Can Sand Dunes Be Used to Study Historic Storm Events?

Total Page:16

File Type:pdf, Size:1020Kb

Can Sand Dunes Be Used to Study Historic Storm Events? This is a repository copy of Can sand dunes be used to study historic storm events?. White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/124685/ Version: Published Version Article: Bateman, Mark D., Rushby, Greg, Stein, Sam et al. (4 more authors) (2017) Can sand dunes be used to study historic storm events? EARTH SURFACE PROCESSES AND LANDFORMS. ISSN 0197-9337 https://doi.org/10.1002/esp.4255 Reuse This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the authors for the original work. More information and the full terms of the licence here: https://creativecommons.org/licenses/ Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ EARTH SURFACE PROCESSES AND LANDFORMS Earth Surf. Process. Landforms (2017) © 2017 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd. Published online in Wiley Online Library (wileyonlinelibrary.com) DOI: 10.1002/esp.4255 Can sand dunes be used to study historic storm events? Mark D. Bateman,1* Greg Rushby,1 Sam Stein,1 Robert A. Ashurst,1 David Stevenson,1 Julie M. Jones1 and W. Roland Gehrels2 1 Geography Department, University of Sheffield, Winter St., Sheffield S10 2TN, UK 2 Environment Department, University of York, Heslington, York YO10 5NG, UK Received 19 May 2017; Revised 5 September 2017; Accepted 5 September 2017 *Correspondence to: Mark D. Bateman, Geography Department, University of Sheffield, Winter St., Sheffield S10 2TN, UK. E-mail: [email protected] This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. ABSTRACT: Knowing the long-term frequency of high magnitude storm events that cause coastal inundation is critical for present coastal management, especially in the context of rising sea levels and potentially increasing frequency and severity of storm events. Coastal sand dunes may provide a sedimentary archive of past storm events from which long-term frequencies of large storms can be reconstructed. This study uses novel portable optically stimulated luminescence (POSL) profiles from coastal dunes to reconstruct the sedimentary archive of storm and surge activity for Norfolk, UK. Application of POSL profiling with supporting luminescence ages and particle size analysis to coastal dunes provides not only information of dunefield evolution but also on past coastal storms. In this study, seven storm events, two major, were identified from the dune archive spanning the last 140 years. These appear to correspond to historical reports of major storm surges. Dunes appear to be only recording (at least at the sampling resolution used here) the highest storm levels that were associated with significant flooding. As such the approach seems to hold promise to obtain a better understanding of the frequency of large storms by extending the dune archive records further back to times when documentation of storm surges was sparse. © 2017 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd. KEYWORDS: dunes; particle size; portable OSL; Norfolk; storms Introduction given rising mean sea levels, will be less for an equivalent surge in the near future (Wolf and Flather, 2005). While hydrological On the 5 December 2013, a deep depression north of Scotland, modelling allows better prediction of peak storm-tide height UK, in conjunction with spring tides, produced an extreme along coastlines, further refinement requires better understand- storm surge down the east coast of Britain (Sibley et al., ing of beach parameters and other coastal zone factors (Lewis 2015). During this water reached 6.05 m OD (Ordnance et al., 2013). To achieve this also requires an understanding Datum, which approximates mean sea level) at Kings Lynn of the response of specific segments of the coastline over longer (Spencer et al., 2015) and 6.31 m OD at Wells-Next-The-Sea time-scales (Andrews et al., 2000). Coastal sand dunes may in Norfolk causing extensive damage to coastal infrastructure, provide a sedimentary archive of past storm events. housing and farmland (Figure 1). This was the worst since Coastal dunes serve as an important buffer zone protecting the disastrous flooding of southern North Sea coasts in 1953 low-lying coastal areas, and their growth is a function of ac- (Baxter, 2005; Gerritsen, 2005) when several thousand deaths commodation space, sediment supply, wind and preservation. occurred across NW Europe (>300 on the east coast of the In particular wide beaches, providing a plentiful sediment UK), as well as extensive breaching of coastal flood defences supply, and a sequence of years without high-intensity storms (Spencer et al., 2015). Knowing the long-term frequency of promote dune development (Puijenbroek et al., 2017). During such high magnitude events as well as more frequent severe storm events they can be modified (Spencer et al., 2015). The storms is critical for present coastal management (Lewis et al., nature of this modification is partly a function of how well 2013) particularly for low-lying coastlines where small changes dunes have coalesced to form a perpendicular barrier to the in sea levels can translate into flooding a long way inland. It is sea, the height above OD of the dune crest and any low points also of increasing importance given rising sea levels (Church et within the dunes. If waves come into direct contact with dunes al., 2013) and the potential for future increased storminess over then erosion may take the form of breaching and overwash central Europe (Zappa et al., 2013). North Sea storm surge aprons (Figure 2(a); Steers et al., 1979). This is more likely to levels are thought to be going to be substantially higher and occur where dunes are poorly developed (i.e. non continuous more frequent by the end of this century (Vousdoukas et al., along the back beach or low in elevation) and/or the magnitude 2016). The return period for extreme water levels to that of of the storm exceeds the height of the dunes. Alternatively, the 1953 storm surge was forecast to be around 50 years but, scarping may occur in which the leading slope of a dune is M. D. BATEMAN ET AL. Figure 1. North Norfolk coastal damage resulting from the December 2013 storm surge in the North Sea. (a) Dune scarping at Brancaster, note metal pilings used to limit erosion on beach. (b) Flotsam left on an artificial sea-wall. The tidal surge reached the top but did not breach the wall on this occasion. (c) Erosion behind gabions placed to protect dunes at Brancaster. (d) Piles of former beach huts on Wells-Next-The-Sea destroyed in the storm surge. [Colour figure can be viewed at wileyonlinelibrary.com] Figure 2. Impacts on coastal dunes of Storm surges. (a) Breaching of dune by waves forming sediment fan in newly formed interdune low. (b) Dune ero- sion forming ‘scarped’ vertical sand cliffs. (c) The same dunes as shown in (b) but 12 months on with collapsed and newly deflated sediment piled up against dunes. (d) Thin sheet of coarse grained sand deposited by 2013 storm event on dune crest. [Colour figure can be viewed at wileyonlinelibrary.com] eroded away leaving a vertical face in the dune on the seaward Given the above, for dunes to record a record of previous side (Figure 2(b)). This vertical face in sand is unstable so after a low frequency high magnitude storms within their stratigraphy storm event it collapses until a slope at the angle of repose is they need to meet the folowing requirements: re-established (Figure 2(c)). Recovery can be quick (<5 years, Brooks et al., 2016). This is more likely to occur for well • form a continuous back beach barrier (or inland barrier); established dunes with high crestlines and/or during lower • have crest lines consistently higher than all but the most magnitude storm events in which waves are sufficiently high extreme storm events preventing overtopping and erosion to reach dune fronts but not to over top them. Storms can also away of the sediment archive; modify dunes through deflation and/or the deposition of • be in an area in which sediment supply is allowing active coarser aeolian sediments moved on high winds during the dune accretion thereby allowing dunes affected by storm storm (Figure 2(d)). It is these erosion layers and storm scarping to be restored and dune crests to build up. deposited sediments which raises the potential for actively accreting dunes to have recorded longer-term coastal storm Proof of concept work has been carried out using innovative records. new portable optically stimulated luminescence (POSL) to © 2017 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd. Earth Surf. Process. Landforms, (2017) COASTAL SAND DUNES AND STORMS establish high resolution relative coastal sand dune chronolo- providing sediment to the ~6.5 km of well developed coastal gies (Bateman et al., 2015). Actual age determinations are not dunes (Figure 3). Oronsaye (1990) showed dune accumulation possible with this method but total POSL counts can be viewed was dominantly by wind with a northerly component. This as a proxy for age, with older samples having a higher lumines- makes the site idea for capturing the results of low frequency cence signal than younger samples. Unless the background high magnitude storms from the north such as the 1953 storm dose creating the luminescence signal changes through time surge rather than prevailing UK storms which are from the the POSL response with age should be linear.
Recommended publications
  • Understanding a Continuous Inland Aeolian Deposition: a Closer Look Into a Chronological and Sedimentary Record of the North-Eastern ISSN 2080-7686 European Sand Belt
    Bulletin of Geography. Physical Geography Series, No. 16 (2019): 31–43 http://dx.doi.org/10.2478/bgeo-2019-0003 Understanding a continuous inland aeolian deposition: a closer look into a chronological and sedimentary record of the north-eastern ISSN 2080-7686 European Sand Belt Edyta Kalińska* Nicolaus Copernicus University in Toruń, Poland * Correspondence: Nicolaus Copernicus University in Toruń, Poland. E-mail: [email protected] http://orcid.org/0000-0003-0987-1091 Abstract. A belt of inland aeolian sand sediments termed the European Sand Belt (ESB) runs through- out Europe, and its western part has gained greater attention, while attention to the eastern part has been limited. Whereas clear aeolian–paleosol sequences that reflect colder–-armer phases are known from its western part, such alternation is practically undetectable in the eastern part. This Key words: study combines the available chronological and sedimentary data from the north-eastern part of the inland dune, ESB, with a special focus on the Baltic State region. Here, aeolian deposition took place between optically stimulated 15.9±1.0 ka and 8.5±0.5 ka, almost instantly following a deglaciation and drainage of paleolakes, luminescence (OSL), and thereafter practically without longer-term stability. Lack of paleosols is likely due to the preva- pulsed OSL, lence of pioneer vegetation, reflecting dry and cold climate conditions, and thus giving limited op- rounded quartz grains, portunity for soil development. Baltic States Introduction numerous stratigraphic subdivisions are apparent through a strong chronological record as obtained both from optically stimulated luminescence (OSL) Rapid climatic and environmental changes occurred and from radiocarbon dating techniques (Vanden- during the last glaciation (Weichselian, marine iso- berghe et al.
    [Show full text]
  • GEOLOGICAL SKETCH of MICHIGAN SAND DUNES
    GEOLOGICAL SKETCH of MICHIGAN SAND DUNES Geological Survey Division Pamplet 5 By Robert W. Kelly, Lansing, Michigan Copyright © 2001 by the Michigan Department of Environmental Quality (DEQ) Geological Survey Division (GSD). The DEQ GSD grants permission to publish or reproduce this document, all or in part, for non-profit purposes. The contents of this electronic document (whole or in part) can be used if, and only if, additional fees are not associated with the use or distribution of this document and credit is given to the DEQ GSD and the author(s). This copyright statement must appear in any and all electronic or print documents using this file or any part thereof. The object of a preface to any publication is to reveal OCCURRENCE its purpose and to give reasons for its appearance. Sand dunes are one of the most striking features on -- Alvah Bradish (1889) Michigan's landscape. Furthermore, dunes are by far the youngest of our hilly features. Many rocky hills in PREFACE the Upper Peninsula are millions of years old--a few perhaps more than a billion years. Yet our oldest sand The increasing number of requests for general dunes, those found scattered inland in Michigan, are information on sand dunes, indicates that more and little more than 10,000 years old, while the most more people are beginning to discover, or re-discover, prominent of all, the great coastal massifs along our that Michigan has some truly unusual, if not Great Lakes shore (see center-spread map), date remarkable, dunelands. This pamphlet is intended for back a mere 3000 or 4000 years.
    [Show full text]
  • Extent and Timing of the Weichselian Glaciation Southeast of the Baltic Sea
    ALTIC RIB UM PE O I R N Q P UA T ER International Field Symposium of the INQUA Peribaltic Working Group Tartu, September 13–17, 2009 EXTENT AND TIMING OF THE WEICHSELIAN GLACIATION SOUTHEAST OF THE BALTIC SEA University of Tartu, Institute of Ecology and Earth Sciences Tartu 2009 Organisers: University of Tartu, Institute of Ecology and Earth Sciences, Department of Geology. University of Latvia, Faculty of Geography and Earth Sciences. INQUA Peribaltic Working Group (INQUA TERPRO Commission). ESTQUA – Estonian National Committee of INQUA. Organising Commitee: Volli Kalm, Maris Rattas, Vitalijs Zelčs, Tiit Hang, Alar Rosentau, Kadri Sohar, Liina Laumets, Katrin Lasberg, Marko Kohv. Recommended reference to this publication: Kalm, V., Laumets, L. & Hang,T. (eds.), 2009. Extent and timing of the Weichselian Glaciation southeast of the Baltic Sea: Abstracts & Guidebook. The INQUA Peribaltic Working Group Field Symposium in southern Estonia and northern Latvia, September 13–17, 2009. Tartu Ülikooli Kirjastus, Tartu, 112 pages. Sponsored by: Institute of Ecology and Earth Sciences, University of Tartu. Latvian Peat Producers Joint Stock Company Association “Seda” Skolas laukums Bauskas iela 20, Rīga, LV - 1, Seda, Valka District, 1004, Latvia, phone: +371 LV-4728, Latvia,, phone: 7605096, fax: +371 +371 64722113, fax: 7627810, [email protected] +371 64781101 Editors: Volli Kalm, Liina Laumets & Tiit Hang. The front cover photography “Late Weichselian till on glaciofluvial deposits, Kambja endmoraine” (photo by Maris Rattas). Graphical elaboration by Katrin Lasberg. Copyright by: Institute of Ecology and Earth Sciences, University of Tartu. 2009. ISBN 978–9949–19–218–2 Tartu University Press www.tyk.ee CONTENTS ABSTRACTS AND POSTERS Leeli AMON, Atko HEINSALU, Siim VESKI LATE-GLACIAL MULTIPROXY EVIDENCE OF VEGETATION DEVELOPMENT AND CLIMATE CHANGE AT SOLOVA, SOUTHERN ESTONIA ...................................................................................
    [Show full text]
  • MIA KOTILAINEN Dune Stratigraphy As an Indicator of Holocene
    Annales Academiae Scientiarum Fennicae Geologica-Geographica 166 MIA KOTILAINEN Dune Stratigraphy as an Indicator of Holocene Climatic Change and Human Impact in Northern Lapland, Finland Academic dissertation To be presented, with the permission of the Faculty of Science of the University of Helsinki, for public criticism in Auditorium, Arppeanum, Snellmaninkatu 3, University of Helsinki, on November 29th, at 2 pm. SUOMALAINEN TIEDEAKATEMIA HELSINKI 2004 Copyright © 2004 by Academia Scientiarum Fennica ISSN 1239-632X ISBN 951-41-0959-7 Supervised by: Professor Emeritus Joakim Donner Department of Geology University of Helsinki and Professor Veli-Pekka Salonen Department of Geology University of Helsinki Reviewed by: Professor Juha Pekka Lunkka Department of Geology University of Oulu and Docent Peter Johansson Geological Survey of Finland Rovaniemi Opponent: PhD Reader Philip Gibbard Godwin Institute for Quaternary Research Department of Geography University of Cambridge England Vammalan Kirjapaino Oy Vammala 2004 Abstract Kotilainen, Mia Marjut 2004 . Dune stratigraphy as an indicator of Holocene climatic change and human impact in northern Lapland, Finland. Annales Academiae Scientiarum Fennicae, Geologica- Geographica 166, 154 pp. R ECEIVED S EPTEMBER 6 , 2004 . une reactivation history during the last 11 000 years in northern Finnish Lapland was recon- D structed by studying a total of 75 dune sections from two dune fields, which are located 70 km apart from each other. The study areas were the Muddusjävri dune field between the Lakes Mud- dusjävri and Paatari (in the coniferous forest zone) and the Ijjävri dune field, north from Lake Inari (in the mountain birch forest zone). Study methods included stratigraphical interpretation of the dune sections, sedimentological anal- yses for grain size distribution and parameters ( 249 samples) and binocular microscopy for grain roundness and surface texture (225 samples).
    [Show full text]
  • Grain Size, Mineralogical and Geochemical Studies of Coastal and Inland Dune Sands from El Vizcaíno Desert, Baja California Peninsula, Mexico
    Revista Mexicana de Ciencias Geológicas,Coastal v.and 24, inland núm. 3,dune 2007, sands p. 423-438from El Vizcaíno Desert, Mexico 423 Grain size, mineralogical and geochemical studies of coastal and inland dune sands from El Vizcaíno Desert, Baja California Peninsula, Mexico Juan José Kasper-Zubillaga1,* and Hugo Zolezzi-Ruiz2 1 Instituto de Ciencias del Mar y Limnología, Geología Marina y Ambiental, Universidad Nacional Autónoma de México, Circuito Exterior s/n, 04510, México D.F., Mexico. 2 Posgrado en Ciencias del Mar y Limnología, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Circuito Exterior s/n, 04510, México D.F. , Mexico. * [email protected] ABSTRACT A sedimentological, petrological and geochemical research work was carried out in order to fi nd out the origin and provenance of coastal and inland desert dunes from El Vizcaíno Desert, northwestern Mexico. Fifty four sand samples were collected from the windward, crest and slip face of coastal and desert dunes (barchan, transverse, aeolian sand sheets). Onshore winds generates fi ne, well sorted, near symmetrical dune sands with mesokurtic distributions in the El Vizcaíno Desert inherited from beach sands from the Vizcaíno bay. The coastal and inland dune sands are derived from nearby sand sources like the beach sands and also from alluvial deposits originated from sedimentary-volcanic and schists, granitic and granodiorite sources. This is evidenced by the presence of high quartz content, shell debris, carbonates, mica and hornblende that are constituents of the both coastal and inland dune sands and are probably derived from the action of longshore drifts and onshore winds.
    [Show full text]
  • Great Sand Dunes National Park and Preserve Geologic Resources
    National Park Service U.S. Department of the Interior Natural Resource Program Center Great Sand Dunes National Park & Preserve Geologic Resource Evaluation Report Natural Resource Report NPS/NRPC/GRD/NRR—2006/011 Great Sand Dunes National Park and Preserve Geologic Resource Evaluation Report Natural Resource Report NPS/NRPC/GRD/NRR—2006/011 Geologic Resources Division Natural Resource Program Center P.O. Box 25287 Denver, Colorado 80225 March 2006 U.S. Department of the Interior Washington, D.C. The Natural Resource Publication series addresses natural resource topics that are of interest and applicability to a broad readership in the National Park Service and to others in the management of natural resources, including the scientific community, the public, and the NPS conservation and environmental constituencies. Manuscripts are peer- reviewed to ensure that the information is scientifically credible, technically accurate, appropriately written for the intended audience, and is designed and published in a professional manner. Natural Resource Reports are the designated medium for disseminating high priority, current natural resource management information with managerial application. The series targets a general, diverse audience, and may contain NPS policy considerations or address sensitive issues of management applicability. Examples of the diverse array of reports published in this series include vital signs monitoring plans; "how to" resource management papers; proceedings of resource management workshops or conferences; annual reports of resource programs or divisions of the Natural Resource Program Center; resource action plans; fact sheets; and regularly- published newsletters. Views and conclusions in this report are those of the authors and do not necessarily reflect policies of the National Park Service.
    [Show full text]
  • Application of OSL Dating on Coastal Sediments
    Application of OSL dating on coastal sediments – Case studies from shallow marine sediments of Southern North Sea, Germany, and coastal sub-surface and surface sediments from south India Inaugural Dissertation zur Erlangung des Doktorgrades im Fachbereich Geowissenchaften der Freien Universität Berlin vorgelegt von LINTO ALAPPAT aus Kerala, Indien BERLIN, 2011 Erstgutachter: Prof. Dr. Manfred Frechen Zweitgutachterin: Prof. Dr. Margot Böse Eingereicht am: 15- 10- 2010 Tag der Disputation: 07- 12- 2010 ABSTRACT The main aim of this research work is the application of contemporary techniques in optically stimulated luminescence (OSL) dating to reveal the chronology of coastal deposits from various geographical and geological settings and to investigate the relationship between periods of sediment accumulation and climate change. To address this concern, samples were collected from three different areas, namely, 1) shallow continental shelf sediments from Southern North Sea, 2) inland and coastal dunes as well as deltaic sediments from the south east coast of India and 3) palaeo-beach ridges from the south west coast of India. The reliability of the OSL ages obtained is assured using independent age controls such as radiocarbon (14C) dating whenever possible. Additionally, sedimentological techniques such as grain size analysis, quartz grain surface texture analysis using scanning electron microscopy (SEM) and heavy mineral studies are applied to characterise the grain transportation and sedimentary provenance. The study on continental shelf sediments of Southern North Sea provided an insight into the fate of Late Weichselian and Early Holocene sediments accumulated in the German sector of the Southern North Sea. The study revealed that sedimentation continued to take place during the late deglaciation period over an extended period of time (between 19 ka and 8 ka) until the early Holocene transgressing sea occupied the area.
    [Show full text]
  • Inland Dunes on the Abandoned Bed of Glacial Lake Chicago Indicate Eolian Activity During the Pleistocene-Holocene Transition, Southwestern Michigan, USA
    Quaternary Research (2017), 87,66–81. Copyright © University of Washington. Published by Cambridge University Press, 2017. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. doi:10.1017/qua.2016.13 Inland dunes on the abandoned bed of Glacial Lake Chicago indicate eolian activity during the Pleistocene-Holocene transition, southwestern Michigan, USA Patrick M. Colgana*, William H. Amidonb, Sara A. Thurkettlea aDepartment of Geology, Grand Valley State University, Padnos Hall of Science, 1 Campus Drive, Allendale, MI 49401, United States bDepartment of Geology, Middlebury College, McCardell Bicentenial Hall, 276 Bicentennial Way, Middlebury, VT 05753, United States (RECEIVED March 10, 2016; ACCEPTED December 1, 2016) Abstract Inland dune fields have recently emerged as a source of data for reconstructing paleoenvironments and climate in the western Great Lakes region of North America during the Pleistocene-Holocene transition. We employ optically stimulated lumines- cence (OSL) methods, radiocarbon ages, soils, and landform relationships to determine the age of inland dunes in Ottawa County, Michigan. These dunes rest on the abandoned bed of Glacial Lake Chicago, which is thought to have been exposed after ~13.6 ka. OSL analyses from two inland dunes yield ages ranging from 13.3 ± 1.1 to 11.6 ± 0.9 ka (uncertainty = 2 σ). Fine sand in the parabolic dunes suggests deflation of exposed glaciolacustrine nearshore sand by northwesterly and westerly winds. These new data add to a growing number of studies that demonstrate widespread eolian activity in the western Great Lakes region during the Pleistocene-Holocene transition.
    [Show full text]
  • Inland Dune Field and Deposits at Dviete: Evidences of the Late Pleistocene Aeolian Morphogenesis and Landscape Evolution During
    EGU2020-11220 https://doi.org/10.5194/egusphere-egu2020-11220 EGU General Assembly 2020 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. Inland dune field and deposits at Dviete: evidences of the late Pleistocene aeolian morphogenesis and landscape evolution during transition from glacial to post-glacial conditions in South-eastern Latvia Juris Soms and Zane Egle Daugavpils University, Department of Environmental Science and Chemistry, Daugavpils, Latvia ([email protected]) In the south-western part of Jersika Plain (SE Latvia), the late Pleistocene aeolian sediments form the inland dune field located at Dviete village. This dune field with surface >112 km2 represents the evidence of aeolian activity and landscape evolution during the transition from glacial to post- glacial conditions in this region. The dunes have developed on the surface of glaciolacustrine plain, where subaqueous sedimentation in the Nīcgale ice-dammed lake took place during the retreat of glacier, the Pomeranian phase of the last glaciation. Here, we focus on reconstructing paleoenvironmental conditions in this region, as inferred from landforms morphology, aeolian sand granulometry and geochemistry, and efficient wind directions derived from DEM. It will contribute to better understanding the processes of landscape evolution conditioned by last deglaciation in SE Latvia. Results indicate that single parabolic dunes typically have U-shaped configuration in planar view. Aeolian landforms also link and override each other, presenting clustered groups. GIS analysis reveals that the dominating wind directions during the development of dunes would have been westerly to easterly. Previously published dates on OSL chronology for this dune field indicate the initial phase of aeolian activity at around 15.5 Ka and 14.5 Ka.
    [Show full text]
  • Digitalcommons@University of Nebraska - Lincoln
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Great Plains Research: A Journal of Natural and Social Sciences Great Plains Studies, Center for 2007 Potential Aboriginal-Occupation-Induced Dune Activity, Elbow Sand Hills, Northern Great Plains, Canada Stephen A. Wolfe Geological Survey of Canada, [email protected] Chris H. Hugenholtz University of Lethbridge Christopher P. Evans Pioneer Professional Services Group D. J. Huntley Simon Fraser University Jeff Ollerhead Department of Geography Follow this and additional works at: https://digitalcommons.unl.edu/greatplainsresearch Part of the Other International and Area Studies Commons Wolfe, Stephen A.; Hugenholtz, Chris H.; Evans, Christopher P.; Huntley, D. J.; and Ollerhead, Jeff, "Potential Aboriginal-Occupation-Induced Dune Activity, Elbow Sand Hills, Northern Great Plains, Canada" (2007). Great Plains Research: A Journal of Natural and Social Sciences. 924. https://digitalcommons.unl.edu/greatplainsresearch/924 This Article is brought to you for free and open access by the Great Plains Studies, Center for at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Great Plains Research: A Journal of Natural and Social Sciences by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Great Plains Research 17 (Fall 2007):173-92 © 2007 Copyright by the Queen in Right of Canada; Published by the Center for Great Plains Studies, University of Nebraska-Lincoln POTENTIAL ABORIGINAL-OCCUPATION-INDUCED DUNE ACTIVITY, ELBOW SAND HILLS, NORTHERN GREAT PLAINS, CANADA Stephen A. Wolfe Natural Resources Canada Geological Survey of Canada 601 Booth Street Ottawa, ON KiA OE8 [email protected] Chris H. Hugenholtz Department of Geography University ofLethbridge Lethbridge, AB TlK 3M4 Christopher P.
    [Show full text]
  • A Bibliography of Dunes: Earth, Mars, and Venus
    NASA Contractor Report 4149 A Bibliography of Dunes: Earth, Mars, and Venus N. Lancaster COOPERATIVE AGREEMENT NCC2-346 JUNE 1988 _ ..v' t_, 111111111111111111111111111111111/1/1/1/1/111 NI\S/\ NF01829 NASA Contractor Report 4149 A Bibliography of Dunes: Earth, Mars, and Venus N. Lancaster Arizona State University Tempe, Arizona Prepared for NASA Office of Space Science and Appltcations under Cooperative Agreement NCC2-346 NI\SI\ National Aeronautics and Space Administration SCientific and Techmcal Information Division 1988 T ABLE OF CONTENTS Preface.................................................................... v Acknowledgements..................................................... v Dunes as a Planetary Landform... .... .... .... ..... ..... ..... ...... 1 Facets of Dune Study .................................... ........................... 3 Characteristics of Dunes ........................................... ... .... 5 Subject Index............................................................ 11 Geographical Index..................................................... 23 Bibliography............................................................. 31 iii This Page Intentionally left Blank PREFACE Dunes are important depositional Likewise, work on aeolian sandstones landforms and sedimentary has been excluded, except where it environments on Earth and Mars, and includes a significant discussion of may be important on Venus. The modern aeolian environments. Material similarity of dune forms on Earth and on planetary aeolian processes and
    [Show full text]
  • 0Bpaleowind Directions Determined by Long-Axis Orientation of Quartz
    UNIVERSITEIT VAN AMSTERDAM Paleowind directions determined by long-axis orientation of quartz grains in aeolian sediments Central Baruth Ice-Marginal Valley Marije Hoegen 6/28/2013 Supervisor W.M. De Boer 1 1. Summary With help from object-based image analysis(OBIA) thin sections of inland dunes in the Central Baruth Ice- Marginal Valley in Brandenburg(Eastern Germany) during the Weichselian Late Glacial will be examined. Long- axis orientation of quartz grains can give an indication of the paleowind directions. For the OBIA method the program eCognition will be used. The assumption that there was a dominant NO wind direction due to the influence of the Weichselian ice-sheets gets confirmed with the results from the scanned thin sections. The results from the orientation data from the scanned thin sections show a dominant wind direction from NO to SW. For further research the effect of spectral colour bands and grain size were examined. In eCognition the effects of three different spectral colour bands will be discussed and varied to find out if different colour bands have any influence on the classification of the grains. Using a blue or green-blue spectral colour band oversegmentation occurs, individual grains are segmented into multiple polygons. Although there are visible differences there was no significant difference between the spectral colour bands. To determine if grain size has any effect on the orientation, the grains were divided into classes and the mean orientation is compared. Dividing the grains into size classes gives a significant difference between the means. Further research is necessary to give a valid answer to this research question.
    [Show full text]