A Review of Molecular Imaging of Glutamate Receptors

Total Page:16

File Type:pdf, Size:1020Kb

A Review of Molecular Imaging of Glutamate Receptors molecules Review A Review of Molecular Imaging of Glutamate Receptors Jong-Hoon Kim 1,2,3,* ,János Marton 4, Simon Mensah Ametamey 5 and Paul Cumming 6,7,* 1 Neuroscience Research Institute, Gachon University, Incheon 21565, Korea 2 Gachon Advanced Institute for Health Science and Technology, Graduate School, Incheon 21565, Korea 3 Department of Psychiatry, Gil Medical Center, Gachon University College of Medicine, Gachon University, Incheon 21565, Korea 4 ABX Advanced Biochemical Compounds, Biomedizinische Forschungsreagenzien GmbH, Heinrich-Glaeser-Strasse 10-14, D-1454 Radeberg, Germany; [email protected] 5 Centre for Radiopharmaceutical Sciences ETH-PSI-USZ, Institute of Pharmaceutical Sciences ETH, Vladimir-Prelog-Weg 4, CH-8093 Zürich, Switzerland; [email protected] 6 Department of Nuclear Medicine, University of Bern, Inselspital, Freiburgstrasse 18, CH-3010 Bern, Switzerland 7 School of Psychology and Counselling, Queensland University of Technology, Brisbane QLD 4059, Australia * Correspondence: [email protected] (J.-H.K.); [email protected] (P.C.); Tel.: +41-31-664-0498 (P.C.); Fax: +41-31-632-7663 (P.C.) Academic Editors: Diego Muñoz-Torrero and Beatriz De Pascual-Teresa Received: 24 September 2020; Accepted: 14 October 2020; Published: 16 October 2020 Abstract: Molecular imaging with positron emission tomography (PET) and single photon emission computed tomography (SPECT) is a well-established and important in vivo technique to evaluate fundamental biological processes and unravel the role of neurotransmitter receptors in various neuropsychiatric disorders. Specific ligands are available for PET/SPECT studies of dopamine, serotonin, and opiate receptors, but corresponding development of radiotracers for receptors of glutamate, the main excitatory neurotransmitter in mammalian brain, has lagged behind. This state of affairs has persisted despite the central importance of glutamate neurotransmission in brain physiology and in disorders such as stroke, epilepsy, schizophrenia, and neurodegenerative diseases. Recent years have seen extensive efforts to develop useful ligands for molecular imaging of subtypes of the ionotropic (N-methyl-D-aspartate (NMDA), kainate, and AMPA/quisqualate receptors) and metabotropic glutamate receptors (types I, II, and III mGluRs). We now review the state of development of radioligands for glutamate receptor imaging, placing main emphasis on the suitability of available ligands for reliable in vivo applications. We give a brief account of the radiosynthetic approach for selected molecules. In general, with the exception of ligands for the GluN2B subunit of NMDA receptors, there has been little success in developing radiotracers for imaging ionotropic glutamate receptors; failure of ligands for the PCP/MK801 binding site in vivo doubtless relates their dependence on the open, unblocked state of the ion channel. Many AMPA and kainite receptor ligands with good binding properties in vitro have failed to give measurable specific binding in the living brain. This may reflect the challenge of developing brain-penetrating ligands for amino acid receptors, compounded by conformational differences in vivo. The situation is better with respect to mGluR imaging, particularly for the mGluR5 subtype. Several successful PET ligands serve for investigations of mGluRs in conditions such as schizophrenia, depression, substance abuse and aging. Considering the centrality and diversity of glutamatergic signaling in brain function, we have relatively few selective and sensitive tools for molecular imaging of ionotropic and metabotropic glutamate receptors. Further radiopharmaceutical research targeting specific subtypes and subunits of the glutamate receptors may yet open up new investigational vistas with broad applications in basic and clinical research. Molecules 2020, 25, 4749; doi:10.3390/molecules25204749 www.mdpi.com/journal/molecules Molecules 20202020,, 2525,, 4749x 2 of 4240 Keywords: glutamate receptors; positron emission tomography; single photon emission computed Keywords:tomography;glutamate radioligands receptors; positron emission tomography; single photon emission computed tomography; radioligands 1. Introduction 1. Introduction The first identification of the amino acid glutamate/glutamic acid (1) as a neurotransmitter was in theThe insect first nervous identification system of [1,2]. the amino Glutamate acid glutamateoccurs at /aglutamic concentration acid (1 of) as approximately a neurotransmitter 10 mM was in inmammalian the insect brain nervous [3], system making [1 it,2 ].the Glutamate most abund occursant amino at a concentration acid, which ofreflects approximately its presence 10 both mM in mammalianmetabolic and brain neurotransmitter [3], making it pools the most [4]. abundantPerhaps in amino keeping acid, with which its ancient reflects evolutionary its presence bothlineage in metabolicas a neurotransmitter, and neurotransmitter glutamate pools possesses [4]. Perhaps a wide in keeping variety with of receptors, its ancient evolutionarywhich have lineageabundant as aexpression neurotransmitter, on neurons glutamate and glia. possesses The glutamate a wide variety receptors of receptors,fall into two which broad have categories, abundant namely expression the onionotropic neurons receptors, and glia. which The glutamate are ligand receptors-gated ion fall channels, into two and broad the metabotropic categories, namely receptors the ionotropic(mGluRs), receptors,which have which coupling are ligand-gated to intracellular ion second channels, messenger and the metabotropicsystems. The receptorsmGluRs have (mGluRs), further which subtypes, have couplingnamely the to intracellularexcitatory type second I receptors messenger (mGluR1/mGluR5), systems. The mGluRs the adenylate have further cyclase subtypes,-inhibiting namely type the II excitatoryreceptors (mGluR2, type I receptors mGluR3), (mGluR1 and the/ mGluR5),type III receptors the adenylate (mGluR4, cyclase-inhibiting mGluR6, mGluR7, type mGluR8). II receptors The (mGluR2,ionotropic mGluR3), glutamate and receptors, the type which III receptors are designated (mGluR4, according mGluR6, to mGluR7,their excitatory mGluR8). amino The acid ionotropic ligands glutamate(Figure 1.), receptors, i.e., N-methyl which- areD-aspartate designated (NMDA, according 3), to kainate their excitatory (4), and amino AMPA acid (5 ligands)/quisqualate (Figure 1(6),) i.e.,receptors,N-methyl- are Dligand-aspartate gated (NMDA, ion channels3), kainate permissive (4), and to AMPA cation (5flux)/quisqualate across the ( 6cell) receptors, membrane. are ligandGiven gatedthis enormously ion channels diverse permissive pharmacology, to cation flux no across particular the cell membrane.or singular Givenaction this can enormously be attributed diverse to pharmacology,glutamate receptors no particular the nervous or singular system. action In general, can be however, attributed the to ionotropic glutamate receptors receptors mediate the nervous fast system.excitatory In synaptic general, however,signaling theand ionotropic have a key receptors role in mediate synaptic fast plas excitatoryticity, although synaptic their signaling excessive and haveactivation a key provokes role in synapticexcitotoxicity, plasticity, whereas although the mGluRs their excessive are modulators/shapers activation provokes of neuronal excitotoxicity, activity whereasvia their theeffects mGluRs on intracellular are modulators cyclic/shapers adenosine of neuronal monophosphate activity via ( theircAMP eff)ects levels on intracellularand other second cyclic adenosinemessengers. monophosphate (cAMP) levels and other second messengers. O CH2 O O O O H3C OH HO HO 4 3 OH HO OH OH 5 2 1 O NH O NH O HN N 2 2 CH 3 H OH 1 2 3 4 L-glutamic acid L-aspartic acid N-methyl-D-aspartic acid (2S,3S,4S)-kainic acid HO O O O O O HO HO N OH N OH HN S OH S OH O NH O O O NH2 2 NH2 O NH2 O 5 6 7 8 (S)-AMPA (2S)-quisqualic acid L-cysteic acid L-cysteine sulfinic acid O O O O O H S S N NH2 OH HO OH H2N N HO H NH2 NH2 9 10 11 L-homocysteic acid L-homocysteine sulfinic acid spermine O O H HN N NH2 H2N H2N OH O NH2 12 13 14 spermidine glycine D-cycloserine Figure 1.1.Chemical Chemical structures structures of excitatoryof excitatory amino amino acids (EAAs),acids (EAAs), sulfur-containing sulfur-containing amino acids amino (SCAAs), acids and(SCAAs) polyamines., and polyamines. There are various reviews of the pharmacology of ionotropic [5,6] and metabotropic glutamate receptors [7,8]. There is also a burgeoning literature on the involvement of glutamate receptors in the Molecules 2020, 25, 4749 3 of 42 There are various reviews of the pharmacology of ionotropic [5,6] and metabotropic glutamate receptors [7,8]. There is also a burgeoning literature on the involvement of glutamate receptors in the pathophysiology and therapeutics of Alzheimer’s dementia [9], Parkinson’s disease [10], ischemic stroke [11], epilepsy [12], autoimmune diseases of the nervous system [13], and neuropsychiatric disorders such as schizophrenia [14–16], depression [17,18], and substance abuse/addiction [19]. As such, the glutamate receptors present a diverse range of important targets for molecular brain imaging by single photon emission computed tomography (SPECT) and positron emission tomography (PET). While there have been several reviews of this topic in recent years [20–23], we now present a systematic review of the state of development of glutamate receptor imaging, placing our emphasis on the findings of clinical studies, and on
Recommended publications
  • Ketamine As a Novel Treatment for Major Depressive Disorder and Bipolar Depression: a Systematic Review and Quantitative Meta-Analysis☆
    General Hospital Psychiatry 37 (2015) 178–184 Contents lists available at ScienceDirect General Hospital Psychiatry journal homepage: http://www.ghpjournal.com Ketamine as a novel treatment for major depressive disorder and bipolar depression: a systematic review and quantitative meta-analysis☆ Ellen E. Lee, M.D., Megan P. Della Selva, M.D., Anson Liu, M.D., Seth Himelhoch, M.D., M.P.H. ⁎ Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD article info abstract Article history: Objective: Given the significant disability, morbidity and mortality associated with depression, the promising Received 9 September 2014 recent trials of ketamine highlight a novel intervention. A meta-analysis was conducted to assess the efficacy Revised 29 December 2014 of ketamine in comparison with placebo for the reduction of depressive symptoms in patients who meet criteria Accepted 8 January 2015 for a major depressive episode. Method: Two electronic databases were searched in September 2013 for English-language studies that were ran- Keywords: domized placebo-controlled trials of ketamine treatment for patients with major depressive disorder or bipolar Ketamine Depression depression and utilized a standardized rating scale. Studies including participants receiving electroconvulsive ther- Therapy apy and adolescent/child participants were excluded. Five studies were included in the quantitative meta-analysis. Meta-analysis Results: The quantitative meta-analysis showed that ketamine significantly reduced depressive symptoms. The overall effect size at day 1 was large and statistically significant with an overall standardized mean difference of 1.01 (95% confidence interval 0.69–1.34) (Pb.001), with the effects sustained at 7 days postinfusion. The heteroge- neity of the studies was low and not statistically significant, and the funnel plot showed no publication bias.
    [Show full text]
  • Selective Blockade of the Metabotropic Glutamate Receptor Mglur5 Protects Mouse Livers in in Vitro and Ex Vivo Models of Ischemia Reperfusion Injury
    International Journal of Molecular Sciences Article Selective Blockade of the Metabotropic Glutamate Receptor mGluR5 Protects Mouse Livers in In Vitro and Ex Vivo Models of Ischemia Reperfusion Injury Andrea Ferrigno 1,* ID , Clarissa Berardo 1, Laura Giuseppina Di Pasqua 1, Veronica Siciliano 1, Plinio Richelmi 1, Ferdinando Nicoletti 2,3 and Mariapia Vairetti 1 ID 1 Department of Internal Medicine and Therapeutics, Cellular and Molecular Pharmacology and Toxicology Unit, University of Pavia, 27100 Pavia, Italy; [email protected] (C.B.); [email protected] (L.G.D.P.); [email protected] (V.S.); [email protected] (P.R.); [email protected] (M.V.) 2 Department of Physiology and Pharmacology, Sapienza University, 00185 Roma, Italy; [email protected] 3 I.R.C.C.S. Neuromed, 86077 Pozzilli, Italy * Correspondence: [email protected]; Tel.: +39-0382-986451 Received: 20 November 2017; Accepted: 22 January 2018; Published: 23 January 2018 Abstract: 2-Methyl-6-(phenylethynyl)pyridine (MPEP), a negative allosteric modulator of the metabotropic glutamate receptor (mGluR) 5, protects hepatocytes from ischemic injury. In astrocytes and microglia, MPEP depletes ATP. These findings seem to be self-contradictory, since ATP depletion is a fundamental stressor in ischemia. This study attempted to reconstruct the mechanism of MPEP-mediated ATP depletion and the consequences of ATP depletion on protection against ischemic injury. We compared the effects of MPEP and other mGluR5 negative modulators on ATP concentration when measured in rat hepatocytes and acellular solutions. We also evaluated the effects of mGluR5 blockade on viability in rat hepatocytes exposed to hypoxia. Furthermore, we studied the effects of MPEP treatment on mouse livers subjected to cold ischemia and warm ischemia reperfusion.
    [Show full text]
  • Metabotropic Glutamate Receptors
    mGluR Metabotropic glutamate receptors mGluR (metabotropic glutamate receptor) is a type of glutamate receptor that are active through an indirect metabotropic process. They are members of thegroup C family of G-protein-coupled receptors, or GPCRs. Like all glutamate receptors, mGluRs bind with glutamate, an amino acid that functions as an excitatoryneurotransmitter. The mGluRs perform a variety of functions in the central and peripheral nervous systems: mGluRs are involved in learning, memory, anxiety, and the perception of pain. mGluRs are found in pre- and postsynaptic neurons in synapses of the hippocampus, cerebellum, and the cerebral cortex, as well as other parts of the brain and in peripheral tissues. Eight different types of mGluRs, labeled mGluR1 to mGluR8, are divided into groups I, II, and III. Receptor types are grouped based on receptor structure and physiological activity. www.MedChemExpress.com 1 mGluR Agonists, Antagonists, Inhibitors, Modulators & Activators (-)-Camphoric acid (1R,2S)-VU0155041 Cat. No.: HY-122808 Cat. No.: HY-14417A (-)-Camphoric acid is the less active enantiomer (1R,2S)-VU0155041, Cis regioisomer of VU0155041, is of Camphoric acid. Camphoric acid stimulates a partial mGluR4 agonist with an EC50 of 2.35 osteoblast differentiation and induces μM. glutamate receptor expression. Camphoric acid also significantly induced the activation of NF-κB and AP-1. Purity: ≥98.0% Purity: ≥98.0% Clinical Data: No Development Reported Clinical Data: No Development Reported Size: 10 mM × 1 mL, 100 mg Size: 10 mM × 1 mL, 5 mg, 10 mg, 25 mg (2R,4R)-APDC (R)-ADX-47273 Cat. No.: HY-102091 Cat. No.: HY-13058B (2R,4R)-APDC is a selective group II metabotropic (R)-ADX-47273 is a potent mGluR5 positive glutamate receptors (mGluRs) agonist.
    [Show full text]
  • Dynamic L-Glutamate Signaling in the Prefrontal Cortex and the Effects of Methylphenidate Treatment
    University of Kentucky UKnowledge Theses and Dissertations--Neuroscience Neuroscience 2012 DYNAMIC L-GLUTAMATE SIGNALING IN THE PREFRONTAL CORTEX AND THE EFFECTS OF METHYLPHENIDATE TREATMENT Catherine Elizabeth Mattinson University of Kentucky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Mattinson, Catherine Elizabeth, "DYNAMIC L-GLUTAMATE SIGNALING IN THE PREFRONTAL CORTEX AND THE EFFECTS OF METHYLPHENIDATE TREATMENT" (2012). Theses and Dissertations--Neuroscience. 4. https://uknowledge.uky.edu/neurobio_etds/4 This Doctoral Dissertation is brought to you for free and open access by the Neuroscience at UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Neuroscience by an authorized administrator of UKnowledge. For more information, please contact [email protected]. STUDENT AGREEMENT: I represent that my thesis or dissertation and abstract are my original work. Proper attribution has been given to all outside sources. I understand that I am solely responsible for obtaining any needed copyright permissions. I have obtained and attached hereto needed written permission statements(s) from the owner(s) of each third-party copyrighted matter to be included in my work, allowing electronic distribution (if such use is not permitted by the fair use doctrine). I hereby grant to The University of Kentucky and its agents the non-exclusive license to archive and make accessible my work in whole or in part in all forms of media, now or hereafter known. I agree that the document mentioned above may be made available immediately for worldwide access unless a preapproved embargo applies.
    [Show full text]
  • 1 Activation of the Same Mglur5 Receptors in the Amygdala Causes Divergent Effects 2 on Specific Versus Indiscriminate Fear 3
    1 Activation of the same mGluR5 receptors in the amygdala causes divergent effects 2 on specific versus indiscriminate fear 3 4 Mohammed Mostafizur Rahman1,2,#, Sonal Kedia1,#, Giselle Fernandes1#, Sumantra 5 Chattarji1,2,3* 6 7 1National Centre for Biological Sciences, Tata Institute of Fundamental Research, 8 Bangalore 560065, India 9 10 2Centre for Brain Development and Repair, Institute for Stem Cell Biology and 11 Regenerative Medicine, Bangalore 560065, India 12 13 3Centre for Integrative Physiology, Deanery of Biomedical Sciences, University of 14 Edinburgh, Hugh Robson Building, George Square, Edinburgh EH89XD, UK 15 16 17 * Corresponding Author: Prof. Sumantra Chattarji 18 Centre for Brain Development and Repair, Institute for 19 Stem Cell Biology and Regenerative Medicine and 20 National Centre for Biological Sciences 21 Bangalore 560065, INDIA 22 E-Mail: [email protected] 23 # Equal contribution 24 1 25 Abstract 26 27 Although mGluR5-antagonists prevent fear and anxiety, little is known about how the 28 same receptor in the amygdala gives rise to both. Combining in vitro and in vivo 29 activation of mGluR5 in rats, we identify specific changes in intrinsic excitability and 30 synaptic plasticity in basolateral amygdala neurons that give rise to temporally distinct 31 and mutually exclusive effects on fear-related behaviors. The immediate impact of 32 mGluR5 activation is to produce anxiety manifested as indiscriminate fear of both tone 33 and context. Surprisingly, this state does not interfere with the proper encoding of tone- 34 shock associations that eventually lead to enhanced cue-specific fear. These results 35 provide a new framework for dissecting the functional impact of amygdalar mGluR- 36 plasticity on fear versus anxiety in health and disease.
    [Show full text]
  • Identification and Analysis of Hepatitis C Virus NS3 Helicase Inhibitors Using Nucleic Acid Binding Assays Sourav Mukherjee1, Alicia M
    Published online 27 June 2012 Nucleic Acids Research, 2012, Vol. 40, No. 17 8607–8621 doi:10.1093/nar/gks623 Identification and analysis of hepatitis C virus NS3 helicase inhibitors using nucleic acid binding assays Sourav Mukherjee1, Alicia M. Hanson1, William R. Shadrick1, Jean Ndjomou1, Noreena L. Sweeney1, John J. Hernandez1, Diana Bartczak1, Kelin Li2, Kevin J. Frankowski2, Julie A. Heck3, Leggy A. Arnold1, Frank J. Schoenen2 and David N. Frick1,* 1Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, 2University of Kansas Specialized Chemistry Center, University of Kansas, 2034 Becker Dr., Lawrence, KS 66047 and 3Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA Received March 26, 2012; Revised May 30, 2012; Accepted June 4, 2012 Downloaded from ABSTRACT INTRODUCTION Typical assays used to discover and analyze small All cells and viruses need helicases to read, replicate and molecules that inhibit the hepatitis C virus (HCV) repair their genomes. Cellular organisms encode NS3 helicase yield few hits and are often con- numerous specialized helicases that unwind DNA, RNA http://nar.oxfordjournals.org/ founded by compound interference. Oligonucleotide or displace nucleic acid binding proteins in reactions binding assays are examined here as an alternative. fuelled by ATP hydrolysis. Small molecules that inhibit After comparing fluorescence polarization (FP), helicases would therefore be valuable as molecular homogeneous time-resolved fluorescence (HTRFÕ; probes to understand the biological role of a particular Cisbio) and AlphaScreenÕ (Perkin Elmer) assays, helicase, or as antibiotic or antiviral drugs (1,2). For an FP-based assay was chosen to screen Sigma’s example, several compounds that inhibit a helicase Library of Pharmacologically Active Compounds encoded by herpes simplex virus (HSV) are potent drugs in animal models (3,4).
    [Show full text]
  • Structural Studies of the Interaction Between Mglu5 And
    STRUCTURAL STUDIES OF THE INTERACTION BETWEEN MGLU5 AND ALLOSTERIC MODULATORS By Elizabeth Dong Nguyen Dissertation Submitted to the Faculty of the Graduate School of Vanderbilt University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in Chemical and Physical Biology August, 2013 Nashville, Tennessee Approved: Professor Walter J. Chazin Professor P. Jeffrey Conn Professor Terry P. Lybrand Professor David L. Tabb Copyright © 2013 by Elizabeth Dong Nguyen All Rights Reserved ACKNOWLEDGEMENTS The work presented here was made possible by Public Health Service award T32 GM07347 from the National Institute of General Medical Studies for the Vanderbilt Medical-Scientist Training Program (MSTP), the Paul Calabresi Medical Student Research Fellowship from the Pharmaceutical Research and Manufacturers of America (PhRMA) Foundation and a Deutscher Akademischer Austausch Dienst (DAAD) research grant from the German Academic Exchange Service. Computational resources were provided by the Advanced Computing Center for Research and Education and the Center for Structural Biology at Vanderbilt University. I would like to thank my advisor, Dr. Jens Meiler, who fostered in me the desire to pursue research as a summer undergraduate student and continued to support, guide and mentor me through my graduate studies. His excitement for science is infectious and has inspired my own ambitions to spread the passion of science to others. I would like to thank other faculty members who aided in my scientific growth while at Vanderbilt University, particularly my committee members: Dr. Walter Chazin, Dr. Jeff Conn, Dr. Terry Lybrand and Dr. David Tabb. They have continually provided guidance and encouragement for my research progress and career development.
    [Show full text]
  • Dysregulated Nitric Oxide Signaling As a Candidate Mechanism of Fragile X Syndrome and Other Neuropsychiatric Disorders
    REVIEW ARTICLE published: 22 July 2014 doi: 10.3389/fgene.2014.00239 Dysregulated nitric oxide signaling as a candidate mechanism of fragile X syndrome and other neuropsychiatric disorders Steven M. Colvin and Kenneth Y. Kwan* Department of Human Genetics – The Molecular and Behavioral Neuroscience Institute, University of Michigan Medical School, Ann Arbor, MI, USA Edited by: A mechanistic understanding of the pathophysiology underpinning psychiatric disorders is Peter Kennedy Todd, University of essential for the development of targeted molecular therapies. For fragile X syndrome Michigan, USA (FXS), recent mechanistic studies have been focused on the metabotropic glutamate Reviewed by: receptor (mGluR) signaling pathway. This line of research has led to the discovery Maria Paola Lombardi, University of Amsterdam, Netherlands of promising candidate drugs currently undergoing various phases of clinical trial, and Rhiannon Meredith, VU University represents a model of how biological insights can inform therapeutic strategies in Amsterdam, Netherlands neurodevelopmental disorders. Although mGluR signaling is a key mechanism at which Christina Gross, Cincinnati Children’s Hospital Medical Center, USA targeted treatments can be directed, it is likely to be one of many mechanisms contributing to FXS. A more complete understanding of the molecular and neural underpinnings of the *Correspondence: Kenneth Y. Kwan, Department of disorder is expected to inform additional therapeutic strategies. Alterations in the assembly Human Genetics – The Molecular and of neural circuits in the neocortex have been recently implicated in genetic studies of autism Behavioral Neuroscience Institute, and schizophrenia, and may also contribute to FXS. In this review, we explore dysregulated University of Michigan Medical School, 5041 BSRB, 109 Zina Pitcher nitric oxide signaling in the developing neocortex as a novel candidate mechanism of Place, Ann Arbor, MI 48109-2200, FXS.
    [Show full text]
  • Optical Control of Pain in Vivo with a Photoactive Mglu5 Receptor
    RESEARCH ARTICLE Optical control of pain in vivo with a photoactive mGlu5 receptor negative allosteric modulator Joan Font1,2,3†, Marc Lo´ pez-Cano4,5†, Serena Notartomaso6, Pamela Scarselli6, Paola Di Pietro6, Roger Bresolı´-Obach7, Giuseppe Battaglia6, Fanny Malhaire8, Xavier Rovira8, Juanlo Catena1, Jesu´s Giraldo2,3,9, Jean-Philippe Pin8, Vı´ctorFerna´ ndez-Duen˜ as4,5, Cyril Goudet8, Santi Nonell7, Ferdinando Nicoletti6,10, Amadeu Llebaria1*, Francisco Ciruela4,5* 1MCS, Laboratory of Medicinal Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain; 2Institut de Neurocie`ncies, Universitat Auto`noma de Barcelona, Bellaterra, Spain; 3Unitat de Bioestadı´stica, Universitat Auto`noma de Barcelona, Bellaterra, Spain; 4Departament de Patologia i Terape`utica Experimental, Facultat de Medicina i Cie`ncies de la Salut, IDIBELL, Universitat de Barcelona, Barcelona, Spain; 5Institut de Neurocie`ncies, Universitat de Barcelona, Barcelona, Spain; 6I.R.C.C.S. Neuromed, Pozzilli, Italy; 7Institut Quı´mic de Sarria`, Universitat Ramon Llull, Barcelona, Spain; 8IGF, CNRS, INSERM, Univ. Montpellier, Montpellier, France; 9Network Biomedical Research Center on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; 10Department of Physiology and Pharmacology, University Sapienza, Rome, Italy *For correspondence: amadeu. Abstract Light-operated drugs constitute a major target in drug discovery, since they may [email protected] (AL); provide spatiotemporal resolution for the treatment of complex diseases (i.e. chronic pain). JF-NP- [email protected] (FC) 26 is an inactive photocaged derivative of the metabotropic glutamate type 5 (mGlu5) receptor †These authors contributed negative allosteric modulator raseglurant. Violet light illumination of JF-NP-26 induces a equally to this work photochemical reaction prompting the active-drug’s release, which effectively controls mGlu5 receptor activity both in ectopic expressing systems and in striatal primary neurons.
    [Show full text]
  • Antidepressant Effects of Ketamine in Depressed Patients
    BRIEF REPORTS Antidepressant Effects of Ketamine in Depressed Patients Robert M. Berman, Angela Cappiello, Amit Anand, Dan A. Oren, George R. Heninger, Dennis S. Charney, and John H. Krystal Background: A growing body of preclinical research Papp and Moryl 1994, 1996; Przegalinski et al 1997; suggests that brain glutamate systems may be involved in Trullas and Skolnick 1990) but not all (Panconi et al 1993) the pathophysiology of major depression and the mecha- studies. Conversely, antidepressant administration has nism of action of antidepressants. This is the first placebo- been shown to affect NMDA receptor function (Mjellem controlled, double-blinded trial to assess the treatment et al 1993) and receptor binding profiles (Paul et al 1994). effects of a single dose of an N-methyl-D-aspartate Chronic, but not acute, administration of antidepressant (NMDA) receptor antagonist in patients with depression. medications consistently decreases the potency of glycine Methods: Seven subjects with major depression com- to inhibit [3H]-5,7-dichlorkynurenic acid binding to the pleted 2 test days that involved intravenous treatment with strychnine-insensitive glycine sites. These adaptations ketamine hydrochloride (.5 mg/kg) or saline solutions were found in 16 of 17 tested antidepressant treatments under randomized, double-blind conditions. (Paul et al 1994), thereby making this a more sensitive Results: Subjects with depression evidenced significant predictor of antidepressant activity than the forced swim improvement in depressive symptoms within 72 hours after ketamine but not placebo infusion (i.e., mean 25-item test or downregulation of beta-adrenergic receptors. A Hamilton Depression Rating Scale scores decreased by 14 transcriptional mechanism for this phenomenon is sug- Ϯ SD 10 points vs.
    [Show full text]
  • Federal Register / Vol. 60, No. 80 / Wednesday, April 26, 1995 / Notices DIX to the HTSUS—Continued
    20558 Federal Register / Vol. 60, No. 80 / Wednesday, April 26, 1995 / Notices DEPARMENT OF THE TREASURY Services, U.S. Customs Service, 1301 TABLE 1.ÐPHARMACEUTICAL APPEN- Constitution Avenue NW, Washington, DIX TO THE HTSUSÐContinued Customs Service D.C. 20229 at (202) 927±1060. CAS No. Pharmaceutical [T.D. 95±33] Dated: April 14, 1995. 52±78±8 ..................... NORETHANDROLONE. A. W. Tennant, 52±86±8 ..................... HALOPERIDOL. Pharmaceutical Tables 1 and 3 of the Director, Office of Laboratories and Scientific 52±88±0 ..................... ATROPINE METHONITRATE. HTSUS 52±90±4 ..................... CYSTEINE. Services. 53±03±2 ..................... PREDNISONE. 53±06±5 ..................... CORTISONE. AGENCY: Customs Service, Department TABLE 1.ÐPHARMACEUTICAL 53±10±1 ..................... HYDROXYDIONE SODIUM SUCCI- of the Treasury. NATE. APPENDIX TO THE HTSUS 53±16±7 ..................... ESTRONE. ACTION: Listing of the products found in 53±18±9 ..................... BIETASERPINE. Table 1 and Table 3 of the CAS No. Pharmaceutical 53±19±0 ..................... MITOTANE. 53±31±6 ..................... MEDIBAZINE. Pharmaceutical Appendix to the N/A ............................. ACTAGARDIN. 53±33±8 ..................... PARAMETHASONE. Harmonized Tariff Schedule of the N/A ............................. ARDACIN. 53±34±9 ..................... FLUPREDNISOLONE. N/A ............................. BICIROMAB. 53±39±4 ..................... OXANDROLONE. United States of America in Chemical N/A ............................. CELUCLORAL. 53±43±0
    [Show full text]
  • Targeting VGLUT Machinery: Implications on Mglur5 Signaling and Behavior
    Molecular Pharmacology Fast Forward. Published on July 13, 2020 as DOI: 10.1124/molpharm.120.000089 This article has not been copyedited and formatted. The final version may differ from this version. Targeting VGLUT Machinery: Implications on mGluR5 Signaling and Behavior Karim S. Ibrahim1,2,3, Khaled S. Abd-Elrahman1,2,3, Salah El Mestikawy4,5 and Stephen S. G. Ferguson1,2,* 1 University of Ottawa Brain and Mind Institute, 2 Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, K1H 8M5, Canada. 3 Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Downloaded from Alexandria, 21521, Egypt. 4 Neuroscience Paris Seine – Institut de Biologie Paris Seine (NPS–IBPS) INSERM, CNRS, Sorbonne Université, Paris, France. molpharm.aspetjournals.org 5 Department of Psychiatry, Douglas Hospital Research Center, McGill University, Verdun, Quebec, Canada. Abstract: 167 words Introduction: 335 words at ASPET Journals on September 30, 2021 Review Body: 6241 Tables: 1 Figures: 2 Running Title: Crosstalk between VGLUT and mGluR5 *Corresponding author Dr. Stephen S. G. Ferguson Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Dr. Ottawa, Ontario, Canada, K1H 8M5. Tel: (613) 562 5800 Ext 8889. [email protected] 1 Molecular Pharmacology Fast Forward. Published on July 13, 2020 as DOI: 10.1124/molpharm.120.000089 This article has not been copyedited and formatted. The final version may differ from this version. Abstract Crosstalk between both pre- and post-synaptic components of glutamatergic neurotransmission plays a crucial role in orchestrating a multitude of brain functions including synaptic plasticity and motor planning. Metabotropic glutamate receptor 5 (mGluR5) exhibits a promising therapeutic potential for many neurodevelopmental and neurodegenerative disorders, as the consequence of its modulatory control over diverse neuronal networks required for memory, motor coordination, neuronal survival and differentiation.
    [Show full text]