Stern, C. L.; Shriver, D. F. Inorg. Chem., 1992, 31, 1869-1873.

Justin Thomas, K. R.; Lin, J. T.; Wen, Y. S. Organometallics, 2000, 19, 1008-1012.

Kagan, J.; Arora, S. K. J. Org. Chem., 1983, 48, 4317-4320.

Kagan, J.; Bazin, M.; Santus, R. J. Photochem. Photobiol. B: Biol., 1989, 3, 165-174.

Kaltsoyannis, N. J. Chem. Soc., Dalton Trans. 1997, 1–11.

Kirk, A. D.; Namasivayam, C.; Riske, W.; Riske-Petrovic, D. Inorg. Chem., 1989, 28, 972-974.

Kolesnichenko, V.; Messerle, L. Inorg. Chem., 1998, 37, 3660-3663.

Ladokhin, A. S. Method Enzymol., 1997, 278, 462-473.

Lakowicz, J. R. Principles of Fluorescence Spectroscopy, 2nd Ed., Kluwer Academic/Plenum Publishers, New York, 1999, pp. 595-614.

Lee, S.; Holm, R. H. Angew. Chem. Int. Ed. Engl., 1990, 29, 840-856.

Liedberg, B.; Yang, Z.; Engquist, I.; Wirde, M.; Gelius, U.; Götz, G.; Bäuerle, P.; Rummel, R. M.; Ziegler, C.; Gopel, W. J. Phys. Chem. B, 1997, 101, 5951–5962.

182 Lin, J. W. P.; Dudek, L. P. J. Polym. Sci. Polym. Chem. Ed., 1980, 18, 2869-2873.

Long, J. R.; McCarty, L. S.; Holm, R. H. J. Am. Chem. Soc. 1996, 118, 4603-4616.

Lower, S. K.; El-Sayed, M. A. Chem. Rev., 1968, 66, 199-241.

Marcus, R. A. J. Phys. Chem., 1965, 43, 2654-2657.

Marles, R. J.; Compadre, R. L.; Compadre, C. M. et. al., Pestic. Biochem. Physiol., 1991, 41, 89-100.

Maverick, A. W.; Najdzionek, J. S.; MacKenzie, D.; Nocera, D. G.; Gray, H. B. J. Am. Chem. Soc., 1983, 105, 1878-1882.

McClure, D. S. J. Chem. Phys., 1949, 17, 905-913; McClure, D. S. J. Chem. Phys., 1952, 20, 682-686.

McGlynn, S. P.; Azumi, T.; Kinoshita, M. Molecular Spectroscopy of the Triplet State. Prentice-Hall, Englewood Cliffs, N. J., 1969.

Méry, D.; Plault, L.; Nlate, S.; Astruc, D.; Cordier, S.; Kirakci, K.; Perrin, S. Z. Anorg. Allg. Chem., 2005, 631, 2746-2750.

Michalitsch, R.; Nogues, C.; Najari, A.; El Kassmi, A.; Yassar, A.; Lang, P.; Garnier, F. Synth. Met. 1999, 101, 5–6.

Miller, J. C.; Meek, J. S.; Strickler, S. J. J. Am. Chem. Soc., 1977, 99, 8175-8179.

Mishra, A.; Ma, C.-Q.; Bäuerle, P. Chem. Rev. 2009, 109, 1141–1276.

Mohamed, A. A.; Rawashdeh-Omary, M. A.; Omary, M. A.; Fackler, J. P., Jr. Dalton Trans., 2005, 2597-2602.

Mussell, R. D.; Nocera, D. G. Inorg. Chem., 1990, 29, 3711-3717.

Mussell, R. D.; Nocera, D. G. Polyhedron, 1986, 5, 47-50.

Negishi, N.; Takimiya, K.; Otsubo, T.; Harima, Y.; Aso, Y. Chem. Lett. 2004, 33, 654– 655.

Negishi, N.; Yamada, K.; Takimiya, K.; Aso, Y.; Otsubo, T.; Harima, Y. Chem. Lett. 2003, 32, 404–405.

Nessakh, B.; Horowitz, G.; Garnier, F.; Deloffre, F.; Srivastava, P.; Yassar, A. J. Electroanal. Chem., 1995, 399, 97-103.

Nocera, D. G.; Gray, H. B. J. Am. Chem. Soc., 1984, 106, 824-825.

183

Noma, N.; Tsuzuki, T.; Shirota, Y. Adv. Mater., 1995, 7, 647-648.

Omary, M. A.; Mohamed, A. A.; Rawashdeh-Omary, M. A.; Fackler, J. P., Jr. Coord. Chem. Rev., 2005, 249, 1372-1381.

Omary, M. A.; Rawashdeh-Omary, M. A.; Diyabalanage, H. V. K.; Dias, H. V. R. Inorg. Chem., 2003, 42, 8612-8614.

Partyka, D. V.; Esswein, A. J.; Zeller, M.; Hunter, A. D.; Gray, T. G. Organometallics, 2007, 26, 3279-3282.

Partyka, D. V.; Robilotto, T. J.; Updegraff, J. B. III; Zeller, M.; Hunter, A. D.; Gray, T. G. Organometallics, 2009, 28, 795-801.

Partyka, D. V.; Robilotto, T. J.; Zeller, M.; Hunter, A. D.; Gray, T. G. Proc. Natl. Acad. Sci., U. S. A., 2008, 105, 14293-14297.

Partyka, D. V.; Updegraff, J. B. III; Zeller, M.; Hunter, A. D.; Gray, T. G. Organometallics 2007, 26, 183–186.

Partyka, D. V.; Zeller, M.; Hunter, A. D.; Gray, T. G. Angew. Chem., Int. Ed., 2006, 45, 8188-8191.

Prokopuk, N.; Shriver, D. F. Adv. Inorg. Chem., 1999, 46, 1-49.

Puddephatt, R. J. “Gold.” In: Comprehensive Organometallic Chemistry; Wilkinson, G.; Stone, F. G. A.; Abel, E. W., Eds.; Pergamon Press: Oxford, 1982; pp 765-821.

Pyykkö, P. Chem. Rev., 1988, 88, 563-594.

Pyykkö, P. Angew. Chem. Int. Ed., 2002, 41, 3573-3578.

Pyykkö,P.; Desclaux, J. P. Acc. Chem. Res., 1979, 12, 276-281.

Sassaroli, M.; Ruonala, M.; Virtanen, M.; Somerharju, P. Biochemistry, 1995, 34, 8843- 8851.

Scaiano, J. C.; MacEacherri, A.; Arnason, J. T.; Morand, P.; Weir, D. Photochem. Photobiol., 1987, 46, 193-199.

Schmidbaur, H.; Grohmann, A.; Olmos, M. E. Organogold Chemistry. In Gold: Progress in Chemistry, Biochemistry and Technology; H. Schmidbaur, Ed.; Wiley: Chichester, 1999.

Schneider, D.; Schier, A.; Schmidbaur, H. Dalton Trans., 2004, 1995-2005.

184 Schwerdtfeger, P. J. Am. Chem. Soc., 1989, 111, 7261-7262.

Schwerdtfeger, P.; Boyd, P. D. W.; Burrell, A. K.; Robinson, W. T.; Taylor, M. J. Inorg. Chem., 1990, 29, 3593-3607.

Schwerdtfeger, P.; Dolg, M.; Schwarz, W. H. E.; Bowmaker, G. A.; Boyd, P. D. W, J. Chem. Phys., 1989, 91, 1762-1774.

Simon, T. M.; Kunishima, D. H.; Vibert, G. J.; Lorber, A. Cancer, 1979, 44, 1865-1975.

Simon, T. M.; Kunishima, D. H.; Vibert, G. J.; Lorber, A. Cancer Res., 1981, 41, 94-97.

Smith, J. D.; Oliver, J. D. Inorg. Chem. 1978, 17, 2585–2889.

Stack, T. D. P.; Holm, R. H. J. Am. Chem. Soc. 1987, 109, 2546–2547.

Stack, T. D. P.; Holm, R. H. J. Am. Chem. Soc. 1988, 110, 2484–2494.

Steinkopf, W.; Kohler, W. Lieb. Ann. Chem., 1936, 522, 17-31.

Steinkopf, W.; Leitsmann, R.; Hoffmann, K. -H. Lieb. Ann. Chem., 1941, 546, 180-184.

Steinkopf, W.; Petersdorf, H. -J.v.; Gording, R. Lieb. Ann. Chem., 1937, 527, 272-274.

Tamura, H.; Yamazaki, H.; Sato, H.; Sakaki, S. J. Am. Chem. Soc., 2003, 125, 16114- 16126.

Tol, A. J. W. Chem. Phys., 1996, 208, 73-79.

Tolman, C. A. Chem. Rev., 1977, 77, 313-348.

Turro, N. J. Modern Molecular Photochemistry. University Science Books; California, 1991.

Valduga, G.; Nonell, S.; Reddi, E.; Jori, G.; Braslavsky, S. E. Photochem. Photobiol., 1988, 48, 1-5.

Venkataswara Rao, P.; Holm, R. H. Chem. Rev. 2004,104, 527–559.

Venkataramana, G.; Sankararaman, S. Eur. J. Org. Chem., 2005, 4162-4166.

Weinert, C. S.; Stern, C. L.; Shriver, D. F. Inorg. Chem., 2000, 39, 240-246.

Whitaker, J. E.; Haugland, R. P.; Moore, P. L.; Hewitt, P. C.; Reese, M.; Haugland, R. P. Anal. Biochem., 1991, 198, 119-130.

Whitten, D. G. Acc. Chem. Res., 1980, 13, 83-90.

185

Willer, M. W.; Long, J. R.; McLauchlan, C. C.; Holm, R. H. Inorg. Chem., 1998, 37, 328-333.

Yamamoto, T.; Sanechika, k.; Yamamoto, A. J. Polym. Sci, Polym. Lett. Ed., 1980, 18, 9- 12.

Yamashiro, T.; Aso, Y.; Otsubo, T. Chem. Lett., 1999, 28, 443-444.

Zheng, Z.; Long, J. R.; Holm, R. H. J. Am. Chem. Soc., 1997, 119, 2163-2171.

Zhou, J.; Hu, Z.; Münck, E.; Holm, R. H. J. Am. Chem. Soc. 1996, 118, 1966–1980.

Zhu, L.; Tang, H.; Harima, Y.; Yamashita, K.; Hirayama, D.; Aso, Y.; Otsubo, T. Chem. Commun. 2001, 1830–1831.

186