Open Conklin-Diss-Final.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Open Conklin-Diss-Final.Pdf The Pennsylvania State University The Graduate School College of Agricultural Sciences INVESTIGATIONS OF SMALL HIVE BEETLE-YEAST ASSOCIATIONS A Dissertation in Entomology by Tracy M. Conklin 2012 Tracy M. Conklin Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy August 2012 The dissertation of Tracy Conklin was reviewed and approved* by the following: James H. Tumlinson Ralph O. Mumma Professor of Entomology Dissertation Advisor Chair of Committee Christina Grozinger Associate Professor of Entomology John Tooker Assistant Professor of Entomology David Geiser Professor of Plant Pathology Gary W. Felton Professor of Entomology Head of the Department of Entomology *Signatures are on file in the Graduate School iii ABSTRACT The small hive beetle is an invasive pest of honey bees from Africa which has recently spread to the US and Australia. While not a serious pest of honeybees in its native range, the small hive beetle is a major problem for beekeepers its invasive range, frequently causing hives to abscond. Recently, a yeast (Kodamaea ohmeri) has been found associated with the small hive beetle. When growing on pollen, this yeast produces an odor blend that is very attractive to the beetle. It has been hypothesized that the presence of K. ohmeri may be a key factor in severity of small hive beetle infestations. This dissertation explores the connection between the small hive beetle and its yeast in three areas. The first area is the growth of K. ohmeri in bee hives. It has been hypothesized that the presence of K. ohmeri in the bee hive causes attraction and aggregation of the small hive beetle. However, no evidence has been provided that K. ohmeri is capable of multiplying in the hive environment when small hive beetle infestations are low. This dissertation, then, examines the factors that affect growth of K. ohmeri in the bee hive, including water activity, nutrient availability, the presence of beetles, and the presence of bees. This dissertation documents K. ohmeri is capable of growing on bee bread from bee hives without beetles present, and that water activity is important to the growth of K. ohmeri on bee bread and pollen. Beetle frass, which contains a high quantity of K. ohmeri, may be the source of yeast inoculum. The second area of research concerns the specificity of the interaction between K. ohmeri and the small hive beetle. Several species of yeast occur naturally in bee hives or in beekeeper-added pollen supplements. This dissertation reports that these yeasts, as well as other yeasts associated with beetles and other insects are capable of producing beetle-attractive volatiles and attracting small hive beetle adults, implying that the small hive beetle’s relationship with K. ohmeri is not an exclusive one, and the small hive beetle may be attracted to naturally occurring yeasts growing on pollen in the bee hive. Finally, the third area of research concerns the effect of K. ohmeri on the oviposition of the small hive beetle. Though K. ohmeri has been shown iv to increase reproduction of small hive beetles on pollen or oranges, the mechanism for this increased growth is unknown. This dissertation finds that pollen fermented by K. ohmeri is a preferred oviposition substrate for small hive beetle females, though fermentation by Saccharomyces cerevisiae or K. ohmeri did not increase the rate of ovary development over that of control pollen. Preference was most likely mediated by gustatory or olfactory cues in the pollen. Beetles switched ovipositional preference to control pollen after 24 hour hours of oviposition. This switch in preference appeared to be caused by changes in the K. ohmeri- fermented substrate, since adding fresh K. ohmeri-fermented pollen after 24 hours restored preference. The presence of yeast in the hive may influence small hive beetle host selection and beetle reproduction in bee hives. In addition, this dissertation provides initial data on the mating biology of the small hive beetle, including first descriptions of mating behavior and reproductive structures. Initial data gathered in this study indicates that small hive beetles may require an extended mating period in order to be fertile, providing an opportunity for control by mating disruption strategies. v TABLE OF CONTENTS ABSTRACT ............................................................................................................................. iii LIST OF FIGURES ................................................................................................................. viii LIST OF TABLES ................................................................................................................... x ACKNOWLEDGEMENTS ..................................................................................................... xi Chapter 1 Introduction and Literature Review ........................................................................ 1 Abstract ............................................................................................................................ 1 Introduction ...................................................................................................................... 2 The small hive beetle, not the large hive beetle: Identification and early description ..... 4 Pest status ......................................................................................................................... 5 Current control methods for small hive beetle ................................................................. 6 Sanitation .................................................................................................................. 6 Genetic resistance ..................................................................................................... 7 Chemical control methods ........................................................................................ 7 Attract-and-kill trapping ........................................................................................... 9 Alternative hive entrances ........................................................................................ 9 Life cycle of the small hive beetle ................................................................................... 10 Eggs and larvae ........................................................................................................ 10 Wandering stage and pupation ................................................................................. 11 Adults ....................................................................................................................... 12 Mating and oviposition............................................................................................. 12 Pest adaptations ................................................................................................................ 13 Anatomy of the small hive beetle ............................................................................. 13 Host manipulation .................................................................................................... 14 Diet flexibility .......................................................................................................... 15 Overwintering behavior ............................................................................................ 16 Invasive species ........................................................................................................ 17 European honey bees versus African honey bees .................................................... 18 Association with Kodamaea ohmeri as another possible pest adaptation ........................ 21 Small hive beetle and K. ohmeri .............................................................................. 21 Fungal associations among the Nitidulidae .............................................................. 24 Small hive beetle and K. ohmeri, directions for research ......................................... 29 Conclusions ...................................................................................................................... 32 Chapter 2 Factors affecting growth of Kodamaea ohmeri associated with the small hive beetle (Aethina tumida) in western honey bee (Apis mellifera) hives .............................. 33 Abstract ............................................................................................................................ 33 Introduction ...................................................................................................................... 34 Methods ............................................................................................................................ 37 Water activity tests ................................................................................................... 37 vi Growth of K. ohmeri on bee bread ........................................................................... 38 Yeast quantification on beetles ................................................................................ 40 Field experiments ..................................................................................................... 41 Pennsylvania bee hives and treatments .................................................................... 42 Pennsylvania data collected ..................................................................................... 42 Kenya bee hives and treatments ..............................................................................
Recommended publications
  • The 2014 Golden Gate National Parks Bioblitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event
    National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 ON THIS PAGE Photograph of BioBlitz participants conducting data entry into iNaturalist. Photograph courtesy of the National Park Service. ON THE COVER Photograph of BioBlitz participants collecting aquatic species data in the Presidio of San Francisco. Photograph courtesy of National Park Service. The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 Elizabeth Edson1, Michelle O’Herron1, Alison Forrestel2, Daniel George3 1Golden Gate Parks Conservancy Building 201 Fort Mason San Francisco, CA 94129 2National Park Service. Golden Gate National Recreation Area Fort Cronkhite, Bldg. 1061 Sausalito, CA 94965 3National Park Service. San Francisco Bay Area Network Inventory & Monitoring Program Manager Fort Cronkhite, Bldg. 1063 Sausalito, CA 94965 March 2016 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate comprehensive information and analysis about natural resources and related topics concerning lands managed by the National Park Service.
    [Show full text]
  • A Bug on the Ocean Waves (Heteroptera, Gerridae, Halobates ESCHSCHOLTZ)1
    © Biologiezentrum Linz/Austria; download unter www.biologiezentrum.at A bug on the ocean waves (Heteroptera, Gerridae, Halobates ESCHSCHOLTZ)1 L. CHENG Abstract: Five species of Halobates are the only insects known to live on the open ocean. Here is a brief description of what they are, where to find them, some of their special adaptations and their origins. Key words: Gerridae, Halobates, Heteroptera, marine, ocean. Introduction scribed species (ANDERSEN & WEIR 2004). Most of the known gerrid species are fresh- Insects are ubiquitous on land but they water in habitat and can be found on ponds, are commonly thought to be completely ab- lakes, streams, rivers, waterfalls and even sent from the sea, which covers more than temporary rain-filled pools. However, some 70 % of the earth’s surface. This is actually 80 species are considered marine. These be- not quite true. A large variety of insects do long to 11 genera in 3 subfamilies: Trepo- occur in various marine environments batinae, Rhagadotarsinae, and Halobatinae, (CHENG 1976). In fact, marine representa- to which Halobates belongs. tives can be found in at least 20 orders of the Insecta (CHENG 2003), the most important The genus Halobates was created in 1822 being the Collembola, Heteroptera, Coleo- by ESCHSCHOLTZ for 3 insect species collect- ptera and Diptera (CHENG & FRANK 1993). ed during a circumnavigation expedition. Among the Gerromorpha (Heteroptera), Many new species were added during the marine species can be found in five of the subsequent years, some from major ocean six known families: Gerridae, Hebridae, basins and others from various near-shore Hermatobatidae, Mesoveliidae and Veli- habitats.
    [Show full text]
  • A Comparison of the External Morphology and Functions of Labial Tip Sensilla in Semiaquatic Bugs (Hemiptera: Heteroptera: Gerromorpha)
    Eur. J. Entomol. 111(2): 275–297, 2014 doi: 10.14411/eje.2014.033 ISSN 1210-5759 (print), 1802-8829 (online) A comparison of the external morphology and functions of labial tip sensilla in semiaquatic bugs (Hemiptera: Heteroptera: Gerromorpha) 1 2 JOLANTA BROŻeK and HERBERT ZeTTeL 1 Department of Zoology, Faculty of Biology and environmental Protection, University of Silesia, Bankowa 9, PL 40-007 Katowice, Poland; e-mail: [email protected] 2 Natural History Museum, entomological Department, Burgring 7, 1010 Vienna, Austria; e-mail: [email protected] Key words. Heteroptera, Gerromorpha, labial tip sensilla, pattern, morphology, function, apomorphic characters Abstract. The present study provides new data on the morphology and distribution of the labial tip sensilla of 41 species of 20 gerro- morphan (sub)families (Heteroptera: Gerromorpha) obtained using a scanning electron microscope. There are eleven morphologically distinct types of sensilla on the tip of the labium: four types of basiconic uniporous sensilla, two types of plate sensilla, one type of peg uniporous sensilla, peg-in-pit sensilla, dome-shaped sensilla, placoid multiporous sensilla and elongated placoid multiporous sub- apical sensilla. Based on their external structure, it is likely that these sensilla are thermo-hygrosensitive, chemosensitive and mechano- chemosensitive. There are three different designs of sensilla in the Gerromorpha: the basic design occurs in Mesoveliidae and Hebridae; the intermediate one is typical of Hydrometridae and Hermatobatidae, and the most specialized design in Macroveliidae, Veliidae and Gerridae. No new synapomorphies for Gerromorpha were identified in terms of the labial tip sensilla, multi-peg structures and shape of the labial tip, but eleven new diagnostic characters are recorded for clades currently recognized in this infraorder.
    [Show full text]
  • The Semiaquatic Hemiptera of Minnesota (Hemiptera: Heteroptera) Donald V
    The Semiaquatic Hemiptera of Minnesota (Hemiptera: Heteroptera) Donald V. Bennett Edwin F. Cook Technical Bulletin 332-1981 Agricultural Experiment Station University of Minnesota St. Paul, Minnesota 55108 CONTENTS PAGE Introduction ...................................3 Key to Adults of Nearctic Families of Semiaquatic Hemiptera ................... 6 Family Saldidae-Shore Bugs ............... 7 Family Mesoveliidae-Water Treaders .......18 Family Hebridae-Velvet Water Bugs .......20 Family Hydrometridae-Marsh Treaders, Water Measurers ...22 Family Veliidae-Small Water striders, Rime bugs ................24 Family Gerridae-Water striders, Pond skaters, Wherry men .....29 Family Ochteridae-Velvety Shore Bugs ....35 Family Gelastocoridae-Toad Bugs ..........36 Literature Cited ..............................37 Figures ......................................44 Maps .........................................55 Index to Scientific Names ....................59 Acknowledgement Sincere appreciation is expressed to the following individuals: R. T. Schuh, for being extremely helpful in reviewing the section on Saldidae, lending specimens, and allowing use of his illustrations of Saldidae; C. L. Smith for reading the section on Veliidae, checking identifications, and advising on problems in the taxon­ omy ofthe Veliidae; D. M. Calabrese, for reviewing the section on the Gerridae and making helpful sugges­ tions; J. T. Polhemus, for advising on taxonomic prob­ lems and checking identifications for several families; C. W. Schaefer, for providing advice and editorial com­ ment; Y. A. Popov, for sending a copy ofhis book on the Nepomorpha; and M. C. Parsons, for supplying its English translation. The University of Minnesota, including the Agricultural Experi­ ment Station, is committed to the policy that all persons shall have equal access to its programs, facilities, and employment without regard to race, creed, color, sex, national origin, or handicap. The information given in this publication is for educational purposes only.
    [Show full text]
  • As Prey of Eastern Tropical Pacific Seabirds
    Cheng et al.: Marine insects as seabird prey 91 IMPORTANCE OF MARINE INSECTS (HETEROPTERA: GERRIDAE, HALOBATES SPP.) AS PREY OF EASTERN TROPICAL PACIFIC SEABIRDS LANNA CHENG1, LARRY SPEAR2* & DAVID G. AINLEY2 1Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California, 92037, USA 2H.T. Harvey & Associates, 983 University Avenue, Bldg. D, Los Gatos, California, 95032, USA ([email protected]) *Deceased Received 15 July 2009, accepted 31 May 2010 SUMMARY CHENG, L., SPEAR, L.B. & AINLEY, D.G. 2010. Importance of marine insects (Heteroptera: Gerridae, Halobates spp.) as prey of eastern tropical Pacific seabirds. Marine Ornithology 38: 91–95. We analyzed the foraging ecology of seabirds in the eastern tropical Pacific Ocean during 1983–1991 on a series of oceanographic cruises during spring and fall of each year. We report details about the consumption of sea skaters Halobates spp., marine insects that are small, can hide well within sea foam, and can be very fast moving. One abundant sea skater of the four species present in the study area, H. sobrinus, is not taken by sea birds, and the reason is unknown. Among the predators, it appears that frigate storm-petrels, White-faced Storm-Petrel Pelagodroma marina and White-bellied Storm-Petrel Fregetta grallaria (likely also White-throated Storm-Petrel Nesofregetta fuliginosa), make directed efforts to consume sea skaters, a fact that may explain their unique flight and foraging behavior: slow, with extensive “kick splashing” against the sea surface, to incite movement in Halobates. The few other seabirds for which sea skaters constitute more than an incidental component of the diet (Herald Petrel Pterodroma heraldica, Bulwer’s Petrel Bulweria bulwerii) also move slowly across and close to the sea surface.
    [Show full text]
  • Insect Classification Standards 2020
    RECOMMENDED INSECT CLASSIFICATION FOR UGA ENTOMOLOGY CLASSES (2020) In an effort to standardize the hexapod classification systems being taught to our students by our faculty in multiple courses across three UGA campuses, I recommend that the Entomology Department adopts the basic system presented in the following textbook: Triplehorn, C.A. and N.F. Johnson. 2005. Borror and DeLong’s Introduction to the Study of Insects. 7th ed. Thomson Brooks/Cole, Belmont CA, 864 pp. This book was chosen for a variety of reasons. It is widely used in the U.S. as the textbook for Insect Taxonomy classes, including our class at UGA. It focuses on North American taxa. The authors were cautious, presenting changes only after they have been widely accepted by the taxonomic community. Below is an annotated summary of the T&J (2005) classification. Some of the more familiar taxa above the ordinal level are given in caps. Some of the more important and familiar suborders and families are indented and listed beneath each order. Note that this is neither an exhaustive nor representative list of suborders and families. It was provided simply to clarify which taxa are impacted by some of more important classification changes. Please consult T&J (2005) for information about taxa that are not listed below. Unfortunately, T&J (2005) is now badly outdated with respect to some significant classification changes. Therefore, in the classification standard provided below, some well corroborated and broadly accepted updates have been made to their classification scheme. Feel free to contact me if you have any questions about this classification.
    [Show full text]
  • Marine Insects
    UC San Diego Scripps Institution of Oceanography Technical Report Title Marine Insects Permalink https://escholarship.org/uc/item/1pm1485b Author Cheng, Lanna Publication Date 1976 eScholarship.org Powered by the California Digital Library University of California Marine Insects Edited by LannaCheng Scripps Institution of Oceanography, University of California, La Jolla, Calif. 92093, U.S.A. NORTH-HOLLANDPUBLISHINGCOMPANAY, AMSTERDAM- OXFORD AMERICANELSEVIERPUBLISHINGCOMPANY , NEWYORK © North-Holland Publishing Company - 1976 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise,without the prior permission of the copyright owner. North-Holland ISBN: 0 7204 0581 5 American Elsevier ISBN: 0444 11213 8 PUBLISHERS: NORTH-HOLLAND PUBLISHING COMPANY - AMSTERDAM NORTH-HOLLAND PUBLISHING COMPANY LTD. - OXFORD SOLEDISTRIBUTORSFORTHEU.S.A.ANDCANADA: AMERICAN ELSEVIER PUBLISHING COMPANY, INC . 52 VANDERBILT AVENUE, NEW YORK, N.Y. 10017 Library of Congress Cataloging in Publication Data Main entry under title: Marine insects. Includes indexes. 1. Insects, Marine. I. Cheng, Lanna. QL463.M25 595.700902 76-17123 ISBN 0-444-11213-8 Preface In a book of this kind, it would be difficult to achieve a uniform treatment for each of the groups of insects discussed. The contents of each chapter generally reflect the special interests of the contributors. Some have presented a detailed taxonomic review of the families concerned; some have referred the readers to standard taxonomic works, in view of the breadth and complexity of the subject concerned, and have concentrated on ecological or physiological aspects; others have chosen to review insects of a specific set of habitats.
    [Show full text]
  • Studies on the Hemipterous Fauna
    ACTA ENTOMOLOGICA FENNICA julkaissut - Edidit SUOMEN HYONTEISTIETEELLINEN SEURA - SOCIETAS ENTOMOLOGICA FENNICA 21 Studies on the South- and Eastmediterranean Hemipterous Fauna R. LINNAVUORI 24 figures SELOSTUS: Tietoja etelaisten ja itdisten Valimerenmaiden nivelkarsaisista HELSINKI 1965 RECEIVED 22. III. 1965 PRINTED 27.Vl. 1965 Helsingissa 1965 Sanoma Osakeyhtia TABLE OF CONTENTS I. CONTRIBUTIONS TO THE HEMIPTEROUUS FAUNA OF LIBYA .... .......... 7 SURVEY OF THE COLLECTING BIOTOPES ........ .......................... 7 SPECIES LIST ..................................................... .... 8 Cydnidae ................................................................. 8 Pentatomidae ........ 8 Coreidae .......... 9 Alydidae ......... 9 Rhopalidae ......... 9 Lygaeidae ......... 9 Reduviidae ......... 10 Anthocoridae ........... ................................................... 11 Miridae ................................................................... 11 Cicadidae .................................................................... 13 Cercopidae .................................... 13 Cicadellidae ................................................................ 13 Dictyopharidae .............................................................. 17 Cixiidae ................................................................... 18 Delphacidae ................................................................ 18 Issidae .................................................................. 18 Tettigometridae.19 Flatidae.19 II. CONTRIBUTIONS TO THE
    [Show full text]
  • THE GENUS HALOBATES (Hemiptera: Gerridae)
    Pacific Insects 3 (2-3): 223-305 July 31, 1961 THE GENUS HALOBATES (Hemiptera: Gerridae) By Jon L. Herring1 INTRODUCTION Relatively few insects inhabit the sea. Certain Diptera, Coleoptera and a half dozen genera of Hemiptera may be considered marine because they occupy saline situations, such as rocky beaches, intertidal flats, mangrove swamps and the like, but only the water strid- ers have invaded the open ocean. Little is known of the distribution of the veliid, Halovelia, or the gerrid, Hermatobates, although both of these water striders have been taken in lagoons, coral reefs and harbors. It appears that these two genera, although exclusively halophilous, are confined to coastal situations. Water striders of the genus Halobates, however, are truly oceanic in habit. Several species maintain their entire existence hundreds of miles from the nearest land and have been taken on or near shore only after storms. The early workers considered all species of this genus to have an open-ocean distri­ bution since the attention of the early voyagers was attracted to these silvery gray insects only on the open sea. We now know, however, that only a few of the species maintain this existence. Most of them are endemic to particular islands or island groups. In this study all previous work has been reviewed. Much new material has been stud­ ied, and biological observations were made at the Marine Biological Station of the Uni­ versity of Hawaii. The resulting revision is the first since that of Buchanan-White 75 years ago. ACKNOWLEDGMENTS I wish first to express my appreciation to Dr.
    [Show full text]
  • Db Insect Guide Eng Compress
    What are insects? How should I observe insects? Body Insects could be found everywhere- from flowers, divided into: shrubs, soil surface, to the sky and water! Observe carefully and you may discover them! Head You don’t need high-tech equipment to observe 3 pairs of legs Thorax insects. You’ll only need: Abdomen Eyes Camera Magnifier This card Safety rules during observation Insects are invertebrates with an Respect the nature. Do not harm any insects. estimated number of 30 million, forming 85% of world’s species Take away nothing but memories; leave nothing but footprints. Turn off the flashlight while taking photos to avoid disturbing the insects. ©February 2017 WWF-Hong Kong. All rights reserved. How to use this ID guide? Common species The purpose of this ID guide is to identify the in Hong Kong major groups of insects. An identification key English Name should be used to distinguish the species. Scientific Name In the classification system, we will divide organisms according to their body features. Insects belong to “Insec- ta” and are further divided into “orders”. Identify the insect group using the classification guide first, then use the colour coding to flip to the right section. Members of the order Common habitats of the order Characteristics of the Ways to distinguish insects insect order that are similar Behaviour and habits ©February 2017 WWF-Hong Kong. All rights reserved. Classification Guide Lepidoptera Odonata Hymenoptera Orthoptera e.g. butterfly, moth e.g. dragonfly, damselfly e.g. bee, wasp, ant e.g. grasshopper. katydid, cricket Compound eyes Compound eyes Strong Membranous Slender Membranous wings Leathery forewings, hind legs Wings covered with scales wings abdomen membranous hindwings Hemiptera Mantodea Diptera Coleoptera e.g.
    [Show full text]
  • (2009) a Survey of the Hemiptera Fauna on the Island of Dominica
    A Survey of the Hemiptera Fauna on the Island of Dominica Cassandra J. Garcia Department of Entomology Texas A&M University, College Station TX, USA 778433 Abstract In this study, insects from the order Hemiptera were collected using six different collection methods at ten different locations across the island of Dominica, West Indies. Four hundred and sixty four specimens within twenty three different families of the order Hemiptera were collected by the use of a mercury vapor light trap, a black light trap, a sweep net, a beating sheet, a Malaise Trap, and by hand collection. The collection methods, brief descriptions of each family, and analysis of collection technique is provided. Key Words: Dominica, West Indies, Hemiptera, Heteroptera, Auchenorrhyncha, Sternorrhyncha Introduction The order Hemiptera is very diverse in its phenotypic characteristics. Members of the order Hemiptera are identified by a unique piercing-sucking mouthpart. Four piercing stylets, the paired maxillae and mandibles, makeup the mouthpart. These piercing-sucking mouthparts are most often used for sucking plant sap or blood (Triplehorn and Johnson 2005). There are three suborders within Hemiptera: Heteroptera, Auchenorryhncha, and Sternorrhyncha. Triplehorn states that the suborder Heteroptera is signified by the presence of hardened basal front wings (if present), beak arising from the front of the head, four or five segmented antennae, and the presence of two or three tarsal segments (generally). The suborder Auchenorrhyncha is uniquely identified by the origin of the beak coming from the back of the head, “position of the ocelli, characteristics about the ocelli, form of the pronotum, and lastly the spination of the legs.” The suborder Sternorrhyncha is uniquely identified by the origination of the beak coming from between the procoxae, the tarsal and antennal segment count, and wing specifics.
    [Show full text]
  • Evolution of the Insects
    CY501-C08[261-330].qxd 2/15/05 11:10 PM Page 261 quark11 27B:CY501:Chapters:Chapter-08: 8 TheThe Paraneopteran Orders Paraneopteran The evolutionary history of the Paraneoptera – the bark lice, fold their wings rooflike at rest over the abdomen, but thrips true lice, thrips,Orders and hemipterans – is a history beautifully and Heteroptera fold them flat over the abdomen, which reflected in structure and function of their mouthparts. There probably relates to the structure of axillary sclerites and other is a general trend from the most generalized “picking” minute structures at the base of the wing (i.e., Yoshizawa and mouthparts of Psocoptera with standard insect mandibles, Saigusa, 2001). to the probing and puncturing mouthparts of thrips and Relationships among paraneopteran orders have been anopluran lice, and the distinctive piercing-sucking rostrum discussed by Seeger (1975, 1979), Kristensen (1975, 1991), or beak of the Hemiptera. Their mouthparts also reflect Hennig (1981), Wheeler et al. (2001), and most recently by diverse feeding habits (Figures 8.1, 8.2, Table 8.1). Basal Yoshizawa and Saigusa (2001). These studies generally agree paraneopterans – psocopterans and some basal thrips – are on the monophyly of the order Hemiptera and most of its microbial surface feeders. Thysanoptera and Hemiptera suborders and a close relationship of the true lice (order independently evolved a diet of plant fluids, but ancestral Phthiraptera) with the most basal group, the “bark lice” (Pso- heteropterans were, like basal living families, predatory coptera), which comprise the Psocodea. One major issue is insects that suction hemolymph and liquified tissues out of the position of thrips (order Thysanoptera), which either their prey.
    [Show full text]