Final Report on Prospective Sites for the Geological Storage of CO2 in The

Total Page:16

File Type:pdf, Size:1020Kb

Final Report on Prospective Sites for the Geological Storage of CO2 in The FINAL REPORT ON PROSPECTIVE SITES FOR THE GEOLOGICAL STORAGE OF CO 2 IN THE SOUTHERN BALTIC SEA February 2014 SLR Ref: 501-00302-00001 Elforsk i 501.00302.00001 Prospective CO 2 Storage Sites, South Baltic Sea February 2014 CONTENTS 1.0 EXECUTIVE SUMMARY .............................................................................................. 1 2.0 DEFINITION OF THE STUDY AREA ........................................................................... 3 3.0 GEOLOGICAL OVERVIEW ......................................................................................... 6 3.1 Introduction ....................................................................................................... 6 3.2 General Geology ............................................................................................... 6 3.3 Structural History.............................................................................................. 7 3.4 Sub-Basin Structure ......................................................................................... 8 3.5 Depositional Setting and Stratigraphy ............................................................ 9 3.6 Reservoir and Seal Pairs ................................................................................ 14 3.7 Geological Targets for CO 2 Storage .............................................................. 15 4.0 BASIN SCREENING .................................................................................................. 16 4.1 Slupsk Border Zone ........................................................................................ 18 4.2 Latvian Estonian and Lithuanian Border Zone (LEL) ................................... 19 4.3 Liepaja-Saldus Ridge ...................................................................................... 21 4.4 Gdansk-Kura Depression ............................................................................... 23 4.5 Liepaja Depression ......................................................................................... 23 5.0 BASIN RANKING ...................................................................................................... 24 6.0 STORAGE CAPACITY CALCULATION METHODOLOGY & RESULTS .................. 25 6.1 Introduction ..................................................................................................... 25 6.2 Hydrocarbon Field Storage Capacity Estimates ........................................... 25 6.3 Saline Aquifer Storage Capacity Estimates: ................................................. 28 6.4 Theoretical Storage Capacity Calculation Results: ...................................... 29 7.0 STATIC MODEL: ....................................................................................................... 34 7.1 Dalders Monocline .......................................................................................... 35 7.2 Dalders Structure ............................................................................................ 38 7.3 E6 Structure .................................................................................................... 40 7.4 E7 Structure .................................................................................................... 41 8.0 SEALING INTEGRITY ............................................................................................... 42 8.1 Methodology ................................................................................................... 42 8.2 Sealing Capacity Study Area ......................................................................... 42 8.3 Sealing Integrity Results ................................................................................ 43 8.4 Fault Structure Leakage Potential and CO 2 Migration .................................. 49 8.5 Well Completion and Integrity ........................................................................ 51 8.6 Conclusions of Seal Integrity Study .............................................................. 51 8.7 Recommendations .......................................................................................... 52 9.0 DYNAMIC MODELLING ............................................................................................ 53 9.1 Introduction ..................................................................................................... 53 9.2 Modelling Methodology .................................................................................. 53 9.3 Dynamic Modelling Results ........................................................................... 57 9.4 Plume Migration .............................................................................................. 64 9.5 Discussion ...................................................................................................... 65 10.0 TEST INJECTION METHODOLOGY ......................................................................... 67 10.1 Introduction ..................................................................................................... 67 10.2 Proposed Testing Methodology ..................................................................... 67 11.0 MMV PROGRAMME .................................................................................................. 69 11.1 Introduction ..................................................................................................... 69 11.2 Risk Assessment ............................................................................................ 69 11.3 Exposure Assessment ................................................................................... 71 11.4 Monitoring Selection Tool Parameters .......................................................... 73 11.5 Injection Phase ............................................................................................... 73 11.6 Post-Injection Phase ....................................................................................... 74 SLR Elforsk ii 501.00302.00001 Prospective CO 2 Storage Sites, South Baltic Sea February 2014 11.7 Monitoring Technique Description: ............................................................... 74 11.8 Well Integrity Monitoring: ............................................................................... 76 12.0 CONCLUSIONS ......................................................................................................... 78 13.0 RECOMMENDATIONS .............................................................................................. 78 14.0 BIBLIOGRAPHY ........................................................................................................ 80 15.0 CLOSURE .................................................................................................................. 84 TABLES Table 1 List of events which directly affected Baltica (Cocks et al 2005) ...................... 7 Table 2 Criteria for assessing sedimentary basins for CO 2 geological sequestration (Bachu 2003) ................................................................................................... 16 Table 3 Minimum criteria for consideration of sedimentary basins for CO 2 storage .. 17 Table 4 Proposed secondary qualifiers for assessing the potential of sedimentary basins for CO 2 storage ................................................................................... 17 Table 5 Criteria for consideration of Slupsk (including Dalders) Monocline for CO 2 storage ............................................................................................................. 18 Table 6 Secondary qualifiers for assessing the potential of Slupsk for CO 2 storage .. 18 Table 7 Criteria for consideration of Latvian Estonian and Lithuanian Monocline for CO 2 storage ..................................................................................................... 20 Table 8 Secondary qualifiers for assessing the potential of Latvian Estonian and Lithuanian Monocline for CO 2 storage .......................................................... 21 Table 9 Minimum criteria for consideration of Liepaja-Saldus High for CO 2 storage.. 22 Table 10 Secondary qualifiers for assessing the potential of Liepaja-Saldus High for CO 2 storage ..................................................................................................... 22 Table 11 Minimum criteria for consideration of Gdansk-Kura Depression for CO 2 storage ............................................................................................................. 23 Table 12 Secondary qualifiers for assessing the potential of Gdansk-Kura Depression for CO 2 storage ............................................................................................... 23 Table 13 Ranking of Baltic Sea sub-basins in terms of suitability for CO 2 geological sequestration .................................................................................................. 24 Table 14 Oil and Gas Fields where Generic Hydrocarbon Fields method is used ...... 25 Table 15 Hydrocarbon Fields with Detailed Reservoir Information .............................. 26 Table 16 Closure specific Calculations for the Dalders Structure ................................ 28 Table 17 Theoretical Storage Capacity Summary .......................................................... 30 Table 18 Proportion of onshore CO 2 storage capacity .................................................. 30 Table 19 Hydrocarbon Field Theoretical Storage Capacity ........................................... 31 Table 20 Hydrocarbon
Recommended publications
  • Vertebrate Microremains from the Lower Silurian of Siberia and Central Asia: Palaeobiodiversity and Palaeobiogeography
    Journal of Micropalaeontology, 30: 97–106. 2011 The Micropalaeontological Society Vertebrate microremains from the Lower Silurian of Siberia and Central Asia: palaeobiodiversity and palaeobiogeography ŽIVILĖ ŽIGAITĖ1,2,*, VALENTINA KARATAJŪTĖ-TALIMAA3 & ALAIN BLIECK1 1UFR Sciences de la Terre, FRE 3298 du CNRS ‘Géosystèmes’, Université Lille – 1, F-59655 Villeneuve d’Ascq Cedex, France 2Department of Evolution and Development, Uppsala University, Norbyvägen 18A, SE-75236 Uppsala, Sweden 3Department of Geology and Mineralogy, Vilnius University, M.K.Ciurlionio 21/27, LT-03101 Vilnius, Lithuania *Corresponding author (e-mail: [email protected]) ABSTRACT – The biostratigraphic and palaeogeographical distributions of early vertebrate microfossils from a number of Lower Silurian localities in northwestern Mongolia, Tuva and southern Siberia were reviewed. Vertebrate microremains showed high taxonomic diversity, comprising acanthodians, chon- drichthyans, putative galeaspids, heterostracans, mongolepids, tesakoviaspids, thelodonts and possible eriptychiids. The majority of taxa have lower stratigraphic levels of occurrence compared to other Silurian palaeobiogeographical provinces, such as the European-Russian or Canadian Arctic. Vertebrate micro- remains are numerous within the samples, which may indicate warm-water low-latitude palaeobasins with rich shelf faunas. This disagrees with the recent interpretations of the territory as a northern high-latitude Siberian palaeocontinent. The palaeobiogeographical distribution of vertebrate taxa indicates an endemic palaeobiogeographical province of connected epeiric palaeoseas with external isolation during the early Silurian. In previous works separation between Tuvan and Siberian palaeobiogeographical provinces has been suggested. After careful revision of the vertebrate microfossil record of the region, we find that differences in a few vertebrate taxa do not provide not strong enough evidence to reliably distinguish these provinces.
    [Show full text]
  • Geological Excursion BASE-Line Earth
    Geological Excursion BASE-LiNE Earth (Graz Paleozoic, Geopark Karavanke, Austria) 7.6. – 9.6. 2016 Route: 1. Day: Graz Paleozoic in the vicinity of Graz. Devonian Limestone with brachiopods. Bus transfer to Bad Eisenkappel. 2. Day: Visit of Geopark Center in Bad Eisenkappel. Walk on Hochobir (2.139 m) – Triassic carbonates. 3. Day: Bus transfer to Mezica (Slo) – visit of lead and zinc mine (Triassic carbonates). Transfer back to Graz. CONTENT Route: ................................................................................................................................... 1 Graz Paleozoic ...................................................................................................................... 2 Mesozoic of Northern Karavanke .......................................................................................... 6 Linking geology between the Geoparks Carnic and Karavanke Alps across the Periadriatic Line ....................................................................................................................................... 9 I: Introduction ..................................................................................................................... 9 II. Tectonic subdivision and correlation .............................................................................10 Geodynamic evolution ...................................................................................................16 Alpine history in eight steps ...........................................................................................17
    [Show full text]
  • Balkatach Hypothesis: a New Model for the Evolution of the Pacific, Tethyan, and Paleo-Asian Oceanic Domains
    Research Paper GEOSPHERE Balkatach hypothesis: A new model for the evolution of the Pacific, Tethyan, and Paleo-Asian oceanic domains 1,2 2 GEOSPHERE, v. 13, no. 5 Andrew V. Zuza and An Yin 1Nevada Bureau of Mines and Geology, University of Nevada, Reno, Nevada 89557, USA 2Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, California 90095-1567, USA doi:10.1130/GES01463.1 18 figures; 2 tables; 1 supplemental file ABSTRACT suturing. (5) The closure of the Paleo-Asian Ocean in the early Permian was accompanied by a widespread magmatic flare up, which may have been CORRESPONDENCE: avz5818@gmail .com; The Phanerozoic history of the Paleo-Asian, Tethyan, and Pacific oceanic related to the avalanche of the subducted oceanic slabs of the Paleo-Asian azuza@unr .edu domains is important for unraveling the tectonic evolution of the Eurasian Ocean across the 660 km phase boundary in the mantle. (6) The closure of the and Laurentian continents. The validity of existing models that account for Paleo-Tethys against the southern margin of Balkatach proceeded diachro- CITATION: Zuza, A.V., and Yin, A., 2017, Balkatach hypothesis: A new model for the evolution of the the development and closure of the Paleo-Asian and Tethyan Oceans criti- nously, from west to east, in the Triassic–Jurassic. Pacific, Tethyan, and Paleo-Asian oceanic domains: cally depends on the assumed initial configuration and relative positions of Geosphere, v. 13, no. 5, p. 1664–1712, doi:10.1130 the Precambrian cratons that separate the two oceanic domains, including /GES01463.1. the North China, Tarim, Karakum, Turan, and southern Baltica cratons.
    [Show full text]
  • Energy Procedia
    Available online at www.sciencedirect.com Energy Procedia Energy Procedia 00 (2008) 000–000 www.elsevier.com/locate/XXX GHGT-9 Possibilities for geological storage and mineral trapping of industrial CO2 emissions in the Baltic region Alla Shogenovaa, Saulius Šliaupab,c, Kazbulat Shogenova, Rasa Šliaupieneb, Raisa Pomerancevad, Rein Vahera, Mai Uibue, Rein Kuusike aInstitute of Geology, Tallinn University of Technology, Ehitajete tee5, 19086 Tallinn, Estonia bInstitute of Geology and Geography, T. Sevcenkos 13, Lt-03223, Vilnius, Lithuania cVilnius University,Universiteti St.3, LT-01513, Vilnius, Lithuania dLatvian Environment, Geology & Meteorology Agency, Maskavas St. 165, LV-1019, Riga, Latvia eLaboratory of Inorganic Materials, Ehitajete tee5, Tallinn 19086, Estonia Elsevier use only: Received date here; revised date here; accepted date here Abstract Industrial CO2 emissions and possibilities for geological storage of CO2 in Estonia, Latvia and Lithuania were studied within the framework of EU GEOCAPACITY and CO2NET EAST projects supported by European Commission Sixth Framework Programme (FP6). Twenty-two large industrial sources produced 14.5 Mt of CO2 in Estonia, 1.9 Mt in Latvia and 4.8 Mt in Lithuania in 2007. The two greatest Estonian power stations, using oil-shale, produced 9.4 and 2.7 Mt of CO2. The Baltic States are located within the Baltic sedimentary basin, the thickness of which varies from 100 m in NE Estonia up to 1900 m in SW Latvia and 2300 m in western Lithuania. The most prospective formation for the geological storage of CO2 is the Cambrian reservoir, with an estimated potential of 300 Mt of CO2 in 15 large structures located in Latvia.
    [Show full text]
  • 146 Since 1961 Distribution of Organic Matter and Evaluation of Brittleness
    since 1961 BALTICA Volume 33 Number 2 December 2020: 146–165 https://doi.org/10.5200/baltica.2020.2.3 Distribution of organic matter and evaluation of brittleness index of the Lower Silurian shales of west Lithuania based on interpretation of well logs Saulius Šliaupa, Jurga Lazauskienė, Saulius Lozovskis, Rasa Šliaupienė Šliaupa, S., Lazauskienė, J., Lozovskis, S., Šliaupienė, R. 2020. Distribution of organic matter and evaluation of brittle- ness index of the Lower Silurian shales of west Lithuania based on interpretation of well logs. Baltica, 33 (2), 146–165. Vilnius. ISSN 0067-3064. Manuscript submitted 21 August 2020 / Accepted 16 November 2020 / Published online 22 December 2020 © Baltica 2020 Abstract. There is little known of the basic parameters of the Lower Silurian graptolitic black shales that are considered the most prospective unconventional gas reservoir in west Lithuania, situated in the deep central part of the Baltic sedimentary basin. Hundreds of deep oil exploration wells have been drilled in the area of interest, owing to extensive exploration of oil fields. The lower and middle Llandovery interval was mainly drilled with coring, while most of the section was covered by only logging. Therefore, the knowledge of major parameters of the Lower Silurian shales is rather obscure and is based on scarce rock sample data. The gamma- ray, electrical resistivity and sonic logs were utilised, together with mineralogical studies of rock samples to document vertical and lateral distribution of organic matter. Also, the brittleness index was defined to charac- terise the whole Lower Silurian section. Some unexpected trends were identified that may redirect exploration strategy in west Lithuania.
    [Show full text]
  • Tentaculites of the Upper Silurian and Lower Devonian of Poland
    ACT A PAL A EON T 0 LOG ICA POLONICA Vol. XIX 1974 No. 4 BARBARA HAJI..ASZ TENTACULITES OF THE UPPER SILURIAN AND LOWER DEVONIAN OF POLAND Abstract. - The tentaculites, described in the present paper, come from the Upper Silurian deposits of the Baltic coastal region and the Lower Devonian deposits of the Radom-Lublin region. The Upper Silurian assemblage of tentaculites allows one to compare and correlate the Upper Silurian deposits of Northern Europe. The Lower Devonian tentaculites are' indicative of the Gedinnian and Siegenian age of the deposits under study and of their close correlations primarily with Podolia. PART I INTRODUCTION In Poland, the tentaculites have not so far been described in detail. Giirich (1895) was the first to take an interest in the tentaculites occurring in this country. He described the following species from the Holy Cross Mountains: Tentaculites sp. d. intermedium Barr., T. multiformis Sandb., T.ornatus? Sow., T. schlotheimi Koken., T. polonicus Gurich., T. sand­ bergeri Gurich, T. tenuicinctus Sandb., Styliolites sp. From the same region, the following species were identified by Paj­ chlowa (1957): Tentaculites schlotheimi Koken., Tentaculites sp., Styliolina laevis Richter and Styliolina sp. The tentaculites of the species Homoc­ tenus tenuicinctus (Roem.), Homoctenus sp., Styliolina laevis Richter and Styliolina sp. were distinguished by Koscielniakowska (1962-1967) in the Frasnian deposits of these region. The present writer described the following Eifelian tentaculites from the Holy Cross Mts and the Cracow-Cz~stochowaUpland (Hajlasz, 1967): Tentaculites schlotheimi Koken., T. subconicus Geinitz, T.sp., and Dicri­ coconus mosolovicus (Ljasch.). Next, a list of species from Lower Devonian of the Lublin area was published (Hajlasz, 1968).
    [Show full text]
  • Down: COUNTY GEOLOGY of IRELAND 1
    Down: COUNTY GEOLOGY OF IRELAND 1 DODODOWNWNWN AREA OF COUNTY: 2,448 square kilometres or 945 square miles COUNTY TOWN: Downpatrick OTHER TOWNS: Banbridge, Bangor, Newry, Newtownards GEOLOGY HIGHLIGHTS: Scrabo footprint, Ards peninsula greywackes, Mourne Mountains. AGE OF ROCKS: Ordovician-Silurian; Carboniferous-Triassic, Paleogene Mourne Mountains These granite mountains are younger than most granite mountains in Ireland. They were intruded approximately 56 million years ago. 2 COUNTY GEOLOGY OF IRELAND: Down Geological Map of County Down Pink:Pink:Pink: Lower Ordovician; Grey: Ordovician & Silurian; Solid Red: Devonian Granite; Light blue: Lower Carboniferous; Orange:Orange:Orange: Permian & Triassic; Purple:Purple:Purple: Paleogene Basalt; Flecked Red: Paleogene Granite and other intrusive rocks. Geological history The oldest rocks in County Down are 417-495 million years old [Ma] and consist of mudstones and volcanic rocks. At that time County Down lay beneath a deep ocean, on the edge of an ancient continent made up of Scotland, north America and the north of Ireland. A huge ocean separated this continent from the rest of Ireland, England, Wales and Europe. Over millions of years, this ocean closed and the two ancient continents collided, heating and deforming the rocks to form slates. The same rock types occur from Longford, through County Down and into the Southern Uplands of Scotland. Around 350 million years ago, in the early Carboniferous, sea level slowly rose to flood across the landscape. Sand and mud deposited on flood plains and in lagoons was buried beneath thick limestones deposited in a tropical sea. Around 290 million years ago Earth movements, caused by continental plates Down: COUNTY GEOLOGY OF IRELAND 3 Red Triassic sandstones deposited in temporary rivers in a semi-desert environment (Cultra).(Cultra).(Cultra).
    [Show full text]
  • Tectonic Regimes in the Baltic Shield During the Last 1200 Ma • a Review
    Tectonic regimes in the Baltic Shield during the last 1200 Ma • A review Sven Åke Larsson ' ', Bva-L^na Tuliborq- 1 Department of Geology Chalmers University of Technology/Göteborij U^vjrsivy 2 Terralogica AB November 1993 TECTONIC REGIMES IN THE BALTIC SHIELD DURING THE LAST 1200 Ma - A REVIEW Sven Åke Larsson12, Eva-Lena Tullborg2 1 Department of Geology, Chalmers University of Technology/Göteborg University 2 Terralogica AB November 1993 This report concerns a study which was conducted for SKB. The conclusions and viewpoints presented in the report are those of the author(s) and do not necessarily coincide with those of the client. Information on SKB technical reports from 1977-1978 (TR 121), 1979 (TR 79-28), 1980 (TR 80-26), 1981 (TR 81-17), 1982 (TR 82-28), 1983 (TR 83-77), 1984 (TR 85-01), 1985 (TR 85-20), 1986 (TR 86-31), 1987 (TR 87-33), 1988 (TR 88-32),. 1989 (TR 89-40), 1990 (TR 90-46), 1991 (TR 91-64) and 1992 (TR 92-46) is available through SKB. ) TECTONIC REGIMES IN THE BALTIC SHIELD DURING THE LAST 1200 Ma - A REVIEW by Sven Åke Larson and Eva-Lena Tullborg Department of Geology, Chalmers University of Technology / Göteborg University & Terralogica AB Gråbo, November, 1993 Keywords: Baltic shield, Tectonicregimes. Upper Protero/.oic, Phanerozoic, Mag- matism. Sedimentation. Erosion. Metamorphism, Continental drift. Stress regimes. , ABSTRACT 1 his report is a review about tectonic regimes in the Baltic (Fennoscandian) Shield from the Sveeonorwegian (1.2 Ga ago) to the present. It also covers what is known about palaeostress during this period, which was chosen to include both orogenic and anorogenic events.
    [Show full text]
  • Ediacaran and Cambrian Stratigraphy in Estonia: an Updated Review
    Estonian Journal of Earth Sciences, 2017, 66, 3, 152–160 https://doi.org/10.3176/earth.2017.12 Ediacaran and Cambrian stratigraphy in Estonia: an updated review Tõnu Meidla Department of Geology, Institute of Ecology and Earth Sciences, Faculty of Science and Technology, University of Tartu, Ravila 14a, 50411 Tartu, Estonia; [email protected] Received 18 December 2015, accepted 18 May 2017, available online 6 July 2017 Abstract. Previous late Precambrian and Cambrian correlation charts of Estonia, summarizing the regional stratigraphic nomenclature of the 20th century, date back to 1997. The main aim of this review is updating these charts based on recent advances in the global Precambrian and Cambrian stratigraphy and new data from regions adjacent to Estonia. The term ‘Ediacaran’ is introduced for the latest Precambrian succession in Estonia to replace the formerly used ‘Vendian’. Correlation with the dated sections in adjacent areas suggests that only the latest 7–10 Ma of the Ediacaran is represented in the Estonian succession. The gap between the Ediacaran and Cambrian may be rather substantial. The global fourfold subdivision of the Cambrian System is introduced for Estonia. The lower boundary of Series 2 is drawn at the base of the Sõru Formation and the base of Series 3 slightly above the former lower boundary of the ‘Middle Cambrian’ in the Baltic region, marked by a gap in the Estonian succession. The base of the Furongian is located near the base of the Petseri Formation. Key words: Ediacaran, Cambrian, correlation chart, biozonation, regional stratigraphy, Estonia, East European Craton. INTRODUCTION The latest stratigraphic chart of the Cambrian System in Estonia (Mens & Pirrus 1997b, p.
    [Show full text]
  • FURTHER READING for the Article 'Orogenic Belts' by A. M. C. Şengör
    FURTHER READING for the article ‘Orogenic Belts’ by A. M. C. Şengör in the second edition of the Encyclopaedia of Solid Earth Geophysics published by Springer Cham., Berlin and Heidelberg. Aaron, J. M., editor, 1991, An Issue dedicated to Aspects of the Geology of Japan, Site of the 29th International Geological Congress: Episodes, v. 14, no. 3, pp. 187- 302. Akbayram, K., , Şengör, A. M. C. and Özcan, E, 2017, The evolution of the Intra- Pontide suture: Implications of the discovery of late Cretaceous–early Tertiary mélanges, in Sorkhabi, R., editor, Tectonic Evolution, Collision, and Seismicity of Southwest Asia— In Honor of Manuel Berberian’s Forty-Five Years of Research Contributions: Geological Society of America Special Paper 525, pp. 573-612. Altunkaynak, Ş., 2007, Collision-driven slab breakoff magmatism in northWestern Anatolia, Turkey: The Journal of Geology, v. 115, pp. 63-82. Anonymous, 1984, Origin and History of Marginal and Inland Seas: Proceedings of the 27th International Geological Congress, Moscow, 4-14 August 1984,v. 23, VNU Science Press, Utrecht, vii+223 pp. Arai, R., IWasaki, T., Sato, H., Abe, S. and Hirata, N., 2009, Collision and subduction structure of the Izu–Bonin arc, central Japan, revealed by refraction/wide-angle reflection analysis: Tectonophysics, v. 475, pp. 438-453. Aramaki, S. and Kushiro, I., editors, 1983, Arc Volcanism: Elsevier, Amsterdam, VII+652 pp. Arkle, J. C., Armstrong, P. A., Haeussler, P. J., Prior, M. G., Harman, S., Sendziak, K. L. and Brush, J. A., 2013, Focused exhumation in the syntaxis of the Western Chugach Mountains and Prince William Sound, Alaska: Geological Society of America Bulletin, v.
    [Show full text]
  • Ages of Detrital Zircons (U/Pb, LA-ICP-MS) from the Latest
    Precambrian Research 244 (2014) 288–305 Contents lists available at ScienceDirect Precambrian Research jo urnal homepage: www.elsevier.com/locate/precamres Ages of detrital zircons (U/Pb, LA-ICP-MS) from the Latest Neoproterozoic–Middle Cambrian(?) Asha Group and Early Devonian Takaty Formation, the Southwestern Urals: A test of an Australia-Baltica connection within Rodinia a,∗ b c Nikolay B. Kuznetsov , Joseph G. Meert , Tatiana V. Romanyuk a Geological Institute, Russian Academy of Sciences, Pyzhevsky Lane, 7, Moscow 119017, Russia b Department of Geological Sciences, University of Florida, 355 Williamson Hall, Gainesville, FL 32611, USA c Schmidt Institute of Physics of the Earth, Russian Academy of Sciences, B. Gruzinskaya ul. 10, Moscow 123810, Russia a r t i c l e i n f o a b s t r a c t Article history: A study of U-Pb ages on detrital zircons derived from sedimentary sequences in the western flank of Received 5 February 2013 Urals (para-autochthonous or autochthonous with Baltica) was undertaken in order to ascertain/test Received in revised form source models and paleogeography of the region in the Neoproterozoic. Samples were collected from the 16 September 2013 Ediacaran-Cambrian(?) age Asha Group (Basu and Kukkarauk Formations) and the Early Devonian-aged Accepted 18 September 2013 Takaty Formation. Available online 19 October 2013 Ages of detrital zircons within the Basu Formation fall within the interval 2900–700 Ma; from the Kukkarauk Formation from 3200 to 620 Ma. Ages of detrital zircons from the Devonian age Takaty For- Keywords: Australia mation are confined to the Paleoproterozoic and Archean (3050–1850 Ma).
    [Show full text]
  • Wykaz Obwodów Łowieckich Województwa Pomorskiego
    Zał ącznik Nr 1 do uchwały Nr 87/VII/15 Sejmiku Województwa Pomorskiego z dnia 30 marca 2015 r. WYKAZ OBWODÓW ŁOWIECKICH WOJEWÓDZTWA POMORSKIEGO Nowy Okr ęg Powierzch Nazwa nr PZŁ / nia ogólna obwodu Opis granic obwodu łowieckiego obwo stary obwodu du nr [ha] obwod u Granica zewn ętrzna obwodu przebiega: z miejscowo ści Jastrz ębia Góra drog ą do miejscowo ści Władysławowo, sk ąd drog ą Władysławowo - Hel do brzegu zatoki 1 GD 1A 3607 Hel Puckiej i brzegiem wokół Półwyspu Helskiego w kierunku zwartej zabudowy Jastrz ębiej Góry i granic ą zwartej zabudowy do drogi w kierunku Władysławowa. Granica zewn ętrzna obwodu przebiega: z miejscowo ści Jastrz ębia Góra drog ą do miejscowo ści Władysławowo, sk ąd drog ą do brzegu zatoki Puckiej i brzegiem zatoki 2 GD 1 3122 Chłapowo Puckiej do miejscowo ści Swarzewo. St ąd drog ą do miejscowo ści Łebcz, dalej drog ą przez miejscowo ści Strzelno, Mieroszyno i Tupadły do miejscowo ści Jastrz ębia Góra. Granica zewn ętrzna obwodu przebiega: z miejscowo ści Karwia drog ą przez miejscowo ści Karwie ński Dwór, Sławoszyno, Sulicice i Starzyno, dalej drog ą Mechowo - Starzy ński Dwór do miejscowo ści Łebcz, sk ąd drog ą 3 GD 2 5807 Parszkowo przez miejscowo ści Strzelno, Tupadły i Jastrz ębia Góra do brzegu morza, i brzegiem morza do drogi prowadz ącej do miejscowo ści Karwia, i drog ą t ą dobiega do miejscowo ści Karwia. Granica zewn ętrzna obwodu przebiega: z miejscowo ści Żarnowiec drog ą przez miejscowo ści Goszczyno, Minkowice, Sulicice, Sławoszyno i Sławoszynko do miejscowo ści Karwia, dalej drog ą do brzegu morza 4 GD 3 4924 Odargowo i brzegiem morza w kierunku zachodnim do rzeki Pia śnicy, sk ąd nowym korytem tej rzeki w gór ę jej biegu do drogi Wierzchucino - Żarnowiec i drog ą t ą do miejscowo ści Żarnowiec.
    [Show full text]