C++Test for TI Code Composer Development Environment DATA SHEET
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Framework and Tool Supports for Generating Test Inputs of Aspectj Programs
A Framework and Tool Supports for Generating Test Inputs of AspectJ Programs Tao Xie Jianjun Zhao Department of Computer Science Department of Computer Science & Engineering North Carolina State University Shanghai Jiao Tong University Raleigh, NC 27695 Shanghai 200240, China [email protected] [email protected] ABSTRACT 1. INTRODUCTION Aspect-oriented software development is gaining popularity with Aspect-oriented software development (AOSD) is a new tech- the wider adoption of languages such as AspectJ. To reduce the nique that improves separation of concerns in software develop- manual effort of testing aspects in AspectJ programs, we have de- ment [9, 18, 22, 30]. AOSD makes it possible to modularize cross- veloped a framework, called Aspectra, that automates generation of cutting concerns of a software system, thus making it easier to test inputs for testing aspectual behavior, i.e., the behavior imple- maintain and evolve. Research in AOSD has focused mostly on mented in pieces of advice or intertype methods defined in aspects. the activities of software system design, problem analysis, and lan- To test aspects, developers construct base classes into which the guage implementation. Although it is well known that testing is a aspects are woven to form woven classes. Our approach leverages labor-intensive process that can account for half the total cost of existing test-generation tools to generate test inputs for the woven software development [8], research on testing of AOSD, especially classes; these test inputs indirectly exercise the aspects. To enable automated testing, has received little attention. aspects to be exercised during test generation, Aspectra automati- Although several approaches have been proposed recently for cally synthesizes appropriate wrapper classes for woven classes. -
Parasoft Dottest REDUCE the RISK of .NET DEVELOPMENT
Parasoft dotTEST REDUCE THE RISK OF .NET DEVELOPMENT TRY IT https://software.parasoft.com/dottest Complement your existing Visual Studio tools with deep static INCREASE analysis and advanced PROGRAMMING EFFICIENCY: coverage. An automated, non-invasive solution that the related code, and distributed to his or her scans the application codebase to iden- IDE with direct links to the problematic code • Identify runtime bugs without tify issues before they become produc- and a description of how to fix it. executing your software tion problems, Parasoft dotTEST inte- grates into the Parasoft portfolio, helping When you send the results of dotTEST’s stat- • Automate unit and component you achieve compliance in safety-critical ic analysis, coverage, and test traceability testing for instant verification and industries. into Parasoft’s reporting and analytics plat- regression testing form (DTP), they integrate with results from Parasoft dotTEST automates a broad Parasoft Jtest and Parasoft C/C++test, allow- • Automate code analysis for range of software quality practices, in- ing you to test your entire codebase and mit- compliance cluding static code analysis, unit testing, igate risks. code review, and coverage analysis, en- abling organizations to reduce risks and boost efficiency. Tests can be run directly from Visual Stu- dio or as part of an automated process. To promote rapid remediation, each problem detected is prioritized based on configur- able severity assignments, automatical- ly assigned to the developer who wrote It snaps right into Visual Studio as though it were part of the product and it greatly reduces errors by enforcing all your favorite rules. We have stuck to the MS Guidelines and we had to do almost no work at all to have dotTEST automate our code analysis and generate the grunt work part of the unit tests so that we could focus our attention on real test-driven development. -
Parasoft Static Application Security Testing (SAST) for .Net - C/C++ - Java Platform
Parasoft Static Application Security Testing (SAST) for .Net - C/C++ - Java Platform Parasoft® dotTEST™ /Jtest (for Java) / C/C++test is an integrated Development Testing solution for automating a broad range of testing best practices proven to improve development team productivity and software quality. dotTEST / Java Test / C/C++ Test also seamlessly integrates with Parasoft SOAtest as an option, which enables end-to-end functional and load testing for complex distributed applications and transactions. Capabilities Overview STATIC ANALYSIS ● Broad support for languages and standards: Security | C/C++ | Java | .NET | FDA | Safety-critical ● Static analysis tool industry leader since 1994 ● Simple out-of-the-box integration into your SDLC ● Prevent and expose defects via multiple analysis techniques ● Find and fix issues rapidly, with minimal disruption ● Integrated with Parasoft's suite of development testing capabilities, including unit testing, code coverage analysis, and code review CODE COVERAGE ANALYSIS ● Track coverage during unit test execution and the data merge with coverage captured during functional and manual testing in Parasoft Development Testing Platform to measure true test coverage. ● Integrate with coverage data with static analysis violations, unit testing results, and other testing practices in Parasoft Development Testing Platform for a complete view of the risk associated with your application ● Achieve test traceability to understand the impact of change, focus testing activities based on risk, and meet compliance -
Case Study Test the Untestable: Alaska Airlines Solves
CASE STUDY Testing the Untestable Alaska Airlines Solves the Test Environment Dilemma Case Study Testing the Untestable Alaska Airlines Solves the Test Environment Dilemma OVERVIEW Alaska Airlines is primarily a West Coast carrier that services the states of Alaska and Hawaii with mid-continent and destinations in Canada and Mexico. Alaska Airlines received J.D. Powers' “Highest in Customer Satisfaction Among Traditional Carriers” recognition for twelve years in a row even recently winning first in all but one of the seven categories. A large part of the credit belongs to their software testing team. Their industry-leading, proactive approach to disrupting the traditional software testing process ensures that testers can test faster, earlier, and more completely. Learn how Ryan Papineau and his team used advanced automation in concert with service virtualization to rigorously test their complex flight operations manager software. The result: operations that run smoothly— even if they encounter a snowstorm in July. RELIABLE & ON-DEMAND FALSE REPEATABLE TESTS AUTOMATED TEST CASES POSITIVES 100欥 500 ELIMINATED 2 Case Study Testing the Untestable Alaska Airlines Solves the Test Environment Dilemma THE CHALLENGES At Alaska Airlines, the flight operations manager software is ultimately responsible for transporting 46 million customers to 115 global destinations via approximately 440,000 flights per year, safely and efficiently. This software coordinates a highly complex set of inputs from systems around the organization to ensure flights are on time while evaluating and managing fuel, cargo, baggage, and passenger requirements. In addition to the previously mentioned requirements, the system considers many factors including weather, aircraft characteristics, market, and fuel costs. -
Parasoft Named an Omnichannel Functional Test Automation Leader
Parasoft Corp. Headquarters 101 E. Huntington Drive Monrovia, CA 91016 USA www.parasoft.com [email protected] Press Release Parasoft Named an Omnichannel Functional Test Automation Leader, Recognized by major analyst firm for Impressive Roadmap Parasoft shines in evaluation specifically around effective test maintenance, strong CI/CD and application lifecycle management (ALM) platform integration MONROVIA (USA) – July 30, 2018 – Parasoft, the global leader in automated software testing, today announced its position as a leader in The Forrester Wave™: Omnichannel Functional Test Automation Tools, Q3 2018, where it received the highest scores possible in the API Testing and Automation and Product Road Map criteria. The report notes Parasoft’s “impressive and concrete road map to increase test automation from design to execution, pushing autonomous testing.” Parasoft will be showcasing its technology and discussing the future of testing in an upcoming webinar, The Future of Test Automation: Next- Generation Technologies to Use Today on August 23rd. To register, click here. According to the report, conducted by Forrester’s Diego Lo Giudice, “Parasoft shined in our evaluation specifically around effective test maintenance, strong CI/CD and application lifecycle management (ALM) platform integration, as well as reporting through its analytics system PIE. Clients like the recent changes, and all reference customers reported achieving test automation of more than 50% in the past 12 months.” After examining past research, user need assessments, and vendor and expert interviews, Forrester evaluated 15 omnichannel functional test automation tool vendors across a comprehensive 26-criteria to help organizations working on enterprise, mobile, and web applications select the right tool. -
Devnet Module 3
Module 3: Software Development and Design DEVASCv1 1 Module Objectives . Module Title: Software Development and Design . Module Objective: Use software development and design best practices. It will comprise of the following sections: Topic Title Topic Objective 3.1 Software Development Compare software development methodologies. 3.2 Software Design Patterns Describe the benefits of various software design patterns. 3.3 Version Control Systems Implement software version control using GIT. 3.4 Coding Basics Explain coding best practices. 3.5 Code Review and Testing Use Python Unit Test to evaluate code. 3.6 Understanding Data Formats Use Python to parse different messaging and data formats. DEVASCv1 2 3.1 Software Development DEVASCv1 3 Introduction . The software development process is also known as the software development life cycle (SDLC). SDLC is more than just coding and also includes gathering requirements, creating a proof of concept, testing, and fixing bugs. DEVASCv1 4 Software Development Life Cycle (SDLC) . SDLC is the process of developing software, starting from an idea and ending with delivery. This process consists of six phases. Each phase takes input from the results of the previous phase. SDLC is the process of developing software, starting from an idea and ending with delivery. This process consists of six phases. Each phase takes input from the results of the previous phase. Although the waterfall methods is still widely used today, it's gradually being superseded by more adaptive, flexible methods that produce better software, faster, with less pain. These methods are collectively known as “Agile development.” DEVASCv1 5 Requirements and Analysis Phase . The requirements and analysis phase involves the product owner and qualified team members exploring the stakeholders' current situation, needs and constraints, present infrastructure, and so on, and determining the problem to be solved by the software. -
Devsecops DEVELOPMENT & DEVOPS INFRASTRUCTURE
DevSecOps DEVELOPMENT & DEVOPS INFRASTRUCTURE CREATE SECURE APPLICATIONS PARASOFT’S APPROACH - BUILD SECURITY IN WITHOUT DISRUPTING THE Parasoft provides tools that help teams begin their security efforts as DEVELOPMENT PROCESS soon as the code is written, starting with static application security test- ing (SAST) via static code analysis, continuing through testing as part of Parasoft makes DevSecOps possible with API and the CI/CD system via dynamic application security testing (DAST) such functional testing, service virtualization, and the as functional testing, penetration testing, API testing, and supporting in- most complete support for important security stan- frastructure like service virtualization that enables security testing be- dards like CWE, OWASP, and CERT in the industry. fore the complete application is fully available. IMPLEMENT A SECURE CODING LIFECYCLE Relying on security specialists alone prevents the entire DevSecOps team from securing software and systems. Parasoft tooling enables the BENEFIT FROM THE team with security knowledge and training to reduce dependence on PARASOFT APPROACH security specialists alone. With a centralized SAST policy based on in- dustry standards, teams can leverage Parasoft’s comprehensive docs, examples, and embedded training while the code is being developed. ✓ Leverage your existing test efforts for Then, leverage existing functional/API tests to enhance the creation of security security tests – meaning less upfront cost, as well as less maintenance along the way. ✓ Combine quality and security to fully understand your software HARDEN THE CODE (“BUILD SECURITY IN”) Getting ahead of application security means moving beyond just test- ✓ Harden the code – don’t just look for ing into building secure software in the first place. -
Metrics for Gerrit Code Reviews
SPLST'15 Metrics for Gerrit code reviews Samuel Lehtonen and Timo Poranen University of Tampere, School of Information Sciences, Tampere, Finland [email protected],[email protected] Abstract. Code reviews are a widely accepted best practice in mod- ern software development. To enable easier and more agile code reviews, tools like Gerrit have been developed. Gerrit provides a framework for conducting reviews online, with no need for meetings or mailing lists. However, even with the help of tools like Gerrit, following and monitoring the review process becomes increasingly hard, when tens or even hun- dreds of code changes are uploaded daily. To make monitoring the review process easier, we propose a set of metrics to be used with Gerrit code review. The focus is on providing an insight to velocity and quality of code reviews, by measuring different review activities based on data, au- tomatically extracted from Gerrit. When automated, the measurements enable easy monitoring of code reviews, which help in establishing new best practices and improved review process. Keywords: Code quality; Code reviews; Gerrit; Metrics; 1 Introduction Code reviews are a widely used quality assurance practice in software engineer- ing, where developers read and assess each other's code before it is integrated into the codebase or deployed into production. Main motivations for reviews are to detect software defects and to improve code quality while sharing knowledge among developers. Reviews were originally introduced by Fagan [4] already in 1970's. The original, formal type of code inspections are still used in many com- panies, but has been often replaced with more modern types of reviews, where the review is not tied to place or time. -
Best Practices for the Use of Static Code Analysis Within a Real-World Secure Development Lifecycle
An NCC Group Publication Best Practices for the use of Static Code Analysis within a Real-World Secure Development Lifecycle Prepared by: Jeremy Boone © Copyright 2015 NCC Group Contents 1 Executive Summary ....................................................................................................................................... 3 2 Purpose and Motivation ................................................................................................................................. 3 3 Why SAST Often Fails ................................................................................................................................... 4 4 Methodology .................................................................................................................................................. 4 5 Integration with the Secure Development Lifecycle....................................................................................... 5 5.1 Training ................................................................................................................................................. 6 5.2 Requirements ....................................................................................................................................... 6 5.3 Design ................................................................................................................................................... 7 5.4 Implementation .................................................................................................................................... -
A Brief History of Parasoft Jtest
A Brief History of Parasoft Jtest The static analysis technology for Jtest is invented The test generation technology for Jtest is invented The patent for Jtest’s test generation technology is First public release filed The patent for Jtest’s static analysis technology is filed Jtest patents awarded Jtest TM awarded Jtest introduces security rule set Jtest wins Best in Show at DevCon Jtest wins Software Magazine’s Productivity award Jtest nominated for JavaWorld Editors’ Choice awards Jtest becomes first product to use Design by Contract (Jcontract) comments to verify Java Automated JUnit test case generation is introduced classes/components at the system level Jtest wins Jolt Product Excellence Award Jtest wins Writer’s Choice Award from Java Report Jtest Tracer becomes the first tool to generate Jtest wins Software Business Magazines’s Best functional unit test cases as the user exercises the Development Tool Award working application Jtest wins Software and Information Industry Association’s Codie award for Best Software Testing Jtest wins JDJ Editors’ Choice Award Product or Service Jtest wins Software Development Magazines’s Jtest receives “Excellent” rating from Information World Productivity Award Jtest security edition released Flow-based static analysis is introduced Automated peer code review is introduced Cactus test generation is introduced Jtest is integrated into Development Testing Platform Jtest wins InfoWorld’s Technology of the Year award (DTP) Jtest wins Codie award for Best Software Testing DTP static analysis components -
Inovytec Achieves FDA Certification with Customized Static Code Analysis Solution Case Study Leading Insurance Company Modernizes Applications with Software Testing
CASE STUDY Inovytec Achieves FDA Certification With Customized Static Code Analysis Solution Case Study Leading Insurance Company Modernizes Applications With Software Testing OVERVIEW Inovytec is an innovative medical device company that develops cutting- edge solutions for respiratory and cardiac failures. During the COVID-19 crisis, Inovytec has been a vital supplier of ventilators around the world, delivering critical care to patients suffering respiratory symptoms from the contagious disease. The embedded development team at Inovytec delivers medical devices with safety-critical software like the Ventway Sparrow, which is a groundbreaking family of transport and emergency ventilators designed to stand up to the harshest of conditions while providing reliable high- performance ventilation at all times. 100% FDA 510(k) Certification Rules & Guidelines 2 Case Study Leading Insurance Company Modernizes Applications With Software Testing CHALLENGE On a mission to deliver clean code and be compliant with the FDA 510(k) regulation inspection, Inovytec started using Parasoft's C/C++ static code analysis solution. APPROACH To satisfy the FDA 510(k) certification, the embedded software development team customized a set of rules in Parasoft C/C++test to the standard. "Every time we are going to release a new software version of the Ventway Sparrow ventilator, we make sure that the static analysis from Parasoft is configured to run according to the FDA regulation definitions. We not only noticed improvements in code quality, but C/C++test has really helped us in our static analysis verification activities and goal of achieving FDA 510(k) certification,” said Roi Birenshtok, solution architect and team leader of embedded software. -
Code Review Guide
CODE REVIEW GUIDE 2.0 RELEASE Project leaders: Larry Conklin and Gary Robinson Creative Commons (CC) Attribution Free Version at: https://www.owasp.org 1 F I 1 Forward - Eoin Keary Introduction How to use the Code Review Guide 7 8 10 2 Secure Code Review 11 Framework Specific Configuration: Jetty 16 2.1 Why does code have vulnerabilities? 12 Framework Specific Configuration: JBoss AS 17 2.2 What is secure code review? 13 Framework Specific Configuration: Oracle WebLogic 18 2.3 What is the difference between code review and secure code review? 13 Programmatic Configuration: JEE 18 2.4 Determining the scale of a secure source code review? 14 Microsoft IIS 20 2.5 We can’t hack ourselves secure 15 Framework Specific Configuration: Microsoft IIS 40 2.6 Coupling source code review and penetration testing 19 Programmatic Configuration: Microsoft IIS 43 2.7 Implicit advantages of code review to development practices 20 2.8 Technical aspects of secure code review 21 2.9 Code reviews and regulatory compliance 22 5 A1 3 Injection 51 Injection 52 Blind SQL Injection 53 Methodology 25 Parameterized SQL Queries 53 3.1 Factors to Consider when Developing a Code Review Process 25 Safe String Concatenation? 53 3.2 Integrating Code Reviews in the S-SDLC 26 Using Flexible Parameterized Statements 54 3.3 When to Code Review 27 PHP SQL Injection 55 3.4 Security Code Review for Agile and Waterfall Development 28 JAVA SQL Injection 56 3.5 A Risk Based Approach to Code Review 29 .NET Sql Injection 56 3.6 Code Review Preparation 31 Parameter collections 57 3.7 Code Review Discovery and Gathering the Information 32 3.8 Static Code Analysis 35 3.9 Application Threat Modeling 39 4.3.2.