Welcome to the Ubuntu Server Guide ! Basic Installation Preparing to Install

Total Page:16

File Type:pdf, Size:1020Kb

Welcome to the Ubuntu Server Guide ! Basic Installation Preparing to Install Welcome to the Ubuntu Server Guide! Changes, Errors, and Bugs This is the current edition for Ubuntu 20.04 LTS, Focal Fossa. Ubuntu serverguides for previous LTS versions: 18.04 (PDF), 16.04 (PDF). If you find any errors or have suggestions for improvements to pages, please use the link at thebottomof each topic titled: “Help improve this document in the forum.” This link will take you to the Server Discourse forum for the specific page you are viewing. There you can share your comments or let us know aboutbugs with each page. Offline Download this guide as a PDF Support There are a couple of different ways that Ubuntu Server Edition is supported: commercial support and community support. The main commercial support (and development funding) is available from Canonical, Ltd. They supply reasonably- priced support contracts on a per desktop or per server basis. For more information see the Ubuntu Advantage page. Community support is also provided by dedicated individuals and companies that wish to make Ubuntu the best distribution possible. Support is provided through multiple mailing lists, IRC channels, forums, blogs, wikis, etc. The large amount of information available can be overwhelming, but a good search engine query can usually provide an answer to your questions. See the Ubuntu Support page for more information. Basic installation This chapter provides an overview of installing Ubuntu 20.04 Server Edition. There is more detailed docu- mentation on other installer topics. Preparing to Install This section explains various aspects to consider before starting the installation. System requirements Ubuntu 20.04 Server Edition provides a common, minimalist base for a variety of server applications, such as file/print services, web hosting, email hosting, etc. This version supports four 64-bit architectures: • amd64 (Intel/AMD 64-bit) • arm64 (64-bit ARM) • ppc64el (POWER8 and POWER9) • s390x (IBM Z and LinuxONE) The recommended system requirements are: • CPU: 1 gigahertz or better 1 • RAM: 1 gigabyte or more • Disk: a minimum of 2.5 gigabytes Server and Desktop Differences The Ubuntu Server Edition and the Ubuntu Desktop Edition use the same apt repositories, making it just as easy to install a server application on the Desktop Edition as on the Server Edition. One major difference is that the graphical environment used for the Desktop Edition is not installed for the Server. This includes the graphics server itself, the graphical utilities and applications, and the various user-supporting services needed by desktop users. Backing Up Before installing Ubuntu Server Edition you should make sure all data on the system is backed up. If this is not the first time an operating system has been installed on your computer, it is likely you willneed to re-partition your disk to make room for Ubuntu. Any time you partition your disk, you should be prepared to lose everything on the disk should you make a mistake or something goes wrong during partitioning. The programs used in installation are quite reliable, most have seen years of use, but they also perform destructive actions. Preparing install media There are platform specific step-by-step examples for s390x LPAR, z/VM and ppc64el installations. For amd64, download the install image from https://releases.ubuntu.com/20.04/. There are many ways to boot the installer but the simplest and commonest way is to create a bootable USB stick to boot the system to be installed with (tutorials for other operating systems are also available). Booting the installer Plug the USB stick into the system to be installed and start it. Most computers will automatically boot from USB or DVD, though in some cases this is disabled to improve boot times. If you don’t see the boot message and the “Welcome” screen which should appear after it, you will need to set your computer to boot from the install media. There should be an on-screen message when the computer starts telling you what key to press for settings or a boot menu. Depending on the manufacturer, this could be Escape, F2,F10 or F12. Simply restart your computer and hold down this key until the boot menu appears, then select the drive with the Ubuntu install media. If you are still having problems, check out the Ubuntu Community documentation on booting from CD/DVD. After a few moments, the installer will start in its language selection screen. welcome_c|690x517 2 Using the installer The installer is designed to be easy to use and have sensible defaults so for a first install you can mostly just accept the defaults for the most straightforward install: • Choose your language • Update the installer (if offered) • Select your keyboard layout • Do not configure networking (the installer attempts to configure wired network interfaces viaDHCP, but you can continue without networking if this fails) • Do not configure a proxy or custom mirror unless you have to in your network • For storage, leave “use an entire disk” checked, and choose a disk to install to, then select “Done” on the configuration screen and confirm the install • Enter a username, hostname and password • Just select Done on the SSH and snap screens • You will now see log messages as the install is completed • Select restart when this is complete, and log in using the username and password provided There is more detailed documentation on all these options. Advanced Installation Software RAID Redundant Array of Independent Disks “RAID” is a method of using multiple disks to provide different balances of increasing data reliability and/or increasing input/output performance, depending on the RAID level being used. RAID is implemented in either software (where the operating system knows about both drives and actively maintains both of them) or hardware (where a special controller makes the OS think there’s only one drive and maintains the drives ‘invisibly’). The RAID software included with current versions of Linux (and Ubuntu) is based on the ‘mdadm’ driver and works very well, better even than many so-called ‘hardware’ RAID controllers. This section will guide you through installing Ubuntu Server Edition using two RAID1 partitions on two physical hard drives, one for / and another for swap. RAID Configuration Follow the installation steps until you get to the Guided storage configuration step, then: Select Custom storage layout. Create the /boot partition in a local disk. So select one of the devices listed in available devices and Add GPT Partition. Next, enter the partition size, then choose the desired Format (ext4) and /boot as mount point. And finally, select Create. Now to create the RAID device select Create software RAID (md) under AVAILABLE DEVICES. Add the name of the RAID disk (the default is md0). For this example, select “1 (mirrored)” in RAID level, but if you are using a different setup choose the appropriate type (RAID0 RAID1 RAID5 RAID6 RAID10). Note In order to use RAID5, RAID6 and RAID10 you need more than two drives. Using RAID0 or RAID1 only two drives are required. 3 Select the devices that will be used by this RAID device. The real devices can be marked as active or spare, by default it becomes active when is selected. Select the Size of the RAID device. Select Create. The new RAID device (md0 if you did not change the default) will show up in the available devices list, with software RAID 1 type and the chosen size. Repeat steps above for the other RAID devices. Partitioning Select the RAID 1 device created (md0) then select “Add GPT Partition”. Next, select the Size of the partition. This partition will be the swap partition, and a general rule for swap size is twice that of RAM. Enter the partition size, then choose swap in Format. And finally, select Create. Note A swap partition size of twice the available RAM capacity may not always be desirable, especially on systems with large amounts of RAM. Calculating the swap partition size for servers is highly dependent on how the system is going to be used. For the / partition once again select the RAID 1 device then “Add GPT Partition”. Use the rest of the free space on the device, choose the format (default is ext4) and select / as mount point, then Create. Repeat steps above for the other partitions. Once it is finished select “Done”. The installation process will then continue normally. Degraded RAID At some point in the life of the computer a disk failure event may occur. When this happens, using Software RAID, the operating system will place the array into what is known as a degraded state. If the array has become degraded, due to the chance of data corruption, by default Ubuntu Server Edition will boot to initramfs after thirty seconds. Once the initramfs has booted there is a fifteen second prompt giving you the option to go ahead and boot the system, or attempt manual recover. Booting to the initramfs prompt may or may not be the desired behavior, especially if the machine is in a remote location. Booting to a degraded array can be configured several ways: • The dpkg-reconfigure utility can be used to configure the default behavior, and during the processyou will be queried about additional settings related to the array. Such as monitoring, email alerts, etc. To reconfigure mdadm enter the following: sudo dpkg−reconfigure mdadm • The dpkg−reconfigure mdadm process will change the /etc/initramfs−tools/conf.d/mdadm configura- tion file. The file has the advantage of being able to pre-configure the system’s behavior, andcanalso be manually edited: BOOT_DEGRADED=true 4 Note The configuration file can be overridden by using a Kernel argument.
Recommended publications
  • Trusted Docker Containers and Trusted Vms in Openstack
    Trusted Docker Containers and Trusted VMs in OpenStack Raghu Yeluri Abhishek Gupta Outline o Context: Docker Security – Top Customer Asks o Intel’s Focus: Trusted Docker Containers o Who Verifies Trust ? o Reference Architecture with OpenStack o Demo o Availability o Call to Action Docker Overview in a Slide.. Docker Hub Lightweight, open source engine for creating, deploying containers Provides work flow for running, building and containerizing apps. Separates apps from where they run.; Enables Micro-services; scale by composition. Underlying building blocks: Linux kernel's namespaces (isolation) + cgroups (resource control) + .. Components of Docker Docker Engine – Runtime for running, building Docker containers. Docker Repositories(Hub) - SaaS service for sharing/managing images Docker Images (layers) Images hold Apps. Shareable snapshot of software. Container is a running instance of image. Orchestration: OpenStack, Docker Swarm, Kubernetes, Mesos, Fleet, Project Docker Layers Atomic, Lattice… Docker Security – 5 key Customer Asks 1. How do you know that the Docker Host Integrity is there? o Do you trust the Docker daemon? o Do you trust the Docker host has booted with Integrity? 2. How do you verify Docker Container Integrity o Who wrote the Docker image? Do you trust the image? Did the right Image get launched? 3. Runtime Protection of Docker Engine & Enhanced Isolation o How can Intel help with runtime Integrity? 4. Enterprise Security Features – Compliance, Manageability, Identity authentication.. Etc. 5. OpenStack as a single Control Plane for Trusted VMs and Trusted Docker Containers.. Intel’s Focus: Enable Hardware-based Integrity Assurance for Docker Containers – Trusted Docker Containers Trusted Docker Containers – 3 focus areas o Launch Integrity of Docker Host o Runtime Integrity of Docker Host o Integrity of Docker Images Today’s Focus: Integrity of Docker Host, and how to use it in OpenStack.
    [Show full text]
  • Fully Eliminated the Language Barrier and Enable Ease of Communication Through This Application
    IOSR Journal of Computer Engineering (IOSR-JCE) e-ISSN: 2278-0661, p- ISSN: 2278-8727Volume 16, Issue 2, Ver. XI (Mar-Apr. 2014), PP 113-119 www.iosrjournals.org Alltalk™- A Windows Phone Messenger with Cross Language Communication Shruti Shetye1, Akhil Abraham2, Royston Pinto3, Sonali Vaidya4 1(BE-IT Student, Information Technology, St. FrancisInstitute of Technology, India) 2(BE-IT Student, Information Technology, St. Francis Institute of Technology, India) 3(BE-IT Student, Information Technology, St. Francis Institute of Technology, India 4(Lecturer, Information Technology, St. Francis Institute of Technology, India) __________________________________________________________________________________ Abstract:In day to day life, messengers or chatting applications provide facility for instant messaging over the internet. Exchange of messages takes place in universally used languages like English, French, etc. where both the users know how to communicate in a common language. Thus chatting on mobile phones is a luxury when both the parties involved know a common language. Hence we have implemented ALLTALK™ which is a Windows 8 phone based chatting application which makes cross language communication possible using mobile programming and networking technology.This application will enable the communication between two persons irrespective of the language each user wishes to use individually. The various modes of communication available in this messenger are through text and voice. Due to the best processing power provided among the available smartphones and high battery life we choose to work on windows 8 platform. Thus we have successfully eliminated the language barrier and enable ease of communication through this application. Keywords: Cross Language communication, instant messenger, socket connection, translator,Windows phone app.
    [Show full text]
  • Oracle® Linux 7 Release Notes for Oracle Linux 7.2
    Oracle® Linux 7 Release Notes for Oracle Linux 7.2 E67200-22 March 2021 Oracle Legal Notices Copyright © 2015, 2021 Oracle and/or its affiliates. This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited. The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing. If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then the following notice is applicable: U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any programs embedded, installed or activated on delivered hardware, and modifications of such programs) and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial computer software" or "commercial computer software documentation" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated software, any programs embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the license contained in the applicable contract.
    [Show full text]
  • Providing User Security Guarantees in Public Infrastructure Clouds
    1 Providing User Security Guarantees in Public Infrastructure Clouds Nicolae Paladi, Christian Gehrmann, and Antonis Michalas Abstract—The infrastructure cloud (IaaS) service model offers improved resource flexibility and availability, where tenants – insulated from the minutiae of hardware maintenance – rent computing resources to deploy and operate complex systems. Large-scale services running on IaaS platforms demonstrate the viability of this model; nevertheless, many organizations operating on sensitive data avoid migrating operations to IaaS platforms due to security concerns. In this paper, we describe a framework for data and operation security in IaaS, consisting of protocols for a trusted launch of virtual machines and domain-based storage protection. We continue with an extensive theoretical analysis with proofs about protocol resistance against attacks in the defined threat model. The protocols allow trust to be established by remotely attesting host platform configuration prior to launching guest virtual machines and ensure confidentiality of data in remote storage, with encryption keys maintained outside of the IaaS domain. Presented experimental results demonstrate the validity and efficiency of the proposed protocols. The framework prototype was implemented on a test bed operating a public electronic health record system, showing that the proposed protocols can be integrated into existing cloud environments. Index Terms—Security; Cloud Computing; Storage Protection; Trusted Computing F 1 INTRODUCTION host level. While support data encryption at rest is offered by several cloud providers and can be configured by tenants Cloud computing has progressed from a bold vision to mas- in their VM instances, functionality and migration capabil- sive deployments in various application domains. However, ities of such solutions are severely restricted.
    [Show full text]
  • Chapter 3. Booting Operating Systems
    Chapter 3. Booting Operating Systems Abstract: Chapter 3 provides a complete coverage on operating systems booting. It explains the booting principle and the booting sequence of various kinds of bootable devices. These include booting from floppy disk, hard disk, CDROM and USB drives. Instead of writing a customized booter to boot up only MTX, it shows how to develop booter programs to boot up real operating systems, such as Linux, from a variety of bootable devices. In particular, it shows how to boot up generic Linux bzImage kernels with initial ramdisk support. It is shown that the hard disk and CDROM booters developed in this book are comparable to GRUB and isolinux in performance. In addition, it demonstrates the booter programs by sample systems. 3.1. Booting Booting, which is short for bootstrap, refers to the process of loading an operating system image into computer memory and starting up the operating system. As such, it is the first step to run an operating system. Despite its importance and widespread interests among computer users, the subject of booting is rarely discussed in operating system books. Information on booting are usually scattered and, in most cases, incomplete. A systematic treatment of the booting process has been lacking. The purpose of this chapter is to try to fill this void. In this chapter, we shall discuss the booting principle and show how to write booter programs to boot up real operating systems. As one might expect, the booting process is highly machine dependent. To be more specific, we shall only consider the booting process of Intel x86 based PCs.
    [Show full text]
  • TLS in the Wild: an Internet-Wide Analysis of TLS-Based Protocols for Electronic Communication
    TLS in the wild: An Internet-wide analysis of TLS-based protocols for electronic communication Ralph Holz∗, Johanna Amannz, Olivier Mehaniy, Matthias Wachsx, Mohamed Ali Kaafary ∗University of Sydney, Australia, Email: [email protected] yData61/CSIRO, Sydney, Australia, Email: [email protected] zICSI, Berkeley, USA, Email: [email protected] xTechnical University of Munich, Germany, Email: [email protected] This is a preprint of the camera-ready version to appear at NDSS 2016. Last update: 19 Dec 2015. Abstract—Email and chat still constitute the majority of in 2018 [11]. As for chat, the most widely used standard- electronic communication on the Internet. The standardisation based networks are IRC group chats and the XMPP instant and acceptance of protocols such as SMTP, IMAP, POP3, XMPP, messaging and multi-user conferencing network. and IRC has allowed to deploy servers for email and chat in a decentralised and interoperable fashion. These protocols can be In their early days, email protocols such as SMTP, POP3, secured by providing encryption with TLS—directly or via the and IMAP were designed with no special focus on security. STARTTLS extension. X.509 PKIs and ad hoc methods can be In particular, authentication in SMTP was introduced a while leveraged to authenticate communication peers. However, secure after the protocol’s standardisation, initially as a way to configuration is not straight-forward and many combinations fight spam. User agents started to move towards encryption of encryption and authentication mechanisms lead to insecure deployments and potentially compromise of data in transit. In and authenticated connections gradually, using the then-new this paper, we present the largest study to date that investigates SSL 3 and later the TLS protocols to protect the transport the security of our email and chat infrastructures.
    [Show full text]
  • Linux Boot Loaders Compared
    Linux Boot Loaders Compared L.C. Benschop May 29, 2003 Copyright c 2002, 2003, L.C. Benschop, Eindhoven, The Netherlands. Per- mission is granted to make verbatim copies of this document. This is version 1.1 which has some minor corrections. Contents 1 introduction 2 2 How Boot Loaders Work 3 2.1 What BIOS does for us . 3 2.2 Parts of a boot loader . 6 2.2.1 boot sector program . 6 2.2.2 second stage of boot loader . 7 2.2.3 Boot loader installer . 8 2.3 Loading the operating system . 8 2.3.1 Loading the Linux kernel . 8 2.3.2 Chain loading . 10 2.4 Configuring the boot loader . 10 3 Example Installations 11 3.1 Example root file system and kernel . 11 3.2 Linux Boot Sector . 11 3.3 LILO . 14 3.4 GNU GRUB . 15 3.5 SYSLINUX . 18 3.6 LOADLIN . 19 3.7 Where Can Boot Loaders Live . 21 1 4 RAM Disks 22 4.1 Living without a RAM disk . 22 4.2 RAM disk devices . 23 4.3 Loading a RAM disk at boot time . 24 4.4 The initial RAM disk . 24 5 Making Diskette Images without Diskettes 25 6 Hard Disk Installation 26 7 CD-ROM Installation 29 8 Conclusions 31 1 introduction If you use Linux on a production system, you will only see it a few times a year. If you are a hobbyist who compiles many kernels or who uses many operating systems, you may see it several times per day.
    [Show full text]
  • Dell EMC Poweredge Systems Running Red Hat Enterprise Linux 7 Release Notes Notes, Cautions, and Warnings
    Dell EMC PowerEdge Systems Running Red Hat Enterprise Linux 7 Release Notes Notes, cautions, and warnings NOTE: A NOTE indicates important information that helps you make better use of your product. CAUTION: A CAUTION indicates either potential damage to hardware or loss of data and tells you how to avoid the problem. WARNING: A WARNING indicates a potential for property damage, personal injury, or death. © 2014 - 2019 Dell Inc. or its subsidiaries. All rights reserved. Dell, EMC, and other trademarks are trademarks of Dell Inc. or its subsidiaries. Other trademarks may be trademarks of their respective owners. 2019 - 03 Rev. A15 Contents 1 Overview........................................................................................................................................................6 System configuration requirements................................................................................................................................. 6 Memory......................................................................................................................................................................... 6 Installation and upgrade instructions............................................................................................................................... 6 2 Known issues—To be fixed in future releases.................................................................................................7 Unable to create or modify namespace for NVDIMM..................................................................................................
    [Show full text]
  • NOVA: a Log-Structured File System for Hybrid Volatile/Non
    NOVA: A Log-structured File System for Hybrid Volatile/Non-volatile Main Memories Jian Xu and Steven Swanson, University of California, San Diego https://www.usenix.org/conference/fast16/technical-sessions/presentation/xu This paper is included in the Proceedings of the 14th USENIX Conference on File and Storage Technologies (FAST ’16). February 22–25, 2016 • Santa Clara, CA, USA ISBN 978-1-931971-28-7 Open access to the Proceedings of the 14th USENIX Conference on File and Storage Technologies is sponsored by USENIX NOVA: A Log-structured File System for Hybrid Volatile/Non-volatile Main Memories Jian Xu Steven Swanson University of California, San Diego Abstract Hybrid DRAM/NVMM storage systems present a host of opportunities and challenges for system designers. These sys- Fast non-volatile memories (NVMs) will soon appear on tems need to minimize software overhead if they are to fully the processor memory bus alongside DRAM. The result- exploit NVMM’s high performance and efficiently support ing hybrid memory systems will provide software with sub- more flexible access patterns, and at the same time they must microsecond, high-bandwidth access to persistent data, but provide the strong consistency guarantees that applications managing, accessing, and maintaining consistency for data require and respect the limitations of emerging memories stored in NVM raises a host of challenges. Existing file sys- (e.g., limited program cycles). tems built for spinning or solid-state disks introduce software Conventional file systems are not suitable for hybrid mem- overheads that would obscure the performance that NVMs ory systems because they are built for the performance char- should provide, but proposed file systems for NVMs either in- acteristics of disks (spinning or solid state) and rely on disks’ cur similar overheads or fail to provide the strong consistency consistency guarantees (e.g., that sector updates are atomic) guarantees that applications require.
    [Show full text]
  • Firecracker: Lightweight Virtualization for Serverless Applications
    Firecracker: Lightweight Virtualization for Serverless Applications Alexandru Agache, Marc Brooker, Andreea Florescu, Alexandra Iordache, Anthony Liguori, Rolf Neugebauer, Phil Piwonka, and Diana-Maria Popa, Amazon Web Services https://www.usenix.org/conference/nsdi20/presentation/agache This paper is included in the Proceedings of the 17th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’20) February 25–27, 2020 • Santa Clara, CA, USA 978-1-939133-13-7 Open access to the Proceedings of the 17th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’20) is sponsored by Firecracker: Lightweight Virtualization for Serverless Applications Alexandru Agache Marc Brooker Andreea Florescu Amazon Web Services Amazon Web Services Amazon Web Services Alexandra Iordache Anthony Liguori Rolf Neugebauer Amazon Web Services Amazon Web Services Amazon Web Services Phil Piwonka Diana-Maria Popa Amazon Web Services Amazon Web Services Abstract vantage over traditional server provisioning processes: mul- titenancy allows servers to be shared across a large num- Serverless containers and functions are widely used for de- ber of workloads, and the ability to provision new func- ploying and managing software in the cloud. Their popularity tions and containers in milliseconds allows capacity to be is due to reduced cost of operations, improved utilization of switched between workloads quickly as demand changes. hardware, and faster scaling than traditional deployment meth- Serverless is also attracting the attention of the research com- ods. The economics and scale of serverless applications de- munity [21,26,27,44,47], including work on scaling out video mand that workloads from multiple customers run on the same encoding [13], linear algebra [20, 53] and parallel compila- hardware with minimal overhead, while preserving strong se- tion [12].
    [Show full text]
  • Network Boot and Exotic Root HOWTO
    Network Boot and Exotic Root HOWTO Brieuc Jeunhomme frtest [email protected] Logilab S.A. Revision History Revision 0.3 2002−04−28 Revised by: bej Many feedback inclusions, added links to several projects Revision 0.2.2 2001−12−08 Revised by: dcm Licensed GFDL Revision 0.2.1 2001−05−21 Revised by: logilab Fixed bibliography and artheader Revision 0.2 2001−05−19 Revised by: bej Many improvements and included Ken Yap's feedback. Revision 0.1.1 2001−04−09 Revised by: logilab First public draft. Revision 0.1 2000−12−09 Revised by: bej Initial draft. This document explains how to quickly setup a linux server to provide what diskless linux clients require to get up and running, using an IP network. It includes data and partly rewritten text from the Diskless−HOWTO, the Diskless−root−NFS−HOWTO, the linux kernel documentation, the etherboot project's documentation, the linux terminal server project's homepage, and the author's personal experience, acquired when working for Logilab. Eventually this document may end up deprecating the Diskless−HOWTO and Diskless−root−NFS−HOWTO. Please note that you'll also find useful information in the From−PowerUp−to−bash−prompt−HOWTO and the Thin−Client−HOWTO, and the Claus−Justus Heine's page about NFS swapping. Network Boot and Exotic Root HOWTO Table of Contents 1. Introduction.....................................................................................................................................................1 1.1. What is this all about?.......................................................................................................................1 1.2. Thanks...............................................................................................................................................1 1.3. Diskless booting advocacy................................................................................................................1 1.3.1. Buying is cheaper than building.......................................................................................1 1.3.2.
    [Show full text]
  • Creating Custom Debian Live for USB FD with Encrypted Persistence
    Creating Custom Debian Live for USB FD with Encrypted Persistence INTRO Debian is a free operating system (OS) for your computer. An operating system is the set of basic programs and utilities that make your computer run. Debian provides more than a pure OS: it comes with over 43000 packages, precompiled software bundled up in a nice format for easy installation on your machine. PRE-REQ * Debian distro installed * Free Disk Space (Depends on you) Recommended Free Space >20GB * Internet Connection Fast * USB Flash Drive atleast 4GB Installing Required Softwares on your distro: Open Root Terminal or use sudo: $ sudo apt-get install debootstrap syslinux squashfs-tools genisoimage memtest86+ rsync apt-cacher-ng live-build live-config live-boot live-boot-doc live-config-doc live-manual live-tools live-manual-pdf qemu-kvm qemu-utils virtualbox virtualbox-qt virtualbox-dkms p7zip-full gparted mbr dosfstools parted Configuring APT Proxy Server (to save bandwidth) Start apt-cacher-ng service if not running # service apt-cacher-ng start Edit /etc/apt/sources.list with your favorite text editor. Terminal # nano /etc/apt/sources.list Output: (depends on your APT Mirror configuration) deb http://security.debian.org/ jessie/updates main contrib non-free deb http://http.debian.org/debian jessie main contrib non-free deb http://ftp.debian.org/debian jessie main contrib non-free Add “localhost:3142” : deb http://localhost:3142/security.debian.org/ jessie/updates main contrib non-free deb http://localhost:3142/http.debian.org/debian jessie main contrib non-free deb http://localhost:3142/ftp.debian.org/debian jessie main contrib non-free Press Ctrl + X and Y to save changes Terminal # apt-get update # apt-get upgrade NOTE: BUG in Debian Live.
    [Show full text]