Terrestrial in Situ Cosmogenic Nuclides: Theory and Application John C
Total Page:16
File Type:pdf, Size:1020Kb
Quaternary Science Reviews 20 (2001) 1475}1560 Terrestrial in situ cosmogenic nuclides: theory and application John C. Gosse *, Fred M. Phillips Department of Geology, 120 Lindley Hall, University of Kansas, Lawrence, KS 66045, USA Department of Earth & Environmental Science, New Mexico Tech, Socorro, NM 87801, USA Abstract The cosmogenic nuclide exposure history method is undergoing major developments in analytical, theoretical, and applied areas. The capability to routinely measure low concentrations of stable and radioactive cosmogenic nuclides has led to new methods for addressing long-standing geologic questions and has provided insights into rates and styles of sur"cial processes. The di!erent physical and chemical properties of the six most widely used nuclides: He, Be, C, Ne, Al, and Cl, make it possible to apply the surface exposure dating methods on rock surfaces of virtually any lithology at any latitude and altitude, for exposures ranging from 10 to 10 years. The terrestrial in situ cosmogenic nuclide method is beginning to revolutionize the manner in which we study landscape evolution. Single or multiple nuclides can be measured in a single rock surface to obtain erosion rates on boulder and bedrock surfaces, #uvial incision rates, denudation rates of individual landforms or entire drainage basins, burial histories of rock surfaces and sediment, scarp retreat, fault slip rates, paleoseismology, and paleoaltimetry. Ages of climatic variations recorded by moraine and alluvium sediments are being directly determined. Advances in our understanding of how cosmic radiation interacts with the geomagnetic "eld and atmosphere will improve numerical simulations of cosmic-ray interactions over any exposure duration and complement additional empirical measurements of nuclide production rates. The total uncertainty in the exposure ages is continually improving. This article presents the theory necessary for interpreting cosmogenic nuclide data, reviews estimates of parameters, describes strategies and practical considerations in "eld applications, and assesses sources of error in interpreting cosmogenic nuclide measurements. 2001 Elsevier Science Ltd. All rights reserved. TABLE OF CONTENTS 1. Introduction ............................................................................................ 1477 1.1. Development of the TCN methods . 1477 1.2. Applications of TCN Exposure methods . 1479 1.3. Previous reviews . 1480 2. Glossary ............................................................................................... 1480 2.1. Terminology . 1480 2.2. Notation . 1482 3. Principles .............................................................................................. 1485 3.1. Introduction . 1485 3.1.1. Source of the primary radiation .............................................................. 1485 3.1.2. Ewects of the geomagnetic xeld on GCR .................................................... 1485 3.1.3. Trajectory models and models of secondary nuclide production rates . 1487 3.1.4. Recent numerical models of GCR particle production ....................................... 1489 3.1.5. Nuclide production from primary GCR ...................................................... 1490 3.1.6. TCN production by energetic nucleons ...................................................... 1491 * Corresponding author. Tel.: #1-785-864-4974; fax: #1-785-864-5276. E-mail address: [email protected] (J.C. Gosse). 0277-3791/01/$ - see front matter 2001 Elsevier Science Ltd. All rights reserved. PII: S 0 2 7 7 - 3 7 9 1 ( 0 0 ) 0 0 1 7 1 - 2 1476 J.C. Gosse, F.M. Phillips / Quaternary Science Reviews 20 (2001) 1475}1560 3.1.7. TCN production by low-energy neutron ...................................................... 1491 3.1.8. TCN production by muons ................................................................... 1492 3.1.9. Factors limiting TCN applications ........................................................... 1493 3.2. Numerical simulation of low-energy neutron behavior . 1493 3.3. Analytical equations for TCN production . 1495 3.3.1. Fast neutron (Spallation) production ........................................................ 1496 3.3.2. Production by epithermal neutrons .......................................................... 1497 3.3.3. Production by thermal neutrons .............................................................. 1498 3.3.4. Production by muons and muon-derived neutrons ........................................... 1499 3.3.5. Total nuclide production ..................................................................... 1502 3.4. Energetic neutron attenuation length. 1502 3.5. Temporal variations in production rates . 1504 3.5.1. Variations in the primary GCR yux .......................................................... 1506 3.5.2. Variations due to solar modulation of the magnetic xeld . 1507 3.5.3. Ewects of the geomagnetic xeld .............................................................. 1507 3.5.4. Variations in atmospheric shielding .......................................................... 1515 3.5.5. Other sources of temporal variations in production ......................................... 1515 3.6. Estimation of production rates . 1516 3.6.1. Helium-3 ...................................................................................... 1516 3.6.2. Beryllium-10 .................................................................................. 1516 3.6.3. Carbon-14 .................................................................................... 1517 3.6.4. Neon-21 ....................................................................................... 1517 3.6.5. Aluminum-26 ................................................................................. 1517 3.6.6. Chlorine-36 ................................................................................... 1518 3.7. Scaling and correction factors for production rates . 1518 3.7.1. Spatial scaling ................................................................................ 1518 3.7.2. Topographic shielding ........................................................................ 1520 3.7.3. Surface coverage ............................................................................. 1522 3.7.4. Sample thickness .............................................................................. 1522 3.7.5. Thermal neutron leakage ..................................................................... 1523 3.8. Exposure dating witha single TCN . 1523 3.9. Exposure dating withmultiple nuclides . 1527 3.10. Nuclide-speci"c considerations . 1531 3.10.1. Helium-3 .................................................................................... 1531 3.10.2. Beryllium-10 ................................................................................. 1531 3.10.3. Carbon-14 ................................................................................... 1532 3.10.4. Neon-21 ..................................................................................... 1532 3.10.5. Aluminum-26 ................................................................................ 1532 3.10.6. Chlorine-36 .................................................................................. 1533 3.11. TCN dating of sediment . 1533 4. Sampling strategies .................................................................................... 1536 4.1. Field sampling considerations . 1536 4.1.1. Sample description ........................................................................... 1536 4.1.2. Sampling methodology ....................................................................... 1537 4.2. Other lithological considerations . 1538 4.3. How muchsample is needed? . 1538 4.4. Strategies for concentration-depthpro "les . 1539 5. Sample preparation and experimental data interpretation ........................................... 1540 5.1. TCN sample preparation . 1540 5.1.1. Preparation time .............................................................................. 1541 5.1.2. Physical and chemical pretreatment ......................................................... 1541 5.1.3. Isotopic extraction ............................................................................ 1541 5.2. Experimental data interpretation . 1542 6. Uncertainty and sources of error ..................................................................... 1544 6.1. Sources of error . 1544 6.1.1. Sample characteristics ........................................................................ 1545 6.1.2. Sample preparation and elemental analyses ................................................. 1546 J.C. Gosse, F.M. Phillips / Quaternary Science Reviews 20 (2001) 1475}1560 1477 6.1.3. Mass spectrometry ............................................................................ 1546 6.1.4. Systematic errors ............................................................................. 1547 6.2. Reporting the uncertainty . 1548 6.2.1. Error propagation ............................................................................ 1549 6.2.2. Evaluating accuracy by intercomparison .................................................... 1549 6.2.3. Multiple sample measurements ............................................................... 1550 6.2.4. Sensitivity analysis ........................................................................... 1550 7. Directions of future contributions .................................................................... 1550 Acknowledgements ...................................................................................