Multipoint Fuel Injection System
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cg2015 RIKESH SHAKYA ALL RIGHTS RESERVED
c 2015 RIKESH SHAKYA ALL RIGHTS RESERVED MASS AIRFLOW SENSOR AND FLAME TEMPERATURE SENSOR FOR EFFICIENCY CONTROL OF COMBUSTION SYSTEMS A Thesis Presented to The Graduate Faculty of The University of Akron In Partial Fulfillment of the Requirements for the Degree Master of Science Rikesh Shakya December, 2015 MASS AIRFLOW SENSOR AND FLAME TEMPERATURE SENSOR FOR EFFICIENCY CONTROL OF COMBUSTION SYSTEMS Rikesh Shakya Thesis Approved: Accepted: Advisor Interim Dean of the College Dr. Nathan Ida Dr. Mario R. Garzia Faculty Reader Dean of the Graduate School Dr. Joan Carletta Dr. Chand K. Midha Faculty Reader Date Dr. Kye-Shin Lee Interim Department Chair Dr. Joan Carletta ii ABSTRACT A premixed mixture for a combustion process is said to be stoichiometric when the amount of air provided is just enough to burn the fuel completely. A parameter called the equivalence ratio gives a measure of the closeness of the com- bustion system to stoichiometric combustion. In practice, excess air is provided in a combustion system to avoid production of harmful flue gases. The amount of fuel and air intake in a combustion process along with their degree of mixing affects its efficiency. This thesis describes the design of a mass airflow sensor and a flame tem- perature sensor that can be used to estimate mass airflow rate and equivalence ratio respectively, thereby enabling control of the efficiency of combustion systems. The mass airflow sensor designed for this thesis is an inline airflow sensor that can be used to measure combustion intake air in the temperature range between -40◦F to 140◦F and mass airflow rate between 0 kg/hr to 120 kg/hr. -
SURVEY on MULTI POINT FUEL INJECTION (MPFI) ENGINE Deepali Baban Allolkar*1, Arun Tigadi 2 & Vijay Rayar3 *1 Department of Electronics and Communication, KLE Dr
ISSN: 2277-9655 [Allolkar* et al., 7(5): May, 2018] Impact Factor: 5.164 IC™ Value: 3.00 CODEN: IJESS7 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY SURVEY ON MULTI POINT FUEL INJECTION (MPFI) ENGINE Deepali Baban Allolkar*1, Arun Tigadi 2 & Vijay Rayar3 *1 Department of Electronics and Communication, KLE Dr. M S Sheshgiri College of Engineering and Technology, India. 2,3Assistant Professor, Department of Electronics and Communication, KLE Dr. M S Sheshgiri College of Engineering and Technology, India. DOI: 10.5281/zenodo.1241426 ABSTRACT The Multi Point Fuel Injection (MPFI) is a system or method of injecting fuel into internal combustion engine through multi ports situated on intake valve of each cylinder. It delivers an exact quantity of fuel in each cylinder at the right time. The amount of air intake is decided by the car driver by pressing the gas pedal, depending on the speed requirement. The air mass flow sensor near throttle valve and the oxygen sensor in the exhaust sends signal to Electronic control unit (ECU). ECU determines the air fuel ratio required, hence the pulse width. Depending on the signal from ECU the injectors inject fuel right into the intake valve. Thus the multi-point fuel injection technology uses individual fuel injector for each cylinder, there is no gas wastage over time. It reduces the fuel consumption and makes the vehicle more efficient and economical. KEYWORDS: Multi point fuel injection (MPFI), Cylinder, Gas pedal, Throttle valve, Electronic control Unit (ECU). I. INTRODUCTION Petrol engines used carburetor for supplying the air fuel mixture in correct ratio but fuel injection replaced carburetors from the 1980s onward. -
DEPARTMENT of TRANSPORTATION National
DEPARTMENT OF TRANSPORTATION National Highway Traffic Safety Administration 49 CFR Parts 531 and 533 [Docket No. NHTSA-2008-0069] Passenger Car Average Fuel Economy Standards--Model Years 2008-2020 and Light Truck Average Fuel Economy Standards--Model Years 2008-2020; Request for Product Plan Information AGENCY: National Highway Traffic Safety Administration (NHTSA), Department of Transportation (DOT). ACTION: Request for Comments SUMMARY: The purpose of this request for comments is to acquire new and updated information regarding vehicle manufacturers’ future product plans to assist the agency in analyzing the proposed passenger car and light truck corporate average fuel economy (CAFE) standards as required by the Energy Policy and Conservation Act, as amended by the Energy Independence and Security Act (EISA) of 2007, P.L. 110-140. This proposal is discussed in a companion notice published today. DATES: Comments must be received on or before [insert date 60 days after publication in the Federal Register]. ADDRESSES: You may submit comments [identified by Docket No. NHTSA-2008- 0069] by any of the following methods: • Federal eRulemaking Portal: Go to http://www.regulations.gov. Follow the online instructions for submitting comments. 1 • Mail: Docket Management Facility: U.S. Department of Transportation, 1200 New Jersey Avenue, SE, West Building Ground Floor, Room W12- 140, Washington, DC 20590. • Hand Delivery or Courier: West Building Ground Floor, Room W12-140, 1200 New Jersey Avenue, SE, between 9 am and 5 pm ET, Monday through Friday, except Federal holidays. Telephone: 1-800-647-5527. • Fax: 202-493-2251 Instructions: All submissions must include the agency name and docket number for this proposed collection of information. -