Social Approach and Social Vigilance Are Differentially Regulated by Oxytocin Receptors in the Nucleus Accumbens
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Strategies to Increase ß-Cell Mass Expansion
This electronic thesis or dissertation has been downloaded from the King’s Research Portal at https://kclpure.kcl.ac.uk/portal/ Strategies to increase -cell mass expansion Drynda, Robert Lech Awarding institution: King's College London The copyright of this thesis rests with the author and no quotation from it or information derived from it may be published without proper acknowledgement. END USER LICENCE AGREEMENT Unless another licence is stated on the immediately following page this work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International licence. https://creativecommons.org/licenses/by-nc-nd/4.0/ You are free to copy, distribute and transmit the work Under the following conditions: Attribution: You must attribute the work in the manner specified by the author (but not in any way that suggests that they endorse you or your use of the work). Non Commercial: You may not use this work for commercial purposes. No Derivative Works - You may not alter, transform, or build upon this work. Any of these conditions can be waived if you receive permission from the author. Your fair dealings and other rights are in no way affected by the above. Take down policy If you believe that this document breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 02. Oct. 2021 Strategies to increase β-cell mass expansion A thesis submitted by Robert Drynda For the degree of Doctor of Philosophy from King’s College London Diabetes Research Group Division of Diabetes & Nutritional Sciences Faculty of Life Sciences & Medicine King’s College London 2017 Table of contents Table of contents ................................................................................................. -
(12) Patent Application Publication (10) Pub. No.: US 2010/0311655 A1 Leonard Et Al
US 20100311655A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2010/0311655 A1 Leonard et al. (43) Pub. Date: Dec. 9, 2010 (54) INTRANASAL CARBETOCIN Related U.S. Application Data FORMULATIONS AND METHODS FOR THE TREATMENT OF AUTISM (60) Provisional application No. 60/942,607, filed on Jun. 7, 2007. (75) Inventors: Alexis Kays Leonard, Maple Valley, WA (US); Joshua O. Publication Classification Sestak, Lawrence, KS (US); Henry R. Costantino, Woodinville, WA (51) Int. Cl. (US); Anthony P. Sileno, A638/II (2006.01) Brookhaven Hamlet, NY (US); A6IP 25/22 (2006.01) Lalit Raj Peddakota, San Diego, A6IP 25/24 (2006.01) CA (US); Kayvon Emile Sharghi, A6IP 25/18 (2006.01) Seattle, WA (US); Garland M. (52) U.S. Cl. ....................................................... 514/11.6 Bellamy, Bothell, WA (US); Jason Philip Gesty, Seattle, WA (US) (57) ABSTRACT Correspondence Address: Methods and compositions containing oxytocin oran oxyto Eckman Basu LLP cin analog. Such as carbetocin, are provided for the prevention 2225 E. Bayshore Road, Suite 200 and treatment of autism spectrum disorders, related disorders Palo Alto, CA 94.303-3220 (US) and symptoms of Such disorders. The methods and composi tions of this disclosure are effective in the treatment of social (73) Assignee: MDRNA, INC. Bothell, WA (US) withdrawal, eye contact avoidance, repetitive behaviors, (21) Appl. No.: 12/599,267 anxiety, attention deficit, hyperactivity, depression, loss of speech, Verbal communication difficulties, aversion to touch, (22) PCT Filed: Sep. 28, 2007 visual difficulties, comprehension difficulties, and Sound and light sensitivity. Additional compositions and methods are (86). PCT No.: PCT/US07f79994 provided which employ oxytocin or an oxytocin analog in combination with a secondary or adjunctive therapeutic agent S371 (c)(1), to yield more effective treatment tools against autism spec (2), (4) Date: Jul. -
( 12 ) United States Patent
US009566311B2 (12 ) United States Patent ( 10 ) Patent No. : US 9 , 566 ,311 B2 Siekmann et al. (45 ) Date of Patent: Feb . 14 , 2017 ( 54 ) PHARMACEUTICAL COMPOSITION ( 56 ) References Cited (75 ) Inventors : Britta Siekmann , Lomma ( SE ) ; U . S . PATENT DOCUMENTS Mattias Malm , Copenhagen (DK ) ; 7 ,635 ,473 B2 * 12 /2009 Warne et al. .. .. .. .. 424 / 133 . 1 Anders Nilsson , Copenhagen (DK ) ; 2001/ 0027177 Al 10 / 2001 Woodrow Kazimierz Wisniewski, Copenhagen 2003 /0119728 A1 6 / 2003 Scheidl et al . 2003/ 0138417 A1 7 / 2003 Kaisheva et al. (DK ) 2004/ 0235956 A1 * 11/ 2004 Quay .. .. .. .. .. .. .. 514 /573 ( 73 ) Assignee : Ferring B . V ., Hoofddorp (NL ) FOREIGN PATENT DOCUMENTS ( * ) Notice : Subject to any disclaimer, the term of this EP 0916347 A15 / 1999 patent is extended or adjusted under 35 EP 2174652 A2 4 / 2010 U . S . C . 154 (b ) by 0 days . WO W09501185 * 1 / 1995 A61K 38 / 11 WO W09501185 A11 / 1995 WO 2004062689 AL 7 /2004 ( 21 ) Appl. No. : 13 /824 , 132 WO WO2008042452 A 4 / 2008 WO WO 2008150305 A1 * 12 /2008 A61K 9 /08 ( 22 ) PCT Filed : Sep . 29 , 2011 WO WO2008150305 Al 12 /2008 WO WO2009122285 * 10 / 2009 .. .. CO7K 7 / 16 ( 86 ) PCT No. : PCT/ IB2011 / 002394 WO WO2009122285 A8 12 / 2009 $ 371 ( c ) ( 1 ), OTHER PUBLICATIONS ( 2 ) , ( 4 ) Date : May 3 , 2013 Remington : The Science and Practice of Pharmacy , Alfonso R . (87 ) PCT Pub. No. : W02012 /042371 Gennaro , Ed ., 20th Edition , 2000 , (only pp . 245, 1690 provided herewith ) . * PCT Pub . Date : Apr. 5 , 2012 Product Monograph Duratocin , Ferring Inc . Mar. 29 , 2006 revi sion. * (65 ) Prior Publication Data Hawe et al . -
DURATOCIN® Vial
PRODUCT MONOGRAPH INCLUDING PATIENT MEDICATION INFORMATION PrDURATOCIN® Carbetocin Injection 1 mL vial, 100 mcg / mL Intravenous and intramuscular use Uterotonic Agent Ferring Inc. Date of Initial Approval: 200 Yorkland Boulevard JUN 20, 1997 Suite 500 North York, ON Date of Revision: FEB 21, 2020 M2J 5C1 Submission Control No: 225949 DURATOCIN Page 1 of 25 RECENT MAJOR LABEL CHANGES INDICATIONS FEB 2020 DOSAGE AND ADMINISTRATION FEB 2020 WARNINGS AND PRECAUTIONS, General FEB 2020 TABLE OF CONTENTS RECENT MAJOR LABEL CHANGES ......................................................................................2 TABLE OF CONTENTS ..............................................................................................................2 PART I: HEALTH PROFESSIONAL INFORMATION ............................................................4 1 INDICATIONS....................................................................................................................4 1.1 Pediatrics ....................................................................................................................4 1.2 Geriatrics ....................................................................................................................4 2 CONTRAINDICATIONS ..................................................................................................4 3 DOSAGE AND ADMINISTRATION ...............................................................................4 4 OVERDOSAGE .................................................................................................................5 -
E001466.Full.Pdf
Editorial BMJ Glob Health: first published as 10.1136/bmjgh-2019-001466 on 11 April 2019. Downloaded from WHO recommendations on uterotonics for postpartum haemorrhage prevention: what works, and which one? Joshua P Vogel, 1,2 Myfanwy Williams,3 Ioannis Gallos,4 Fernando Althabe,1 Olufemi T Oladapo1 To cite: Vogel JP, THE GLOBAL BURDEN OF POSTPARTUM trials of tranexamic acid for PPH treatment Williams M, Gallos I, et al. HAEMORRHAGE and a heat-stable formulation of carbetocin WHO recommendations on 6–12 uterotonics for postpartum Obstetric haemorrhage, especially post- for PPH prevention. The increasing haemorrhage prevention: partum haemorrhage (PPH), was responsible number of PPH prevention and management what works, and which for more than a quarter of the estimated 303 options makes it challenging for providers one?BMJ Glob Health 000 maternal deaths that occurred globally in and health system stakeholders to choose 2019;4:e001466. doi:10.1136/ 2015.1 PPH—commonly defined as a blood where and how to invest limited resources in bmjgh-2019-001466 loss of 500 mL or more within 24 hours after order to optimise health outcomes. birth—affects about 6% of all women giving Multiple uterotonics have been eval- Handling editor Seye Abimbola birth.1 Uterine atony is the most common uated for PPH prevention over the past Received 4 February 2019 cause of PPH, but it can also be caused by four decades, including oxytocin receptor Revised 10 March 2019 genital tract trauma, retained placental tissue agonists (oxytocin and carbetocin), prosta- Accepted 16 March 2019 or maternal bleeding disorders. The majority glandin analogues (misoprostol, sulprostone, of women who experience PPH have no iden- carboprost), ergot alkaloids (such as ergo- tifiable risk factor, meaning that PPH preven- metrine/methylergometrine) and combina- tion programmes rely on universal use of PPH tions of these (oxytocin plus ergometrine, © Author(s) (or their prophylaxis for all women in the immediate or oxytocin plus misoprostol). -
(1982), 24(4), 329—337 Pineal Response to Lithium1
Indian J. Psychiat. (1982), 24(4), 329—337 PINEAL RESPONSE TO LITHIUM1 S. PARVATHI DEVI* A. VENKOBA RAO> PINEAL FUNCTION AND BEHAVIOUR—A until Crowther demonstrated from his REVIEW autopsy studies that pineal calcification The pineal gland in ma.i is an active had nothing to do with mental derange endocrine gland throughout life (Wurtman ment. et al., 1964 ; Tapp & Huxley, 1972 ; Interest in the pineal gland lay dormant Cardinali, 1974 ; Reiter et al., 1975 ; Reiter, and the gland was relegated to be a ves- 1978). It elaborates several hormones with tigeal organ until the endocrine nature precise rhythmicity. The chronobiological of the gland was suggested following des aspects of the mammalian pineal gland have criptions of pineal tumours associated with been clearly brought out by Reiler (198!) precocious puberty (Kitay, 1954). The defining the circadian rhythms in indole idea of a special relation of pineal gland to metabolism within the pineal of mammals. mind was revived in reports of experiments The two major classes of pineal hormones— with pineal extracts in the treatment of pineal indoles (melatonin, serotonin and schizophrenia (Becker, 1920 ; Eldered et the tryptophols) and the polypeptides are al., 196U; Kitay & Altschule, 1954). The known to influence several physiological isolation and characterisation of the pineal systems including the central nervous system hormone melatonin was a turning point (Cardinali, 1974 and Anton Tay, 1974). in pineal research (Lerner et al., 1958). The association of pineal gland with be Since then the pineal gland has been a haviour and mental illness can be traced to focus of intense scientific enquiry revealing Alexandrian school of thought (Herophilus it to be an endocrine gland capable of c. -
Oxytocin Carbetocin
CARBETOCIN To prevent life-threatening pregnanCy CompliCations Postpartum haemorrhage (PPH) is commonly defined as a blood loss of at least 500 ml within 24 hours after birth, and affects about 5% of all women giving birth around the world. Globally, nearly one quarter of all maternal deaths are associated with PPH, and in most low-income countries it is the main cause of maternal mortality. The use of good quality prophylactic uterotonics can avoid the majority of PPH-associated complications during the third stage of labor (the time between the birth of the baby and complete expulsion of the placenta). In settings where oxytocin is unavailable or its quality cannot be guaranteed, the use of other injectable uterotonics (carbetocin, or if appropriate ergometrine/methylergometrine, or oxytocin and ergometrine fixed-dose combination) or oral misoprostol is recommended for the prevention of PPH. The use of carbetocin (100 μg, IM/IV) is recommended for the prevention of PPH for all births in contexts where its cost is comparable to other effective uterotonics. Carbetocin is only recommended for the prevention of postpartum hemorrhage and not recommended for other obstetric indications, such as labor induction, labor augmentation or treatment of PPH. OXYTOCIN Mode of Action CARBETOCIN Synthetic cyclic peptide form of the Long-acting synthetic analogue of naturally occurring posterior oxytocin with agonist properties. pituitary hormone. Binds to oxytocin Binds to oxytocin receptors in the receptors in the uterine myometrium, uterine smooth muscle, resulting in stimulating contraction of this rhythmic contractions, increased uterine smooth muscle by increasing frequency of existing contractions, the sodium permeability of uterine and increased uterine tone. -
The Oxytocin/Vasopressin Receptor Family Has at Least Five Members in the Gnathostome Lineage, Including Two Distinct V2 Subtypes
The oxytocin/vasopressin receptor family has at least five members in the gnathostome lineage, including two distinct V2 subtypes General and Comparative Endocrinology 175(1): 135-143 doi:10.1016/j.ygcen.2011.10.011 Accepted October 20, 2011 E-pub October 28, 2012 Published January 1, 2012 Figshare doi:10.6084/m9.figshare.811860. Shared October 1, 2013 Daniel Ocampo Daza*, Michalina Lewicka¹, Dan Larhammar Department of Neuroscience, Science for Life Laboratory, Uppsala Universitet, Box 593, SE-751 24 Uppsala, Sweden * Corresponding author. E-mail address: [email protected] ¹ Current address: Department of Neuroscience, Karolinska Institutet, SE-171 77 Stockholm, Sweden Cite as D. Ocampo Daza, M. Lewicka and D. Larhammar. The oxytocin/vasopressin family has at least five members in the gnathostome lineage, including two distinct V2 subtypes. General and Comparative Endocrinology, 175 (1) (2012) 135-143. This document corresponds to the article as it appeared upon acceptance. You are free to download, print and distribute it for any purposes under a Creative Commons Attribution 3.0 Unported License (http://creativecommons.org/licenses/by/3.0/), provided the original work is cited as specified. Errata: The introduction incorrectly states that “the V2 receptor inhibits adenylyl cyclase, thereby reducing the production of cAMP” on page 3. In fact the V2-type vasopressin receptors stimulate adenylyl cyclase and increase the cytosolic cyclic AMP release, see for instance Schöneberg et al., Molecular aspects of vasopressin receptor function, Advances in experimental medicine and biology 449 (1998) 347–58. This mistake was reported in the proofreading phase of pre-publication, but the correction was not carried to the final version of the article. -
Vasopressin V2 Is a Promiscuous G Protein-Coupled Receptor That Is Biased by Its Peptide Ligands
bioRxiv preprint doi: https://doi.org/10.1101/2021.01.28.427950; this version posted January 28, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Vasopressin V2 is a promiscuous G protein-coupled receptor that is biased by its peptide ligands. Franziska M. Heydenreich1,2,3*, Bianca Plouffe2,4, Aurélien Rizk1, Dalibor Milić1,5, Joris Zhou2, Billy Breton2, Christian Le Gouill2, Asuka Inoue6, Michel Bouvier2,* and Dmitry B. Veprintsev1,7,8,* 1Laboratory of Biomolecular Research, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland and Department of Biology, ETH Zürich, 8093 Zürich, Switzerland 2Department of Biochemistry and Molecular medicine, Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec, Canada 3Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA 4The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, United Kingdom 5Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Campus-Vienna-Biocenter 5, 1030 Vienna, Austria 6Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan. 7Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK. 8Division of Physiology, Pharmacology & Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK. *Correspondence should be addressed to: [email protected], [email protected], [email protected]. -
Effects of Chronic Psychosocial Stress on HPA Axis Functionality in Male C57BL/6 Mice and the Impact of Trait Anxiety on the Individual Stress Vulnerability
Effects of chronic psychosocial stress on HPA axis functionality in male C57BL/6 mice and the impact of trait anxiety on the individual stress vulnerability DISSERTATION ZUR ERLANGUNG DES DOKTORGRADES DER NATURWISSENSCHAFTEN (DR. RER. NAT.) DER FAKULTÄT FÜR BIOLOGIE UND VORKLINISCHE MEDIZIN DER UNIVERSITÄT REGENSBURG vorgelegt von Andrea Monika Füchsl aus Straubing im Jahr 2013 Das Promotionsgesuch wurde eingereicht am: 04.10.2013 Die Arbeit wurde angeleitet von: Prof. Dr. rer. nat. Inga D. Neumann Unterschrift: DISSERTATION Durchgeführt am Institut für Zoologie der Universität Regensburg TABLE OF CONTENTS I Table of Contents Chapter 1 – Introduction 1 Stress ...................................................................................................... 1 1.1 The Stress System ..................................................................................... 1 1.1.2 Sympathetic nervous system (SNS) ..................................................... 2 1.2.2 Hypothalamic-Pituitary-Adrenal (HPA) axis .......................................... 4 1.2 Acute vs. chronic/repeated stress ............................................................. 13 1.3 Psychosocial stress .................................................................................. 18 2 GC Signalling ....................................................................................... 20 2.1 Corticosteroid availability .......................................................................... 20 2.2 Corticosteroid receptor types in the brain ................................................. -
Molecular Basis of Ligand Recognition and Activation of Human V2 Vasopressin Receptor
bioRxiv preprint doi: https://doi.org/10.1101/2021.01.18.427077; this version posted January 18, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Molecular basis of ligand recognition and activation of human V2 vasopressin receptor Fulai Zhou1, 12, Chenyu Ye2, 12, Xiaomin Ma3, 12, Wanchao Yin1, Qingtong Zhou4, Xinheng He1, 5, Xiaokang Zhang6, 7, Tristan I. Croll8, Dehua Yang1, 5, 9, Peiyi Wang3, 10, H. Eric Xu1, 5, 11, Ming-Wei Wang1, 2, 4, 5, 9, 11, Yi Jiang1, 5, 1. The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China 2. School of Pharmacy, Fudan University, Shanghai 201203, China 3. Cryo-EM Centre, Southern University of Science and Technology, Shenzhen 515055, China 4. School of Basic Medical Sciences, Fudan University, Shanghai 200032, China 5. University of Chinese Academy of Sciences, 100049 Beijing, China 6. Interdisciplinary Center for Brain Information, The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences; 7. Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China 8. Cambridge Institute for Medical Research, Department of Haematology, University of Cambridge, Cambridge, UK 9. The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203 Shanghai, China 10. Department of Biology, Southern University of Science and Technology, Shenzhen 515055, China 11. School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China 12. These authors contributed equally: Fulai Zhou, Chenyu Ye, and Xiaomin Ma. -
Tractocile, Atosiban
ANNEX I SUMMARY OF PRODUCT CHARACTERISTICS 1 1. NAME OF THE MEDICINAL PRODUCT Tractocile 6.75 mg/0.9 ml solution for injection 2. QUALITATIVE AND QUANTITATIVE COMPOSITION Each vial of 0.9 ml solution contains 6.75 mg atosiban (as acetate). For a full list of excipients, see section 6.1. 3. PHARMACEUTICAL FORM Solution for injection (injection). Clear, colourless solution without particles. 4. CLINICAL PARTICULARS 4.1 Therapeutic indications Tractocile is indicated to delay imminent pre-term birth in pregnant adult women with: regular uterine contractions of at least 30 seconds duration at a rate of 4 per 30 minutes a cervical dilation of 1 to 3 cm (0-3 for nulliparas) and effacement of 50% a gestational age from 24 until 33 completed weeks a normal foetal heart rate 4.2 Posology and method of administration Posology Treatment with Tractocile should be initiated and maintained by a physician experienced in the treatment of pre-term labour. Tractocile is administered intravenously in three successive stages: an initial bolus dose (6.75 mg), performed with Tractocile 6.75 mg/0.9 ml solution for injection, immediately followed by a continuous high dose infusion (loading infusion 300 micrograms/min) of Tractocile 37.5 mg/5 ml concentrate for solution for infusion during three hours, followed by a lower dose of Tractocile 37.5 mg/5 ml concentrate for solution for infusion (subsequent infusion 100 micrograms/min) up to 45 hours. The duration of the treatment should not exceed 48 hours. The total dose given during a full course of Tractocile therapy should preferably not exceed 330.75 mg of atosiban.