Replicating Minicircles: Overcoming the Limitations of Transient and Of

Total Page:16

File Type:pdf, Size:1020Kb

Replicating Minicircles: Overcoming the Limitations of Transient and Of Replicating Minicircles: Overcoming the Limitations of Transient and of Stable Expression Systems In "Minicircle and Plasmid DNA Vectors - The Future of non-viral and viral Gene-Transfer", Schleef (Ed.) Wiley-VCH Verlag K. Nehlsen 1) , S. Broll 1,2), R. Kandimalla 3), N. Heinz 4), M. Heine 5), S. Binius 1) , A. Schambach 4) and J. Bode4*) 1) Helmholtz Center for Infection Research, Department Molecular Biotechnology, Inhoffenstraße 7, D-38124 Braunschweig 2) Leibniz Universität Hannover, Dezernat 4 - Forschung und Technologietransfer / Nationale Forschungsförderung. 3) Department of Pathology, Josephine Nefkens Institute Erasmus MC 3000 CA, Dr. Molewaterplein 50 Rotterdam, The Netherlands Germany 4) Hannover Medical School (MHH), Carl-Neuberg-Strasse 1, D-30625 Hannover, Institute for Experimental Haematology OE 6960, Room J11 01 6530; Tel.: +49 511-532-5136; Fax: +49 3212 106 7542; [email protected] ; *) Corresponding Author 5) Rentschler Biotechnologie GmbH Erwin-Rentschler-Straße 21, 88471 Laupheim Keywords: minicircles; nonviral episomes; ARS assay; oriP; S/MAR Abbreviations used: BPV, bovine papillomavirus; BUR, DNA base-unpairing region; CHO, Chinese hamster ovary; CUE Core-Unpairing Element; CS, constitutive S/MAR; DS, dyad symmetry element; EBV, Epstein–Barr virus; eGFP, enhanced green fluorescent protein; egfp , the corresponding coding region; FACS, fluorescence-activated cell sorting; FISH, fluorescence in situ hybridization; Flp, flippase (site specific recombinase); FR, Family of Repeats (OriP); FRT , Flp- recognition target; GANC, ganciclovir; GOI, gene of interest; GOD, gene on duty; HDACi, histone deacetylase inhibitor; HMT, histone-methyltransferase; IR, initiator of replication; IRE, inverted repeat, LRT, long terminal repeat; LUC, luciferase; MC, minicircle; MP, miniplasmid; Ori, origin of replication; MRE, mirror-repeat; Ori, origin of replication; OriP, origin of plasmid replication; ORC, origin-recognition complex; PD, population doubling; pEpi, plasmid-episomal; pFAR, plasmid free of antibiotic resistance genes; PP, parental plasmid / educt for MC preparation; RMCE, (Flp- )recombinase-mediated cassette exchange; S/MAR, scaffold/matrix attachment region; SIDD, stress-induced duplex destabilization; SV40, simian virus 40; UE, DNA Unpairing Element; TIC, teratoma-initiating cell. 1 ABSTRACT A - Gene therapy: Call for new vector vehicles • Nonviral vectors avoiding genomic disturbances • Independent expression units: chromatin domains o S/MARs: a unifying principle o S/MAR actions are multifold and context-dependent o Stress-induced duplex destabilization (SIDD), a unifying property of S/MARs o Chromosome-based expression strategies: Episomes and/or predetermined integration sites (RMCE) B - Replicating nonviral episomes • Can the yeast-ARS principle be verified for mammalian cells? • ARS and S/MARs: common (SIDD-) properties • S/MAR plasmids: verification of the concept o Transcription into the S/MAR: directionality and rate o Cell and nuclear permeation ° Transduction principles o Nuclear association sites o RMCE-based elaboration following establishment • Remaining shortcomings and their solution o Establishment and maintenance: the EBV paradigm ° Complementarity of “molecular glue” and initiator of replication (IR-) functions ° Two variants of the L1 transposon system ° Can replication-support elements be shuffled between the EBNA1- and S/MAR vectors? ° Selection principles overcoming the need of antibiotics ° Targets for DNA methylation: role of CpGs ° pEPIto o Vector-size limitations (?) C - Minimalization approaches • Oligomerizing S/MAR modules: pMARS and its properties • Replicating minicircles, a solution with great promise o Establishment and maintenance parameters o Clonal behavior o Bi-MC systems o MC-size reduction: “In vivo evolution” o Transcriptional termination and polyadenylation: an intricate interplay o Episomal status: Proof and persistence • Emerging extensions and refinements o Combination of excision- and RMCE-strategies o MC withdrawal at will o Pronuclear injection and somatic cell nuclear transfer o From cells to organs SUMMARY AND OUTLOOK 2 ABSTRACT Based on a 2 kb S/MAR- (Scaffold/Matrix Attachment Region) element, the first nonviral autonomously replicating nonviral episome could be introduced in 1999. S/MAR-binding proteins such as SAF-A/hnRNP-U were shown to act as „molecular glue” to provide maintenance functions. These actions enabled the association with replication factories of the host cell and thereby a once-per-cell-cycle replication of the supercoiled DNA circles. In case of the plasmid episome the requirement of a selection agent for its establishment, its continued silencing, and a limited cloning capacity remained the limiting parameters until 2006, when these restrictions could be overcome by deleting the prokaryotic vector backbone. The remaining ~4 kb ´minicircle´ (“MC”, later reduced to a ~3 kb derivative, “M18”), consists of only one active transcription unit in addition to the S/MAR and is devoid of prokaryotic CpGs. In contrast to the “parental plasmid” precursors (PPs) it can be established in the absence of drug selection, and it replicates stably without signs of integration. Other than conventional minicircles that are maintained only in non-dividing tissues, this is the first example suitable for the modification of dividing cells due to its authentic segregation. Supported by its minimized size, and in accord with the “pFAR”-principle, the vector is no target for epigenetic defense mechanisms; after its establishment it is efficiently retained in the host cell nucleus. Stable clones can be derived, stored for subsequent purposes and used to generate cell lines with predictable characteristics. In addition, several MCs can be established side-by side allowing the regulated expression of multi-subunit proteins. While the minicircle preparation process could continuously be refined in various cooperations, MC generation has also become possible in situ , i.e. in the recipient cell itself. At present this "all-in-one” concept mainly serves exploratory purposes to pre-select suitable candidates for MC production routines leading to MCs of unprecedented purity and and with an authentic superhelical (ccc-)status. 3 A – GENE THERAPY: CALL FOR NEW VECTOR VEHICLES General problems that have hampered gene therapy approaches concern the inability of targeting vectors to appropriate genomic sites. Such an option would guarantee adequate gene expression, and tolerance by the host. In the absence of certain drawbacks viruses might be the preferred systems. Although they have the natural inclination to invade human cells and to deposit their genome in highly expressed loci their cloning capacity is usually restricted while their preparation is demanding and evaluation is laborious. For retroviruses (except the genus Lentiviridae) gene transfer is restricted to dividing cells and expression is difficult to maintain over extended times. To circumvent unanticipated complications of this kind chromosomal organization principles gain increasing attention for an appropriate design of second generation nonviral “chromosome-based vectors” [1]. • Nonviral vectors avoiding genomic disturbances In this field the limited performance and shutdown of conventional transgene expression units are important limitations that have to be overcome for many potential gene therapy applications [2,3]. Until recently, virtually all stable transfection procedures involved the transfer of linearized DNA. The integration of these specimens depends on the eventual occurrence of a genomic break in processes that are often associated with unpredictable rearrangements due to cell-intrinsic nonhomologous end-joining (NHEJ-) related repair activities. Silencing phenomena have been attributed to host defense mechanisms directed against the bacterial backbone of traditional vectors that include elements such as unmethylated CpG motifs [2], a prokaryotic origin of replication and antibiotic resistance genes [3]. While these sequences are required for the production of plasmid DNA (pDNA), each raises serious biological safety problems due to the dissemination of antibiotic resistance genes via horizontal gene transfer and a residual activity of bacterial genes in the recipient [4]. This becomes particularly obvious in animal models for which intramuscular injections of pDNA raise immune responses. The corresponding findings led regulatory agencies to restrict the co-transfer of these components, especially antibiotic resistance 4 markers. These facts have motivated developments considering the organization of vector backbones into host-like chromatin structures [5-10]. • Independent expression units: chromatin domains Eukaryotic chromosomes are organized into a series of discrete higher order chromatin domains, each of which is delimited by two boundary elements, so called scaffold/matrix attachment regions (S/MARs; Fig. 1). These S/MARs associate with ubiquitous protein components of the nuclear skeleton (listed in Fig. 1B), most prominently complexes of scaffold attachment factor A (SAF-A), which form the base of a chromatin loop creating independent units of gene activity [10]. S/MARs, a unifying principle Naked transgenes are known to preferentially integrate into heterochromatic areas [11]. However, if transfected as a domain, (S/MAR1 – GOI – S/MAR2) , the resulting clones show elevated, comparable expression levels that are maintained for extended periods of time [12]. This effect
Recommended publications
  • BIOPHYSICS MEETS GENE THERAPY: HOW EXPLORING SUPERCOILING-DEPENDENT STRUCTURAL CHANGES in DNA LED to the DEVELOPMENT of MINIVECTOR DNA Lynn Zechiedrich and Jonathan M
    Technology and Innovation, Vol. 20, pp. 427-440, 2019 ISSN 1949-821 • E-ISSN 1949-825X http:// Printed in the USA. All rights reserved. dx.doi.org/10.21300/20.4.2019.427 Copyright © 2019 National Academy of Inventors. www.technologyandinnovation.org BIOPHYSICS MEETS GENE THERAPY: HOW EXPLORING SUPERCOILING-DEPENDENT STRUCTURAL CHANGES IN DNA LED TO THE DEVELOPMENT OF MINIVECTOR DNA Lynn Zechiedrich and Jonathan M. Fogg Department of Molecular Virology and Microbiology, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, and Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, USA Supercoiling affects every aspect of DNA function (replication, transcription, repair, recom- bination, etc.), yet the vast majority of studies on DNA and crystal structures of the molecule utilize short linear duplex DNA, which cannot be supercoiled. To study how supercoiling drives DNA biology, we developed and patented methods to make milligram quantities of tiny supercoiled circles of DNA called minicircles. We used a collaborative and multidisciplinary approach, including computational simulations (both atomistic and coarse-grained), biochem- ical experimentation, and biophysical methods to study these minicircles. By determining the three-dimensional conformations of individual supercoiled DNA minicircles, we revealed the structural diversity of supercoiled DNA and its highly dynamic nature. We uncovered profound structural changes, including sequence-specific base-flipping (where the DNA base flips out into the solvent), bending, and denaturing in negatively supercoiled minicircles. Counterintuitively, exposed DNA bases emerged in the positively supercoiled minicircles, which may result from inside-out DNA (Pauling-like, or “P-DNA”). These structural changes strongly influence how enzymes interact with or act on DNA.
    [Show full text]
  • Iron-Dependent Gene Expression in Actinomyces Oris
    Dartmouth College Dartmouth Digital Commons Dartmouth Scholarship Faculty Work 12-16-2015 Iron-Dependent Gene Expression in Actinomyces Oris Matthew P. Mulé New England College David Giacalone New England College Kayla Lawlor New England College Alexa Golden New England College Caroline Cook New England College See next page for additional authors Follow this and additional works at: https://digitalcommons.dartmouth.edu/facoa Part of the Genetic Processes Commons, and the Medical Microbiology Commons Dartmouth Digital Commons Citation Mulé, Matthew P.; Giacalone, David; Lawlor, Kayla; Golden, Alexa; Cook, Caroline; Lott, Thomas; Aksten, Elizabeth; O'Toole, George A.; and Bergeron, Lori J., "Iron-Dependent Gene Expression in Actinomyces Oris" (2015). Dartmouth Scholarship. 1665. https://digitalcommons.dartmouth.edu/facoa/1665 This Article is brought to you for free and open access by the Faculty Work at Dartmouth Digital Commons. It has been accepted for inclusion in Dartmouth Scholarship by an authorized administrator of Dartmouth Digital Commons. For more information, please contact [email protected]. Authors Matthew P. Mulé, David Giacalone, Kayla Lawlor, Alexa Golden, Caroline Cook, Thomas Lott, Elizabeth Aksten, George A. O'Toole, and Lori J. Bergeron This article is available at Dartmouth Digital Commons: https://digitalcommons.dartmouth.edu/facoa/1665 ournal of ralr æ icrobiologyi ORIGINAL ARTICLE Iron-dependent gene expression in Actinomyces oris Matthew P. Mule´ 1, David Giacalone1, Kayla Lawlor1, Alexa Golden1, Caroline Cook1, Thomas Lott1, Elizabeth Aksten1, George A. O’Toole2 and Lori J. Bergeron1* 1Department of Biology, New England College, Henniker, NH, USA; 2Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA Background: Actinomyces oris is a Gram-positive bacterium that has been associated with healthy and diseased sites in the human oral cavity.
    [Show full text]
  • Minicircle DNA and Mc-Ips Cells Cat. #SC301A-1, SRMXXXPA-1
    Minicircle DNA and mc-iPS Cells Cat. #SC301A-1, SRMXXXPA-1 User Manual A limited-use label license covers this product. By use of this product, you accept the terms and conditions outlined in the Licensing and Warranty Statement ver. 2-111910 contained in this user manual. Minicircle DNA and mc-iPS Cells Cats. # SC301A-1, SRMXXXPA-1 Contents I. Introduction and Background .................................................. 2 A. The Minicircle Technology .................................................. 2 B. Minicircle derived iPS cell line ............................................ 3 II. Protocols ................................................................................. 5 A. Minicircle Production .......................................................... 5 B. Transfection of Minicircle DNA for reprogramming............. 7 C. Growing mc-iPS cells in Feeder-Free Media ...................... 8 III. References........................................................................ 10 IV. Technical Support ............................................................. 11 V. Licensing and Warranty ........................................................ 11 888-266-5066 (Toll Free) 650-968-2200 (outside US) Page 1 System Biosciences (SBI) User Manual I. Introduction and Background A. The Minicircle Technology Minicircles (MC) are circular non-viral DNA elements that are generated by an intramolecular (cis-) recombination from a parental plasmid (PP) mediated by ФC31 integrase. The full-size MC-DNA construct is grown in a special host
    [Show full text]
  • Cell Biology of Infection by Legionella Pneumophila
    NIH Public Access Author Manuscript Microbes Infect. Author manuscript; available in PMC 2014 February 01. NIH-PA Author ManuscriptPublished NIH-PA Author Manuscript in final edited NIH-PA Author Manuscript form as: Microbes Infect. 2013 February ; 15(2): 157–167. doi:10.1016/j.micinf.2012.11.001. Cell biology of infection by Legionella pneumophila Li Xu1 and Zhao-Qing Luo* Department of Biological Sciences, Purdue University, 915 West State Street, West Lafayette, IN 47907 Abstract Professional phagocytes digest internalized microorganisms by actively delivering them into the phagolysosomal compartment. Intravacuolar bacterial pathogens have evolved a variety of effective strategies to bypass the default pathway of phagosomal maturation to create a niche permissive for their survival and propagation. Here we discuss recent progress in our understanding of the sophisticated mechanisms used by Legionella pneumophila to survive in phagocytes. Keywords intracellular pathogens; vesicle trafficking; type IV secretion; effectors; host function subversion 1. Introduction Legionella pneumophila, a Gram-negative opportunistic intracellular pathogen, is the causative agent of Legionnaires’ disease, a severe form of pneumonia [81]. This disease was first described in 1976, when many attendees at the American Legion Convention in Philadelphia suffered from a sudden outbreak of pneumonia. A previously unrecognized bacterium was found to be responsible for the outbreak, and it was subsequently designated Legionella pneumophila [81]. Although more than 70 different serogroups Legionella species have since been described [86], most of the clinical cases (>90%) are caused by L. pneumophila serogroup 1 [86]. The symptoms of Legionnaires’ disease resemble many other forms of pneumonia, including high fevers, chills, coughs and sometimes accompanied with headaches and muscle aches.
    [Show full text]
  • Stable Episomes Based on Non-Integrative Lentiviral Vectors
    (19) TZZ _T (11) EP 2 878 674 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 03.06.2015 Bulletin 2015/23 C12N 15/86 (2006.01) (21) Application number: 13382481.3 (22) Date of filing: 28.11.2013 (84) Designated Contracting States: (72) Inventors: AL AT BE BG CH CY CZ DE DK EE ES FI FR GB • Ramírez Martínez, Juan Carlos GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO E-28029 Madrid (ES) PL PT RO RS SE SI SK SM TR • Torres Ruiz, Raúl Designated Extension States: E-28029 Madrid (ES) BA ME • García Torralba, Aida E-28029 Madrid (ES) (71) Applicant: Fundación Centro Nacional de Investigaciones (74) Representative: ABG Patentes, S.L. Cardiovasculares Carlos III (CNIC) Avenida de Burgos, 16D 28029 Madrid (ES) Edificio Euromor 28036 Madrid (ES) (54) Stable episomes based on non-integrative lentiviral vectors (57) The invention relates to non-intregrative lentivi- the use of these vectors for the production of recombinant ral vectors and their use for the stable transgenesis of lentiviruses, and the use of these recombinant lentivirus- both dividing and no- dividing eukaryotic cells. The inven- es for obtaining a cell able to stably produce a product tion also provides methods for obtaining these vectors, of interest. EP 2 878 674 A1 Printed by Jouve, 75001 PARIS (FR) EP 2 878 674 A1 Description FIELD OF THE INVENTION 5 [0001] The present invention falls within the field of eukaryotic cell transgenesis and, more specifically, relates to episomes based on non-integrative lentiviral vectors and their use for the generation of cell lines that stably express a heterologous gene of interest.
    [Show full text]
  • Minicircle DNA Technology
    Minicircle DNA Technology MNxxxx-1 User Manual Please see PAC for storage temperatures A limited-use label license covers this product. By use of this product, you accept Version 7 the terms and conditions outlined in the 5/30/2017 License and Warranty Statement contained in this user manual. Contents Product Description ...................................................................................................................................................... 1 Minicircle Technology ............................................................................................................................................... 1 ZYCY10P3S2T E.coli ................................................................................................................................................... 2 List of Components ....................................................................................................................................................... 2 Storage .......................................................................................................................................................................... 2 Protocols ....................................................................................................................................................................... 2 cDNA Cloning into Minicircle Parental Plasmids ...................................................................................................... 2 Cloning into Minicircle shRNA Parental Plasmids ....................................................................................................
    [Show full text]
  • The Landscape of Non-Viral Gene Augmentation Strategies for Inherited Retinal Diseases
    International Journal of Molecular Sciences Review The Landscape of Non-Viral Gene Augmentation Strategies for Inherited Retinal Diseases Lyes Toualbi 1,2, Maria Toms 1,2 and Mariya Moosajee 1,2,3,4,* 1 UCL Institute of Ophthalmology, London EC1V 9EL, UK; [email protected] (L.T.); [email protected] (M.T.) 2 The Francis Crick Institute, London NW1 1AT, UK 3 Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK 4 Great Ormond Street Hospital for Children NHS Found Trust, London WC1N 3JH, UK * Correspondence: [email protected]; Tel.: +44-207-608-6971 Abstract: Inherited retinal diseases (IRDs) are a heterogeneous group of disorders causing progres- sive loss of vision, affecting approximately one in 1000 people worldwide. Gene augmentation therapy, which typically involves using adeno-associated viral vectors for delivery of healthy gene copies to affected tissues, has shown great promise as a strategy for the treatment of IRDs. How- ever, the use of viruses is associated with several limitations, including harmful immune responses, genome integration, and limited gene carrying capacity. Here, we review the advances in non-viral gene augmentation strategies, such as the use of plasmids with minimal bacterial backbones and scaffold/matrix attachment region (S/MAR) sequences, that have the capability to overcome these weaknesses by accommodating genes of any size and maintaining episomal transgene expression with a lower risk of eliciting an immune response. Low retinal transfection rates remain a limita- tion, but various strategies, including coupling the DNA with different types of chemical vehicles (nanoparticles) and the use of electrical methods such as iontophoresis and electrotransfection to aid Citation: Toualbi, L.; Toms, M.; Moosajee, M.
    [Show full text]
  • BMC Genomics Biomed Central
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by PubMed Central BMC Genomics BioMed Central Research article Open Access Comparative analysis of dinoflagellate chloroplast genomes reveals rRNA and tRNA genes Adrian C Barbrook*1, Nicole Santucci2, Lindsey J Plenderleith1, Roger G Hiller3 and Christopher J Howe1 Address: 1Department of Biochemistry, University of Cambridge, Downing Site, Tennis Court Road, Cambridge, CB2 1QW, UK, 2Children's Medical Research Institute, 214 Hawkesbury Road, Westmead, Sydney, NSW 2145, Australia and 3Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia Email: Adrian C Barbrook* - [email protected]; Nicole Santucci - [email protected]; Lindsey J Plenderleith - [email protected]; Roger G Hiller - [email protected]; Christopher J Howe - [email protected] * Corresponding author Published: 23 November 2006 Received: 23 June 2006 Accepted: 23 November 2006 BMC Genomics 2006, 7:297 doi:10.1186/1471-2164-7-297 This article is available from: http://www.biomedcentral.com/1471-2164/7/297 © 2006 Barbrook et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: Peridinin-containing dinoflagellates have a highly reduced chloroplast genome, which is unlike that found in other chloroplast containing organisms. Genome reduction appears to be the result of extensive transfer of genes to the nuclear genome.
    [Show full text]
  • Mitochondrial Minicircle DNA Supports Plasmid Replication and Maintenance in Nuclei of Trypanosoma Brucei
    Proc. Natd. Acad. Sci. USA Vol. 91, pp. 5962-5966, June 1994 Biochemistry Mitochondrial minicircle DNA supports plasmid replication and maintenance in nuclei of Trypanosoma brucei STAN METZENBERG AND NINA AGABIAN* Intercampus Program in Molecular Parasitology, University of California - San Francisco, San Francisco, CA 94143-1204 Communicated by Anthony Cerami, February 25, 1994 (receivedfor review December 14, 1993) ABSTRACT In a search for trypanosome DNA sequences ing a shuttle vector that would allow the maintenance of that permit replication and stable maintenance of extrachro- multiple extrachromosomal copies ofa transfected sequence. mosomal elements, a 1-kilobase-pair (kbp) fragment from a By introducing random fiagments oftotal T. bruceiDNA into m ondrial kinetlst DNA (kDNA) micircie ofTrypano- a vector carrying a hygromycin-resistance gene, a mitochon- soma brucei was Isolated and characterized. The plasmid drial DNA element was identifiedt that permits plasmid pTbo-l, carrying the kDNA element, Is maintained in T. brucei replication and maintenance in the nuclei of T. brucei. The as a supercoiled concatemer contining approimatey seven to plasmid is maintained stably under continuous drug selection nine pTbo-1 monomer units (5.6 kbp each) in a head-to-tail as a supercoiled head-to-tail concatemer composed of ap- orientation. The cocater Is found In approximately one proximately eight monomer units. A second kDNA minicir- copy per cell when procydlic tyanosomes are cultur in the cle element, chosen at random and similarly tested, also presence of 100 jug of hyomycin per ml; however, in the permits autonomous replication. These findings suggest that absence Ofcontinuous hygromycin selection, the plasmid is lost minicircles may have the interesting capability of engender- from the population with a i,1otapproximately 8.7 days (17 cell ing DNA replication in both the mitochondrion and nucleus.
    [Show full text]
  • Abstract Flores Vergara, Miguel
    ABSTRACT FLORES VERGARA, MIGUEL ANGEL. Diversity of Scaffold/Matrix Attachment Regions (S/MARs) in Arabidopsis is Revealed by Analysis of Sequence Characteristics, Nucleosome Occupancy, Epigenetic Marks, and Gene Expression. (Under the direction of Dr. George C. Allen and Dr. William F. Thompson.) Eukaryotic chromatin is organized as independent loops of varying sizes. Following histone extraction with lithium diiodosalicylate (LIS), these loops can be visualized as a DNA halo anchored to the nuclear matrix structure. As a basic unit, the loop is thought to be essential for DNA replication, transcription and chromosomal packaging. The formation of each loop is dependent on a specific chromatin segment that must function as an anchor to the nuclear matrix. Sequences that attach specifically to the nuclear matrix have been termed scaffold/matrix attachment regions (S/MARs). Since only a limited number of putative S/MARs have been characterized so far, their role in genomic structure and function is not well understood. Thus, a more global analysis is necessary to answer a variety of questions such as: How are S/MARs distributed across the genome? Are S/MARs associated with different genomic features and are S/MARs typically AT-rich, as previously suggested? What is the nucleosomal organization at S/MAR sequences and do they define regions of accessible chromatin? Are S/MARs associated with specific epigenetic features such as certain histone modifications or DNA methylation? What role do S/MARs play in transcriptional regulation? I have approached these questions by mapping the S/MARs on Arabidopsis chromosome 4 (chr4) using a high-resolution tiling array.
    [Show full text]
  • Sequences of Two Kinetoplast DNA Minicircles of Trypanosoma Brucei (Recombinant DNA/Restriction Enzymes/Sequence Homology/DNA Sequencing) KENNETH K
    Proc. Natl. Acad. Sci. USA Vol. 77, No. 5, pp. 2445-2449, May 1980 Biochemistry Sequences of two kinetoplast DNA minicircles of Trypanosoma brucei (recombinant DNA/restriction enzymes/sequence homology/DNA sequencing) KENNETH K. CHEN AND JOHN E. DONELSON Department of Biochemistry, University of Iowa, Iowa City, Iowa 52242 Communicated by William Trager, January 18, 1980 ABSTRACT Kinetoplast DNA of Trypanosoma brucei is kDNA network are about 23 kilobases in size and are homo- composed of a network of about 10,000 interlocked minicircle geneous in sequence (13). Several RNA species hybridize to DNA molecules (1.0 kilobase) that are catenated with about 50 maxicircles and it has maxicircle DNA molecules (23 kilobases). Several different (14-16), been proposed that maxicircle DNA-DNA hybridization techniques using individual minicircle DNA corresponds to normal mitochondrial DNA of other lower DNA sequences cloned in Escherichia coli have indicated that eukaryotes (17). The T. brucei minicircles are about 1 kilobase each minicircle molecule contains about one-fourth of its se- and heterogeneous in sequence, as determined by restriction quence in common with most other minicircles and the re- enzyme analysis (18) and renaturation kinetics (19). The early maining three-fourths in common with about 1 out of every 300 renaturation analyses (19) indicated that 100 or more different minicircles. We have determined the complete sequence of two minicircle sequences may occur among the cloned minicircle DNA molecules that were released from the 10,000 molecules total kinetoplast DNA network by different restriction enzymes; in a network. The biological function of minicircle kDNA is one minicircle is 1004 base pairs long, the other is 983 base pairs.
    [Show full text]
  • Generation of Iron-Independent Siderophore-Producing Agaricus Bisporus Through the Constitutive Expression of Hapx
    G C A T T A C G G C A T genes Article Generation of Iron-Independent Siderophore-Producing Agaricus bisporus through the Constitutive Expression of hapX Min-Seek Kim and Hyeon-Su Ro * Department of Bio & Medical Big Data and Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Korea; [email protected] * Correspondence: [email protected]; Tel.: +82-55-772-1328 Abstract: Agaricus bisporus secretes siderophore to uptake environmental iron. Siderophore secretion in A. bisporus was enabled only in the iron-free minimal medium due to iron repression of hapX, a transcriptional activator of siderophore biosynthetic genes. Aiming to produce siderophore using conventional iron-containing complex media, we constructed a recombinant strain of A. bisporus that escapes hapX gene repression. For this, the A. bisporus hapX gene was inserted next to the glyceraldehyde 3-phosphate dehydrogenase promoter (pGPD) in a binary vector, pBGgHg, for the constitutive expression of hapX. Transformants of A. bisporus were generated using the binary vector through Agrobacterium tumefaciens-mediated transformation. PCR and Northern blot analyses of the chromosomal DNA of the transformants confirmed the successful integration of pGPD- hapX at different locations with different copy numbers. The stable integration of pGPD-hapX was supported by PCR analysis of chromosomal DNA obtained from the 20 passages of the transformant. The transformants constitutively over-expressed hapX by 3- to 5-fold and sidD, a key gene in the siderophore biosynthetic pathway, by 1.5- to 4-fold in mRNA levels compared to the wild-type strain (without Fe3+), regardless of the presence of iron.
    [Show full text]