Recent Results from the Heliotron J Experiment
Total Page:16
File Type:pdf, Size:1020Kb
Hangzhou International Stellarator Workshop March 26th-28th, 2018, Zhejiang University, Hangzhou, China Recent Results from The Heliotron J Experiment Presented by K. Nagasaki Institute of Advanced Energy, Kyoto University The Heliotron J Group and Collaborators T. Mizuuchi, K. Nagasaki, H. Okada, T. Minami, S. Kado, S. Kobayashi, S. Yamamoto, S. Ohshima, S. Konoshima, T. Senju, K. Yaguchi, M. Shibano, K. Toshi, K. Sakamoto, K. Nakagai, T. Takahashi (IAE, Kyoto University) Y. Kishimoto, Y. Nakamura, A. Ishizawa, K. Imadera (GSES, Kyoto Univ.) S. Murakami, T. Shikama (Graduate School of Engineering, Kyoto Univ.) Y. Takeiri, M. Osakabe, K. Y. Watanabe, S. Okamura, M. Yokoyama, K. Nagaoka, Y. Suzuki, Y. Narushima, S. Nishimura, S. Sakakibara, K. Tanaka, H. Takahashi, G. Motojima, Y. Yoshimura, H. Igami, K. Ogawa, K. Mukai, T. Oishi, N. Tamura (National Institute for Fusion Science) N. Nishino (Hiroshima Univ.), T. Fukuda (Osaka Univ.), Y. Nakashima (Univ. Tsukuba) , S. Kitajima (Tohoku Univ.) , N. Kenmochi (U. Tokyo) D. Anderson, K. Likin, C. Deng (Univ. Wisconsin, USA) N. B. Marushchenko, G. Weir (IPP, Germany)) E. Ascasibar, A. Cappa, T. Estrada, F. Castejon (CIEMAT. Spain) B. Blackwell (ANU, Australia) D. Yu, L. Zang (SWIP, China), J. Zhu (Zhejiang Univ.) B. Liu (Southwest Jiaotong Univ., China) Outline 1. History of Heliotron Research and Heliotron J 2. Magnetic configuration control ̶ Neoclassical transport ̶ Anomalous transport ̶ Energetic particle confinement 3. Recent experimental results ̶ High-density H-mode triggered by high intense gas puffing ̶ Isotope effect on edge turbulence ̶ Electron ITB ̶ Suppression of energetic-particle-driven MHD modes by ECH/ECCD 4. Summary Outline 1. History of Heliotron Research and Heliotron J 2. Magnetic configuration control ̶ Neoclassical transport ̶ Anomalous transport ̶ Energetic particle confinement 3. Recent experimental results ̶ High-density H-mode triggered by high intense gas puffing ̶ Isotope effect on edge turbulence ̶ Electron ITB ̶ Suppression of energetic-particle-driven MHD modes by ECH/ECCD 4. Summary Heliotron Fusion Research in Kyoto University 1958 1966 1976 1996 超高温プラズマ エネルギー理工学研究所 “Cradle” ヘリオトロン 研究施設(工学部) 核融合研究センター IAE, Kyoto Univ. Project Helicon PPL, Dep. Eng. PPL, Kyoto Univ. エネルギー科学研究科 Kyoto Univ. Kyoto Univ. GSE, Kyoto Univ. 1980 1959 1960 1965 1970 1975 Heliotron A Advanced Heliotron B Heliotron C Heliotron D Heliotron DM Heliotron E Helical Concept R=0.47m R=1.085m R=0.45m R=2.2m a=0.075m a=0.1m a=0.04m a=0.2m B=0.6T B=0.3T B=1T B=2T 2000 1998 LHD (NIFS) Heliotron J Helical-Axis Heliotron Configuration M. Wakatani, Y. Nakamura et al., Nucl. Fusion 40 (1999) 569 Keywords: High-level compatibility between good particle confinement & MHD stability Currentless steady state Potential for built-in divertor Compact & high-b Simple helical coil system 1. Omnigeneity for drift optimization and magnetic well for MHD stability are combined with a helical magnetic axis High-b Control of neoclassical and turbulent transport 2. Bumpy component as the third knob of configuration control s-optimization Control of BS current Er effect Heliotron J Device Specification Single helical coil (l=1), two kinds of toroidal coil and three pairs of poloidal coil Flexibility of magnetic configuration R=1.2 m, <a> < 0.2 m Bt < 1.5 T, 0.4 < i/2p < 0.65 Nf = 4, helical-axis Heliotron Heating systems ECH: P < 0.4 MW, f = 70 GHz NBI: P < 1.6 MW, E < 30 keV (H) [co and counter injection] ICRF: P < 0.8 MW Achieved plasma parameters Te(0) <3 keV Ti < 0.4keV Characteristics of Heliotron J Configuration The straight structure is designed where quasi-omgeneity is formed Straight section (f=45) Straight section Corner section (f=45) (f=0) Corner section (f=45) Iota well depth The magnetic field strength is flat in the straight section, making the magnetic field gradient gentle. The B contour shape is tokamak-like at corner section Role of Bumpiness • Bumpiness provides control of Bmin contour for deeply trapped particles • Inward shift of magnetic axis is not necessary for optimization of neoclassical transport Fourier Spectra of B • Field configuration of Heliotron J is mainly composed of toroidicity, helicity and bumpiness • Helical coil winding law M M p f sin f L L • The negative produces magnetic well in the whole plasma region Reduction of neoclassical ripple transport Control of bootstrap current MHD stabilization and good energetic particle confinement Three Bumpiness Configurations Bumpiness (eb=B04/B00) can be changed with Toroidicity toroidicity and helicity fixed ・ eb = 0.15 (high bumpiness) ・ eb = 0.06 (medium bumpiness, STD) ・ eb = 0.01 (low bumpiness) at r~2/3a Helicity Bumpiness Outline 1. History of Heliotron Research and Heliotron J 2. Magnetic configuration control ̶ Neoclassical transport ̶ Anomalous transport ̶ Energetic particle confinement 3. Recent experimental results ̶ High-density H-mode triggered by high intense gas puffing ̶ Isotope effect on edge turbulence ̶ Electron ITB ̶ Suppression of energetic-particle-driven MHD modes by ECH/ECCD 4. Summary Experimental BS current Agrees with Neoclassical SPBSC Code Results Experimental bootstrap current agrees with neoclassical prediction 19 -3 within a factor of 2 at ne = 0.4-1.0 10 m (off-axis deposition) 19 -3 19 -3 ne = 0.4x10 m ne = 1.0x10 m BS current is dominant at this resonance condition Three kind of pressure profiles are assumed G. Motojima, Fus. Sci. Tech (2007) Role of Trapped Electrons on ECCD 1.7 B /B • Experiments on scanning magnetic field str cor 1.6 0.78 (e = 0.17) b 0.82 (e = 0.15) configuration in Heliotron J show importance b 0.89 (e = 0.13) 1.5 b 0.95e = 0.06) b 0.99 (e = 0.05) of trapped electrons for ECCD 1.4 b 1.06 (e = 0.01) b • The experimental results quantitatively |B| (T) 1.3 agree with a theoretical calculation using the 1.2 ECH injection port TRAVIS code which includes parallel 1.1 1.0 momentum conservation -45 -30 -15 0 15 30 45 Toroidal Angle f (deg) High bumpiness Medium bumpiness Low bumpiness 4 4 4 h=0.95 I (exp) h=1.06 h=0.82 EC I (exp) P =260kW P =260kW P =260kW EC ECH I (theory) ECH 3 ECH 3 EC 3 I (theory) /=0.478 /=0.499 /=0.490 EC 0 0 0 19 -3 19 -3 19 -3 n ~0.5x10 m n ~0.5x10 m n ~0.5x10 m e e 2 e 2 2 (kA) (kA) (kA) EC EC EC I I 1 I 1 1 0 0 0 IEC (exp) IEC (theory) -1 -1 -1 0.0 0.2 0.4 0.6 0.0 0.2 0.4 0.6 0.0 0.2 0.4 0.6 N N N || || || K. Nagasaki, Nucl. Fusion (2011) Effect of Bumpiness on Parallel Plasma Flow Lee, PPCF (2013) Nishioka, PoP (2016) The measured C6+ parallel flow is consistent with the neoclassical prediction with the Sugama- Nishimura method including the edge spontaneous flow Medium bumpiness (STD) High bumpiness Global Confinement Depends on Bumpiness Component • Good global energy confinement is obtained at the magnetic configuration with medium bumpiness (ECH) and high bumpiness (NBI) Power scan experiments Density scan experiments T. Mizuuchi, FST 50 (2006) 352 S. Kobayashi , FEC (2008) EX/P5-13 GKV Code Results Show That Zonal Flow in High Bumpiness Suppresses Turbulence Transport • GKV code is applied to HJ NBI plasmas. ITG mode is unstable Elongated mode structure in B direction due to weak shear Large amplitude of ZF is expected Growth-rate in high eb case is smaller than standard one Nonlinear calculation shows same tendency due to stronger |B| at bad-curvature region Consistent to the experimental result Config standard High eb g(vTi/R0) 0.4 0.26 2 ci(vTir Ti/R0) 5.9 4.2 Electrostatic potential profile of the ITG mode 2 ce(vTir Ti/R0) 2.4 1.7 A. Ishizawa et al 2017 Nucl. Fusion 57 066010 High Bumpiness Is Favorable for Energetic Minority Proton Confinement and Bulk Heating Bulk Heating vs. Bumpiness • ICRF pulse of 23.2 MHz or 19 MHz with 250-290kW 0.25 B04/B00 = 0.15 was injected into an ECH target plasma where Ti(0) 0.20 19 -3 = 0.2 keV, Te(0) = 0.8 keV and ne = 0.4 x 10 m ) V 0.15 e k ( • High energy ion-flux up to 34 keV is observed at the i T B /B = 0.01 0.10 04 00 pitch angle of 120 deg only in the high bumpy case 0.05 • The bulk ion heating efficiency in the high B04/B00 = 0.06 0.00 bumpiness is highest among three configurations 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 PICRF (MW) 6 Low Bumpiness 6 Medium Bumpiness High Bumpiness 10 10 106 19 MHz 19 MHz 128 deg 127 deg 23.2 Mhz 128 deg 5 125 deg 5 10 10 125 deg 105 123 deg 121 deg 121 deg 120 deg 117 deg 118 deg 118 deg 104 104 4 113 deg 112 deg 10 114 deg 108 deg 108 deg 111 deg 3 3 3 (E) (arb.) (E) (arb.) (E) 10 Pitch Angle 10 Pitch Angle (arb.) (E) 10 Pitch Angle H H H f f f 102 102 102 101 101 101 0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35 Energy (keV) Energy (keV) Energy (keV) Outline 1. History of Heliotron Research and Heliotron J 2.