Ubiquitin-Dependent Control of Myogenic Development: Mechanistic Insights Into Getting Huge, and Staying Huge
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Fnip1 Regulates Skeletal Muscle Fiber Type Specification, Fatigue Resistance, and Susceptibility to Muscular Dystrophy
Fnip1 regulates skeletal muscle fiber type specification, fatigue resistance, and susceptibility to muscular dystrophy Nicholas L. Reyesa, Glen B. Banksb, Mark Tsanga, Daciana Margineantuc, Haiwei Gud, Danijel Djukovicd, Jacky Chana, Michelle Torresa, H. Denny Liggitta, Dinesh K. Hirenallur-Sa, David M. Hockenberyc, Daniel Rafteryd,e, and Brian M. Iritania,1 aThe Department of Comparative Medicine, University of Washington, Seattle, WA 98195-7190; bDepartment of Neurology, University of Washington, Seattle, WA 98195; cClinical Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024; dDepartment of Anesthesiology and Pain Medicine, Mitochondria and Metabolism Center, Northwest Metabolomics Research Center, University of Washington, Seattle, WA 98109-8057; and ePublic Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024 Edited* by Robert N. Eisenman, Fred Hutchinson Cancer Research Center, Seattle, WA, and approved December 8, 2014 (received for review July 14, 2014) Mammalian skeletal muscle is broadly characterized by the presence moderate strength and improved resistance to fatigue. Because of two distinct categories of muscle fibers called type I “red” slow slow twitch fibers use predominantly fatty acid oxidation for twitch and type II “white” fast twitch, which display marked differ- energy production, increasing the representation of type I fibers ences in contraction strength, metabolic strategies, and susceptibil- provides increased protection against obesity and related meta- ity to fatigue. The relative representation of each fiber type can bolic disorders including diabetes (2–5). Hence, identifying mol- have major influences on susceptibility to obesity, diabetes, and ecules that regulate fiber type conversion can profoundly impact muscular dystrophies. However, the molecular factors controlling susceptibility to metabolic diseases and can influence the patho- fiber type specification remain incompletely defined. -
Analysis of the Indacaterol-Regulated Transcriptome in Human Airway
Supplemental material to this article can be found at: http://jpet.aspetjournals.org/content/suppl/2018/04/13/jpet.118.249292.DC1 1521-0103/366/1/220–236$35.00 https://doi.org/10.1124/jpet.118.249292 THE JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS J Pharmacol Exp Ther 366:220–236, July 2018 Copyright ª 2018 by The American Society for Pharmacology and Experimental Therapeutics Analysis of the Indacaterol-Regulated Transcriptome in Human Airway Epithelial Cells Implicates Gene Expression Changes in the s Adverse and Therapeutic Effects of b2-Adrenoceptor Agonists Dong Yan, Omar Hamed, Taruna Joshi,1 Mahmoud M. Mostafa, Kyla C. Jamieson, Radhika Joshi, Robert Newton, and Mark A. Giembycz Departments of Physiology and Pharmacology (D.Y., O.H., T.J., K.C.J., R.J., M.A.G.) and Cell Biology and Anatomy (M.M.M., R.N.), Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada Received March 22, 2018; accepted April 11, 2018 Downloaded from ABSTRACT The contribution of gene expression changes to the adverse and activity, and positive regulation of neutrophil chemotaxis. The therapeutic effects of b2-adrenoceptor agonists in asthma was general enriched GO term extracellular space was also associ- investigated using human airway epithelial cells as a therapeu- ated with indacaterol-induced genes, and many of those, in- tically relevant target. Operational model-fitting established that cluding CRISPLD2, DMBT1, GAS1, and SOCS3, have putative jpet.aspetjournals.org the long-acting b2-adrenoceptor agonists (LABA) indacaterol, anti-inflammatory, antibacterial, and/or antiviral activity. Numer- salmeterol, formoterol, and picumeterol were full agonists on ous indacaterol-regulated genes were also induced or repressed BEAS-2B cells transfected with a cAMP-response element in BEAS-2B cells and human primary bronchial epithelial cells by reporter but differed in efficacy (indacaterol $ formoterol . -
Loss of C9orf72 Enhances Autophagic Activity Via Deregulated Mtor and TFEB Signaling
RESEARCH ARTICLE Loss of C9orf72 Enhances Autophagic Activity via Deregulated mTOR and TFEB Signaling Janet Ugolino1☯, Yon Ju Ji1☯, Karen Conchina1, Justin Chu1, Raja Sekhar Nirujogi2, Akhilesh Pandey2, Nathan R. Brady3, Anne Hamacher-Brady3, Jiou Wang1* 1 Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, and Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America, 2 McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America, 3 Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Maryland, United States of America a11111 ☯ These authors contributed equally to this work. * [email protected] Abstract The most common cause of the neurodegenerative diseases amyotrophic lateral sclerosis OPEN ACCESS and frontotemporal dementia is a hexanucleotide repeat expansion in C9orf72. Here we Citation: Ugolino J, Ji YJ, Conchina K, Chu J, report a study of the C9orf72 protein by examining the consequences of loss of C9orf72 Nirujogi RS, Pandey A, et al. (2016) Loss of functions. Deletion of one or both alleles of the C9orf72 gene in mice causes age-dependent C9orf72 Enhances Autophagic Activity via Deregulated mTOR and TFEB Signaling. PLoS lethality phenotypes. We demonstrate that C9orf72 regulates nutrient sensing as the loss of Genet 12(11): e1006443. doi:10.1371/journal. C9orf72 decreases phosphorylation of the mTOR substrate S6K1. The transcription factor pgen.1006443 EB (TFEB), a master regulator of lysosomal and autophagy genes, which is negatively regu- Editor: Gregory A. Cox, The Jackson Laboratory, lated by mTOR, is substantially up-regulated in C9orf72 loss-of-function animal and cellular UNITED STATES models. -
WDR41 Supports Lysosomal Response to Changes in Amino Acid Availability
M BoC | ARTICLE WDR41 supports lysosomal response to changes in amino acid availability Joseph Amick, Arun Kumar Tharkeshwar, Catherine Amaya, and Shawn M. Ferguson* Department of Cell Biology and Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT 06510 ABSTRACT C9orf72 mutations are a major cause of amyotrophic lateral sclerosis and fronto- Monitoring Editor temporal dementia. The C9orf72 protein undergoes regulated recruitment to lysosomes and Francis A. Barr has been broadly implicated in control of lysosome homeostasis. However, although evidence University of Oxford strongly supports an important function for C9orf72 at lysosomes, little is known about the Received: Dec 7, 2017 lysosome recruitment mechanism. In this study, we identify an essential role for WDR41, a Revised: Jun 22, 2018 prominent C9orf72 interacting protein, in C9orf72 lysosome recruitment. Analysis of human Accepted: Jul 2, 2018 WDR41 knockout cells revealed that WDR41 is required for localization of the protein com- plex containing C9orf72 and SMCR8 to lysosomes. Such lysosome localization increases in response to amino acid starvation but is not dependent on either mTORC1 inhibition or au- tophagy induction. Furthermore, WDR41 itself exhibits a parallel pattern of regulated association with lysosomes. This WDR41-dependent recruitment of C9orf72 to lysosomes is critical for the ability of lysosomes to support mTORC1 signaling as constitutive targeting of C9orf72 to lysosomes relieves the requirement for WDR41 in mTORC1 activation. Collectively, this study reveals an essential role for WDR41 in supporting the regulated binding of C9orf72 to lysosomes and solidifies the requirement for a larger C9orf72 containing protein complex in coordinating lysosomal responses to changes in amino acid availability. -
Genome-Wide Expression Profiling Establishes Novel Modulatory Roles
Batra et al. BMC Genomics (2017) 18:252 DOI 10.1186/s12864-017-3635-4 RESEARCHARTICLE Open Access Genome-wide expression profiling establishes novel modulatory roles of vitamin C in THP-1 human monocytic cell line Sakshi Dhingra Batra, Malobi Nandi, Kriti Sikri and Jaya Sivaswami Tyagi* Abstract Background: Vitamin C (vit C) is an essential dietary nutrient, which is a potent antioxidant, a free radical scavenger and functions as a cofactor in many enzymatic reactions. Vit C is also considered to enhance the immune effector function of macrophages, which are regarded to be the first line of defence in response to any pathogen. The THP- 1 cell line is widely used for studying macrophage functions and for analyzing host cell-pathogen interactions. Results: We performed a genome-wide temporal gene expression and functional enrichment analysis of THP-1 cells treated with 100 μM of vit C, a physiologically relevant concentration of the vitamin. Modulatory effects of vitamin C on THP-1 cells were revealed by differential expression of genes starting from 8 h onwards. The number of differentially expressed genes peaked at the earliest time-point i.e. 8 h followed by temporal decline till 96 h. Further, functional enrichment analysis based on statistically stringent criteria revealed a gamut of functional responses, namely, ‘Regulation of gene expression’, ‘Signal transduction’, ‘Cell cycle’, ‘Immune system process’, ‘cAMP metabolic process’, ‘Cholesterol transport’ and ‘Ion homeostasis’. A comparative analysis of vit C-mediated modulation of gene expression data in THP-1cells and human skin fibroblasts disclosed an overlap in certain functional processes such as ‘Regulation of transcription’, ‘Cell cycle’ and ‘Extracellular matrix organization’, and THP-1 specific responses, namely, ‘Regulation of gene expression’ and ‘Ion homeostasis’. -
NRF1) Coordinates Changes in the Transcriptional and Chromatin Landscape Affecting Development and Progression of Invasive Breast Cancer
Florida International University FIU Digital Commons FIU Electronic Theses and Dissertations University Graduate School 11-7-2018 Decipher Mechanisms by which Nuclear Respiratory Factor One (NRF1) Coordinates Changes in the Transcriptional and Chromatin Landscape Affecting Development and Progression of Invasive Breast Cancer Jairo Ramos [email protected] Follow this and additional works at: https://digitalcommons.fiu.edu/etd Part of the Clinical Epidemiology Commons Recommended Citation Ramos, Jairo, "Decipher Mechanisms by which Nuclear Respiratory Factor One (NRF1) Coordinates Changes in the Transcriptional and Chromatin Landscape Affecting Development and Progression of Invasive Breast Cancer" (2018). FIU Electronic Theses and Dissertations. 3872. https://digitalcommons.fiu.edu/etd/3872 This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact [email protected]. FLORIDA INTERNATIONAL UNIVERSITY Miami, Florida DECIPHER MECHANISMS BY WHICH NUCLEAR RESPIRATORY FACTOR ONE (NRF1) COORDINATES CHANGES IN THE TRANSCRIPTIONAL AND CHROMATIN LANDSCAPE AFFECTING DEVELOPMENT AND PROGRESSION OF INVASIVE BREAST CANCER A dissertation submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in PUBLIC HEALTH by Jairo Ramos 2018 To: Dean Tomás R. Guilarte Robert Stempel College of Public Health and Social Work This dissertation, Written by Jairo Ramos, and entitled Decipher Mechanisms by Which Nuclear Respiratory Factor One (NRF1) Coordinates Changes in the Transcriptional and Chromatin Landscape Affecting Development and Progression of Invasive Breast Cancer, having been approved in respect to style and intellectual content, is referred to you for judgment. -
C9orf72 Binds SMCR8, Localizes to Lysosomes and Regulates Mtorc1 Signaling
C9orf72 binds SMCR8, localizes to lysosomes and regulates mTORC1 signaling Joseph Amick1,2, Agnes Roczniak-Ferguson1,2 and Shawn M. Ferguson1,2* Department of Cell Biology1, Program in Cellular Neuroscience, Neurodegeneration and Repair2, Yale University School of Medicine, New Haven, CT, 06510 *To whom correspondence should be addressed e-mail: [email protected] phone: 203-737-5505 fax: 203-737-2065 Running Title: Lysosomal functions for C9orf72 Supplemental Material can be found at: 1 http://www.molbiolcell.org/content/suppl/2016/08/22/mbc.E16-01-0003v1.DC1.html Abstract Hexanucleotide expansion in an intron of the C9orf72 gene causes amyotrophic lateral sclerosis and frontotemporal dementia (ALS-FTD). However, beyond bioinformatics predictions that have suggested structural similarity to folliculin (FLCN), the Birt-Hogg-Dubé syndrome tumor suppressor, little is known about the normal functions of the C9orf72 protein. To address this problem, we used genome editing strategies to investigate C9orf72 interactions, subcellular localization and knockout (KO) phenotypes. We found that C9orf72 robustly interacts with SMCR8 (a protein of previously unknown function). We furthermore observed that C9orf72 localizes to lysosomes and that such localization is negatively regulated by amino acid availability. Analysis of C9orf72 KO, SMCR8 KO and double KO cell lines revealed phenotypes that are consistent with a function for C9orf72 at lysosomes. These include abnormally swollen lysosomes in the absence of C9orf72 as well as impaired responses of mTORC1 signaling to changes in amino acid availability (a lysosome-dependent process) following depletion of either C9orf72 or SMCR8. Collectively, these results identify strong physical and functional interactions between C9orf72 and SMCR8 and furthermore support a lysosomal site-of-action for this protein complex. -
Integrative Analysis of Disease Signatures Shows Inflammation Disrupts Juvenile Experience-Dependent Cortical Plasticity
New Research Development Integrative Analysis of Disease Signatures Shows Inflammation Disrupts Juvenile Experience- Dependent Cortical Plasticity Milo R. Smith1,2,3,4,5,6,7,8, Poromendro Burman1,3,4,5,8, Masato Sadahiro1,3,4,5,6,8, Brian A. Kidd,2,7 Joel T. Dudley,2,7 and Hirofumi Morishita1,3,4,5,8 DOI:http://dx.doi.org/10.1523/ENEURO.0240-16.2016 1Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10029, 2Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, 3Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York 10029, 4Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, 5Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, 6Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, 7Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, and 8Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029 Visual Abstract Throughout childhood and adolescence, periods of heightened neuroplasticity are critical for the development of healthy brain function and behavior. Given the high prevalence of neurodevelopmental disorders, such as autism, identifying disruptors of developmental plasticity represents an essential step for developing strategies for prevention and intervention. Applying a novel computational approach that systematically assessed connections between 436 transcriptional signatures of disease and multiple signatures of neuroplasticity, we identified inflammation as a common pathological process central to a diverse set of diseases predicted to dysregulate Significance Statement During childhood and adolescence, heightened neuroplasticity allows the brain to reorganize and adapt to its environment. -
Folliculin Variants Linked to Birt-Hogg-Dubé Syndrome Are Targeted for Proteasomal Degradation
bioRxiv preprint doi: https://doi.org/10.1101/2020.03.30.015248; this version posted March 31, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Folliculin variants linked to Birt-Hogg-Dubé syndrome are targeted for proteasomal degradation Lene Clausen1, Amelie Stein1,*, Martin Grønbæk-Thygesen1, Lasse Nygaard1, Cecilie L. Søltoft1, Sofie V. Nielsen1, Michael Lisby1, Tommer Ravid2, Kresten Lindorff-Larsen1,* and Rasmus Hartmann-Petersen1,* Running title: Birt-Hogg-Dubé syndrome is a protein misfolding disease Keywords: protein folding, protein quality control, proteasome, ubiquitin, BHD, FLCN 1: The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark. 2: Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel. *Corresponding authors: A.S. ([email protected]), K.L.-L. ([email protected]) and R.H.-P. ([email protected]). 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.03.30.015248; this version posted March 31, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract Germline mutations in the folliculin (FLCN) tumor suppressor gene are linked to Birt-Hogg-Dubé (BHD) syndrome, a dominantly inherited genetic disease characterized by predisposition to fibrofolliculomas, lung cysts, and renal cancer. -
Variation in Protein Coding Genes Identifies Information Flow
bioRxiv preprint doi: https://doi.org/10.1101/679456; this version posted June 21, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Animal complexity and information flow 1 1 2 3 4 5 Variation in protein coding genes identifies information flow as a contributor to 6 animal complexity 7 8 Jack Dean, Daniela Lopes Cardoso and Colin Sharpe* 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Institute of Biological and Biomedical Sciences 25 School of Biological Science 26 University of Portsmouth, 27 Portsmouth, UK 28 PO16 7YH 29 30 * Author for correspondence 31 [email protected] 32 33 Orcid numbers: 34 DLC: 0000-0003-2683-1745 35 CS: 0000-0002-5022-0840 36 37 38 39 40 41 42 43 44 45 46 47 48 49 Abstract bioRxiv preprint doi: https://doi.org/10.1101/679456; this version posted June 21, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Animal complexity and information flow 2 1 Across the metazoans there is a trend towards greater organismal complexity. How 2 complexity is generated, however, is uncertain. Since C.elegans and humans have 3 approximately the same number of genes, the explanation will depend on how genes are 4 used, rather than their absolute number. -
University of Florida Thesis Or Dissertation Formatting
ANIMAL MODELS AND PATHOPHYSIOLOGY OF RAPID-ONSET DYSTONIA- PARKINSONISM AND RESTLESS LEGS SYNDROME By MARK P. DEANDRADE A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2014 © 2014 Mark P. DeAndrade To my parents, Avito and Neola, for their love and support; my brothers, Kevin and James, for their inspiration and motivation to strive for excellence; and in memory of my grandparents Louis and Helena Pereira de Andrade and Michael and Lydia Abreo. ACKNOWLEDGMENTS I would like to thank first and foremost Dr. Yuqing Li and the past and present members of his laboratory, including but not limited to, Dr. Fumiaki Yokoi, Dr. Lin Zhang, Dr. Li Zhang, Chad C. Cheetham, Atbin Doroodchi, Miki Jino, and Kelly Dexter, for all their assistance and guidance. I would like to thank my numerous collaborators who have helped make this work possible. Dr. Thomas van Groen assisted in teaching me how to conduct several of the behavioral experiments in this dissertation, alongside providing the equipment necessary to carry the experiments out. Dr. J. David Sweatt, Dr. Steven N. Roper, and their respective laboratories helped in conducting the electrophysiological experiments. Drs. J. Michael Wyss and Ning Peng helped in the implantation of the biopotential electrodes in the polysomnography and electromyographic studies, and provided the equipment to carry out and analyze the data from these experiments. Dr. Karen L. Gamble provided the wheel running setup used for the Btbd9 knockout animal studies, assisted in analyzing the data from these experiments, and served on my committee when I was a Master degree student at the University of Alabama at Birmingham. -
Genetics of Sleep Section Fred W
Genetics of Sleep Section Fred W. Turek 3 11 Introduction 15 Genetic Basis of Sleep in Healthy 12 Circadian Clock Genes Humans 13 Genetics of Sleep in a Simple Model 16 Genetics of Sleep and Sleep Disorders in Organism: Drosophila Humans 14 Genetic Basis of Sleep in Rodents Chapter Introduction Fred W. Turek 11 The inclusion for the first time of a specific Section on all, of 24-hour behavioral, physiologic, and cellular genetics in Principles and Practice of Sleep Medicine is a her- rhythms of the body. The simplicity and ease of moni- alding event as it signifies that the study of the genetic toring a representative “output rhythm” of the central control of the sleep–wake cycle is becoming an important circadian clock from literally thousands of rodents in a approach for understanding not only the regulatory mech- single laboratory, such as the precise rhythm of wheel anisms underlying the regulation of sleep and wake but running in rodents, was a major factor in uncovering the also for elucidating the function of sleep. Indeed, as genetic molecular transcriptional and translational feedback loops approaches are being used for the study of sleep in diverse that give rise to 24-hour output signals.4,5 There is now species from flies to mice to humans (see Chapters 13 to substantial evidence demonstrating that deletion or muta- 16), the evolutionary significance for the many functions tions in many canonical circadian clock genes can lead of sleep that have evolved over time are becoming a trac- to fundamental changes in other sleep–wake traits includ- table subject for research, as many researchers are bringing ing the amount of sleep and the response to sleep depri- the tools of genetics and genomics to the sleep field.