Amargosa Fall 2020 Newsletter
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mammals of the California Desert
MAMMALS OF THE CALIFORNIA DESERT William F. Laudenslayer, Jr. Karen Boyer Buckingham Theodore A. Rado INTRODUCTION I ,+! The desert lands of southern California (Figure 1) support a rich variety of wildlife, of which mammals comprise an important element. Of the 19 living orders of mammals known in the world i- *- loday, nine are represented in the California desert15. Ninety-seven mammal species are known to t ':i he in this area. The southwestern United States has a larger number of mammal subspecies than my other continental area of comparable size (Hall 1981). This high degree of subspeciation, which f I;, ; leads to the development of new species, seems to be due to the great variation in topography, , , elevation, temperature, soils, and isolation caused by natural barriers. The order Rodentia may be k., 2:' , considered the most successful of the mammalian taxa in the desert; it is represented by 48 species Lc - occupying a wide variety of habitats. Bats comprise the second largest contingent of species. Of the 97 mammal species, 48 are found throughout the desert; the remaining 49 occur peripherally, with many restricted to the bordering mountain ranges or the Colorado River Valley. Four of the 97 I ?$ are non-native, having been introduced into the California desert. These are the Virginia opossum, ' >% Rocky Mountain mule deer, horse, and burro. Table 1 lists the desert mammals and their range 1 ;>?-axurrence as well as their current status of endangerment as determined by the U.S. fish and $' Wildlife Service (USWS 1989, 1990) and the California Department of Fish and Game (Calif. -
Recovery Plan for the Amargosa Vole
Recovery Plan for the Amargosa Vole (Microtus californicus scirpensis) ( As the Nation’s principal conservation agency, the ~ Department of the Interior has responsibility for most of our nationally owned public lands and natural resources. This includes fostering the wisest use ofour land and water resources, protecting our fish and wildlife, preserving the environ mental and cultural values of our national parks ~, and historical places, and providing for the enjoyment of life through outdoor recreation. The Department assesses our energyand mineral resourcesand works toassure that ~‘ theirdevelopment is in the best interests ofall our people. ~4 The Department also has a major responsibility for American Indian reservation communities and for people ~<‘ who live in island Territories under U.S. administration. AMARGOSA VOLE (Microtus cahfornicus scirpensis) RECOVERY PLAN September, 1997 7— U.S. Department ofthe Interior Fish and Wildlife Service Region One, Portland, Oregon DISCLAIMER PAGE Recovery plans delineate reasonable actions that are believed to be required to recover and/or protect listed species. Plans are published by the U.S. Fish and Wildlife Service, sometimes prepared with the assistance ofrecovery teams, contractors, State agencies, and others. Objectives will be attained and any necessary funds made available subject to budgetary and other constraints affecting the parties involved, as well as the need to address other priorities. Recovery plans do not necessarily represent the views nor the official positions or approval of any individuals or agencies involved in the plan formulation, other than the U.S. Fish and Wildlife Service. They represent the official position of the U.S. Fish and Wildlife Service only after they have been signed by the Regional Director or Director as approved. -
Survey of Potential Predators of the Endangered Amargosa Vole (Microtus Californicus Scirpensis)
Western Wildlife 6:5–13 • 2019 Submitted: 28 December 2018; Accepted: 26 April 2019. SURVEY OF POTENTIAL PREDATORS OF THE ENDANGERED AMARGOSA VOLE (MICROTUS CALIFORNICUS SCIRPENSIS) AUSTIN N. ROY1,2, DEANA L. CLIFFORD1,2, ANNA D. RIVERA ROY2, ROBERT C. KLINGER3, GRETA M. WENGERT4, AMANDA M. POULSEN2, AND JANET FOLEY2,5 1Wildlife Investigations Lab, California Department of Fish & Wildlife, 1701 Nimbus Road, Rancho Cordova, California 95670 2Department of Veterinary Medicine and Epidemiology, University of California, Davis, California 95616 3Western Ecological Research Center, U.S. Geological Survey, 568 Central Avenue, Bishop, California 93514 4Integral Ecology Research Center, 239 Railroad Avenue, P.O. Box 52, Blue Lake, California 95525 5Corresponding author, email: [email protected] Abstract.—As part of a comprehensive program assessing threats to the persistence of the endangered Amargosa Voles (Microtus californicus scirpensis) in the Mojave Desert of California, we used point counts, owl call surveys, camera- trapping, and scat transects to investigate diversity and activity of potential predators near Tecopa, California, USA. Of 31 predator species within the critical habitat of the vole, the most commonly detected were Coyotes (Canis latrans), Domestic Dogs (C. lupus familiaris), and Great Blue Herons (Ardea herodias). Predator species richness and detections were highest in the northern part of the study site where voles are more abundant. Predator detections were most common in the fall. We observed vole remains in 3.9 % of scat or pellet samples from Coyotes, Bobcats (Lynx rufus), and Great-horned Owls (Bubo virginianus). These data can support management activities and provide needed baseline information for assessment of the impact of predators on Amargosa Voles, including whether over-predation is limiting recovery and whether predators regulate this species. -
Prevalence and Potential Impact Of
PREVALENCE AND POTENTIAL IMPACT OF TOXOPLASMA GONDII ON THE ENDANGERED AMARGOSA VOLE (MICROTUS CALIFORNICUS SCIRPENSIS), CALIFORNIA, USA Authors: Amanda Poulsen, Heather Fritz, Deana L. Clifford, Patricia Conrad, Austin Roy, et. al. Source: Journal of Wildlife Diseases, 53(1) : 62-72 Published By: Wildlife Disease Association URL: https://doi.org/10.7589/2015-12-349 BioOne Complete (complete.BioOne.org) is a full-text database of 200 subscribed and open-access titles in the biological, ecological, and environmental sciences published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Complete website, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/terms-of-use. Usage of BioOne Complete content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Downloaded From: https://bioone.org/journals/Journal-of-Wildlife-Diseases on 16 Sep 2019 Terms of Use: https://bioone.org/terms-of-use Access provided by Universidade de Sao Paulo (USP) DOI: 10.7589/2015-12-349 Journal of Wildlife Diseases, 53(1), 2017, pp. 62–72 Ó Wildlife Disease Association 2017 PREVALENCE AND POTENTIAL IMPACT OF TOXOPLASMA GONDII ON THE ENDANGERED AMARGOSA VOLE (MICROTUS CALIFORNICUS SCIRPENSIS), CALIFORNIA, USA Amanda Poulsen,1,5 Heather Fritz,2,4 Deana L. -
A Transect Across the Death Valley Extended Terrane, California Michael S
JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 107, NO. B1, 2010, 10.1029/2001JB000239, 2002 Assessing vertical axis rotations in large-magnitude extensional settings: A transect across the Death Valley extended terrane, California Michael S. Petronis and John W. Geissman Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, New Mexico, USA Daniel K. Holm Department of Geology, Kent State University, Kent, Ohio, USA Brian Wernicke and Edwin Schauble Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA Received 11 September 2000; revised 7 May 2001; accepted 14 July 2001; published 18 January 2002. [1] Models for Neogene crustal deformation in the central Death Valley extended terrane, southeastern California, differ markedly in their estimates of upper crustal extension versus shear translations. Documentation of vertical axis rotations of range-scale crustal blocks (or parts thereof) is critical when attempting to reconstruct this highly extended region. To better define the magnitude, aerial extent, and timing of vertical axis rotation that could mark shear translation of the crust in this area, paleomagnetic data were obtained from Tertiary igneous and remagnetized Paleozoic carbonate rocks along a roughly east-west traverse parallel to about 36°N latitude. Sites were established in 7 to 5 Ma volcanic sequences (Greenwater Canyon and Brown’s Peak) and the 10 Ma Chocolate Sundae Mountain granite in the Greenwater Range, 8.5 to 7.5 Ma and 5 to 4 Ma basalts on the east flank of the Black Mountains, the 10.6 Ma Little Chief stock and upper Miocene(?) basalts in the eastern Panamint Mountains, and Paleozoic Pogonip Group carbonate strata in the north central Panamint Mountains. -
DOCKETED 1516 Ninth Street 09-RENEW EO-1 Sacramento, CA 95814-5512 TN 75171 [email protected] FEB 23 2015
PO Box 63 Shoshone, CA 92384 760.852.4339 www.amargosaconservancy.org February 23, 2015 California Energy Commission California Energy Commission Dockets Office, MS-4 Docket No. 09-RENEW EO-01 DOCKETED 1516 Ninth Street 09-RENEW EO-1 Sacramento, CA 95814-5512 TN 75171 [email protected] FEB 23 2015 Re: The DRECP and the Amargosa Watershed On behalf of the members and Board of Directors of the Amargosa Conservancy, please accept our comments herein on the Desert Renewable Energy Conservation Plan. Please refer to our second comment letter, dated February 23, 2015, for our comments on National Conservation Lands and Special Recreation Management Areas. Please also refer to the letter from Kevin Emmerich and Laura Cunningham, dated January 30, 2015, which the Amargosa Conservancy is signatory to. This letter details the need for a new program alternative in the DRECP which properly evaluates rooftop solar. To sum the key points of this letter: No groundwater pumping should be permissible in the Amargosa Watershed, including Charleston View, Silurian Valley, and Stewart Valley. Such activities would cause direct mortality of endangered species such as the Amargosa vole. USFWS take permits should be required for any groundwater pumping, and such permits should not be issued given the precarious conservation status of the vole. No mitigation can adequately compensate the ecosystem for the damage done by groundwater withdrawal. Retirement of water rights is not sufficient, and monitoring and triggering schemes are completely inadequate to protect the resources of the Amargosa Wild and Scenic River. Due to numerous biological, cultural, and social resource conflicts, Charleston View is not an appropriate place for utility-scale solar, should not be designated as a Development Focus Area (DFA). -
The California Desert CONSERVATION AREA PLAN 1980 As Amended
the California Desert CONSERVATION AREA PLAN 1980 as amended U.S. DEPARTMENT OF THE INTERIOR BUREAU OF LAND MANAGEMENT U.S. Department of the Interior Bureau of Land Management Desert District Riverside, California the California Desert CONSERVATION AREA PLAN 1980 as Amended IN REPLY REFER TO United States Department of the Interior BUREAU OF LAND MANAGEMENT STATE OFFICE Federal Office Building 2800 Cottage Way Sacramento, California 95825 Dear Reader: Thank you.You and many other interested citizens like you have made this California Desert Conservation Area Plan. It was conceived of your interests and concerns, born into law through your elected representatives, molded by your direct personal involvement, matured and refined through public conflict, interaction, and compromise, and completed as a result of your review, comment and advice. It is a good plan. You have reason to be proud. Perhaps, as individuals, we may say, “This is not exactly the plan I would like,” but together we can say, “This is a plan we can agree on, it is fair, and it is possible.” This is the most important part of all, because this Plan is only a beginning. A plan is a piece of paper-what counts is what happens on the ground. The California Desert Plan encompasses a tremendous area and many different resources and uses. The decisions in the Plan are major and important, but they are only general guides to site—specific actions. The job ahead of us now involves three tasks: —Site-specific plans, such as grazing allotment management plans or vehicle route designation; —On-the-ground actions, such as granting mineral leases, developing water sources for wildlife, building fences for livestock pastures or for protecting petroglyphs; and —Keeping people informed of and involved in putting the Plan to work on the ground, and in changing the Plan to meet future needs. -
Federal Register/Vol. 85, No. 138/Friday, July 17, 2020/Notices
Federal Register / Vol. 85, No. 138 / Friday, July 17, 2020 / Notices 43597 B. Solicitation of Public Comment non-Federal land in California. We have permit application, draft SHA, and the This notice is soliciting comments prepared a draft environmental action draft EAS. statement (EAS) for our preliminary from members of the public and affected Background Information parties concerning the collection of determination that the SHA and permit SHAs are intended to encourage information described in Section A on decision may be eligible for categorical private or other non-Federal property the following: exclusion under the National (1) Whether the proposed collection Environmental Policy Act. We invite the owners to implement beneficial of information is necessary for the public to review and comment on the conservation actions for species listed proper performance of the functions of permit application, draft SHA, and the under the ESA. SHA permit holders are the agency, including whether the draft EAS. assured that they will not be subject to information will have practical utility; DATES: To ensure consideration, please increased property use restrictions as a (2) The accuracy of the agency’s send your written comments on or result of their proactive actions to estimate of the burden of the proposed before August 17, 2020. benefit listed species. Incidental take of collection of information; ADDRESSES: You may view or download listed species is authorized under a (3) Ways to enhance the quality, copies of the draft SHA and draft EAS permit pursuant to the provisions of utility, and clarity of the information to and obtain additional information on section 10(a)(1)(A) of the ESA. -
Biological Goals and Objectives
Appendix C Biological Goals and Objectives Draft DRECP and EIR/EIS APPENDIX C. BIOLOGICAL GOALS AND OBJECTIVES C BIOLOGICAL GOALS AND OBJECTIVES C.1 Process for Developing the Biological Goals and Objectives This section outlines the process for drafting the Biological Goals and Objectives (BGOs) and describes how they inform the conservation strategy for the Desert Renewable Energy Conservation Plan (DRECP or Plan). The conceptual model shown in Exhibit C-1 illustrates the structure of the BGOs used during the planning process. This conceptual model articulates how Plan-wide BGOs and other information (e.g., stressors) contribute to the development of Conservation and Management Actions (CMAs) associated with Covered Activities, which are monitored for effectiveness and adapted as necessary to meet the DRECP Step-Down Biological Objectives. Terms used in Exhibit C-1 are defined in Section C.1.1. Exhibit C-1 Conceptual Model for BGOs Development Appendix C C-1 August 2014 Draft DRECP and EIR/EIS APPENDIX C. BIOLOGICAL GOALS AND OBJECTIVES The BGOs follow the three-tiered approach based on the concepts of scale: landscape, natural community, and species. The following broad biological goals established in the DRECP Planning Agreement guided the development of the BGOs: Provide for the long-term conservation and management of Covered Species within the Plan Area. Preserve, restore, and enhance natural communities and ecosystems that support Covered Species within the Plan Area. The following provides the approach to developing the BGOs. Section C.2 provides the landscape, natural community, and Covered Species BGOs. Specific mapping information used to develop the BGOs is provided in Section C.3. -
Structural Geology of the Montgomery Mountains and the Northern Half of the Nopah and Resting Spring Ranges, Nevada and California
Structural geology of the Montgomery Mountains and the northern half of the Nopah and Resting Spring Ranges, Nevada and California B. C. BURCHFIEL Department of Earth and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 G. S. HAMILL IV Research and Development Company, Box 36506, Houston, Texas 77036 D. E. WILHELMS U.S. Geological Survey. 345 Middlefield Road. Menlo Park. California 94025 ABSTRACT Ranges, for the most part in California. The area lies between the Amargosa and Pahrump Valleys and southwest of the Spring More than 7,500 m of upper Precambrian and Paleozoic sedi- Mountains (Fig. 1). The generalized geologic map of the area mentary rocks in the area of the Montgomery Mountains and the (Fig. 2) is produced from a more detailed map published in the northern half of the Nopah and Resting Spring Ranges represent a Geological Society of America Map and Chart Series (Burchfiel typical Cordilleran miogeosynclinal sequence. During Mesozoic and others, 1982). The detailed map adjoins the western edge of a time, after a period of earlier Mesozoic folding and high-angle map of the Spring Mountains (at the same scale) by Burchfiel and faulting, these rocks were cut by thrust faults that divided the rock others (1974). sequence into four structural units in the Resting Spring Range and R. B. Rowe was the first geologist to make observations in the the Montgomery Mountains. From the top down, the units are: map area, and his rather limited study is reported in the regional (1) the Montgomery thrust plate, (2) the Baxter thrust plate, (3) the compilation of Spurr (1903). -
Amargosa Vole PVA Manuscript
Wildl. Biol. Pract., 2016 June 12(1): 1-11 doi:10.2461/wbp.2016.12.1 ORIGINAL ARTICLE Rapid Assessment and Extinction Prediction using Stochastic Modeling of the Endangered Amargosa Vole J. Foley1,* & P. Foley2 1 School of Veterinary Medicine, Department of Medicine and Epidemiology, University of California, Davis, CA 95616. 2 Department of Biological Sciences, California State University, Sacramento, CA 95819. * Corresponding author email: [email protected]; Phone: 530-754-9740. Keywords Abstract Difusion model; The Amargosa vole, Microtus californicus scirpensis, is an endangered Environmental stochasticity; microtine rodent obligately found in marshes near the Amargosa River, Mojave Desert in California. There are very few data to inform modeling Global climate change; and adaptive management. If interventions are postponed until data are Mojave Desert; available, the vole could go extinct in the interim, making a more fexible Population viability analysis; modeling approach imperative. The voles face threats from environmental Rapid assessment; and demographic stochasticity, Allee efects, inbreeding, genetic drift, Stochastic extinction analysis. intense predation, and disease. The modeling approach used here is based on difusion methods for time series of population size constrained by a carrying capacity, focusing on environmental stochasticity and the probability that the variance in population growth could allow the population to encounter the lower “absorbing” boundary and go extinct. We parameterized the model with Amargosa vole data that stand as Bayesian “priors” for carrying capacity, until more data can be obtained and allow us to refne a more accurate estimate. There are no multiple-year time series data or data for most demographic characteristics of the Amargosa vole, forcing us to look to California vole time series as a Bayesian prior. -
Cambrian and Precambrian Rocks of the Groom District Nevada, Southern Great Basin
Cambrian and Precambrian Rocks of the Groom District Nevada, Southern Great Basin GEOLOGICAL SURVEY BULLETIN 1244-G Prepared on behalf of the U. S. Atomic Energy Commission Cambrian and Precambrian Rocks of the Groom District Nevada, Southern Great Basin By HARLEY BARNES and ROBERT L. CHRISTIANSEN CONTRIBUTIONS TO STRATIGRAPHY GEOLOGICAL SURVEY BULLETIN 1244-G Prepared on behalf of the U. S. Atomic Energy Commission UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1967 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY William T. Pecora, Director For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 - Price 20 cents (paper cover) CONTENTS Page Abstract_______________________________________________ G 1 Introduction. _____________________________________________________ 1 Stratigraphy. _____________________________________________________ 4 Johnnie Formation____________________________________________ 4 Stirling Quartzite._____________________________________________ 4 Wood Canyon Formation_____________________________________ 5 Zabriskie Quartzite-___________________________________________ 10 Carrara Formation____________________________________________ 10 Bonanza King Formation_____________________________________ 12 Nopah Formation.____________________________________________ 13 Correlation.______________________________________________________ 20 References cited.__________________________________________________ 32 ILLUSTRATIONS Page FIGURE 1.