Measuring the Α-Particle Charge Radius with Muonic Helium-4 Ions

Total Page:16

File Type:pdf, Size:1020Kb

Measuring the Α-Particle Charge Radius with Muonic Helium-4 Ions Article Measuring the α-particle charge radius with muonic helium-4 ions https://doi.org/10.1038/s41586-021-03183-1 Julian J. Krauth1,2,12 ✉, Karsten Schuhmann3,4, Marwan Abdou Ahmed5, Fernando D. Amaro6, Pedro Amaro7, François Biraben8, Tzu-Ling Chen9, Daniel S. Covita10, Andreas J. Dax4, Received: 3 July 2020 Marc Diepold1, Luis M. P. Fernandes6, Beatrice Franke1,13, Sandrine Galtier8,14, Accepted: 24 November 2020 Andrea L. Gouvea6, Johannes Götzfried1, Thomas Graf5, Theodor W. Hänsch1,11, Jens Hartmann11, Malte Hildebrandt4, Paul Indelicato8, Lucile Julien8, Klaus Kirch3,4, Published online: 27 January 2021 Andreas Knecht4, Yi-Wei Liu9, Jorge Machado7, Cristina M. B. Monteiro6, Françoise Mulhauser1, Open access Boris Naar4, Tobias Nebel1, François Nez8, Joaquim M. F. dos Santos6, José Paulo Santos7, Csilla I. Szabo8,15, David Taqqu3,4, João F. C. A. Veloso10, Jan Vogelsang1,16, Andreas Voss5, Check for updates Birgit Weichelt5, Randolf Pohl1,2 ✉, Aldo Antognini3,4 ✉ & Franz Kottmann3,4 The energy levels of hydrogen-like atomic systems can be calculated with great precision. Starting from their quantum mechanical solution, they have been refned over the years to include the electron spin, the relativistic and quantum feld efects, and tiny energy shifts related to the complex structure of the nucleus. These energy shifts caused by the nuclear structure are vastly magnifed in hydrogen-like systems formed by a negative muon and a nucleus, so spectroscopy of these muonic ions can be used to investigate the nuclear structure with high precision. Here we present the measurement of two 2S–2P transitions in the muonic helium-4 ion that yields a precise determination of the root-mean-square charge radius of the α particle of 1.67824(83) femtometres. This determination from atomic spectroscopy is in excellent agreement with the value from electron scattering1, but a factor of 4.8 more precise, providing a benchmark for few-nucleon theories, lattice quantum chromodynamics and electron scattering. This agreement also constrains several beyond-standard-model theories proposed to explain the proton-radius puzzle2–5, in line with recent determinations of the proton charge radius6–9, and establishes spectroscopy of light muonic atoms and ions as a precise tool for studies of nuclear properties. The α particle is the nucleus of the helium-4 (4He) atom and it con- In atomic spectroscopy, I = 0 results in the absence of any hyperfine sists of two protons and two neutrons, tightly bound by the strong structure, which simplifies the interpretation of atomic spectra sub- nuclear force. It is one of the most-studied atomic nuclei and its prop- stantially. However, so far, no determination of rα exists from atomic erties are of great importance for understanding the nuclear forces spectroscopy. In fact, so far, the only absolute radii determined by and the development of modern nuclear physics10,11. Its simplicity laser spectroscopy are for the proton and the deuteron7,8,12, because the makes the α particle a favourable target for a variety of precision required combination of sufficiently precise measurements and theory studies: its zero nuclear spin (I = 0) means that it can be described calculations exists only for atomic hydrogen (H) and deuterium (D) by a simple charge distribution, without magnetization distribu- (atomic number Z = 1). For elements with Z > 1, laser spectroscopy has tion, quadrupole or higher moments. In elastic electron scattering, yielded only differences of charge radii within an isotopic chain13–18 by the α particle can thus be described by a single charge-monopole measuring the same atomic transition in various isotopes to eliminate form factor. From the analysis of electron scattering world data, a the common energy shifts related to the interaction among electrons. root-mean-square (r.m.s.) charge radius of the α particle rα = 1.681(4) For the determination of absolute radii from He atoms (three-body fm was extracted1, where the value in brackets indicates the 1σ uncer- system with two electrons), theory is not yet advanced enough19. Suffi- tainty in the last digit(s). ciently precise experiments with the H-like He+ ion, where the two-body 1Max Planck Institute of Quantum Optics, Garching, Germany. 2QUANTUM, Institut für Physik & Exzellenzcluster PRISMA, Johannes Gutenberg-Universität Mainz, Mainz, Germany. 3Institute for Particle Physics and Astrophysics, ETH Zurich, Zurich, Switzerland. 4Paul Scherrer Institute, Villigen, Switzerland. 5Institut für Strahlwerkzeuge, Universität Stuttgart, Stuttgart, Germany. 6LIBPhys-UC, Department of Physics, University of Coimbra, Coimbra, Portugal. 7Laboratory for Instrumentation, Biomedical Engineering and Radiation Physics (LIBPhys-UNL), Department of Physics, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal. 8Laboratoire Kastler Brossel, Sorbonne Université, CNRS, ENS-PSL Research University, Collège de France, Paris, France. 9Physics Department, National Tsing Hua University, Hsincho, Taiwan. 10i3N, Universidade de Aveiro, Aveiro, Portugal. 11Ludwig-Maximilians-Universität, Fakultät für Physik, Munich, Germany. 12Present address: LaserLaB, Department of Physics and Astronomy, Vrije Universiteit, Amsterdam, The Netherlands. 13Present address: TRIUMF, Vancouver, British Columbia, Canada. 14Present address: Institut Lumière Matière, University of Lyon, Université Claude Bernard Lyon 1, CNRS, Villeurbanne, France. 15Present address: Theiss Research, La Jolla, CA, USA. 16Present address: Department of Physics, Lund University, Lund, Sweden. ✉e-mail: [email protected]; [email protected]; [email protected] Nature | Vol 589 | 28 January 2021 | 527 Article 20 cm 2P (P4He)+ 3/2 Setup 2P 1/2 Cavity – Muon detection Q1 P Laser LS Q2 20 m 70 ns, 3.9 mJ Target: Trigger He at 2 mbar 2S1/2 FNS O/2 813 nm, 899 nm Disk laser Disk laser Ti:Sa CW Ti:Sa oscillator amplier oscillator CW seed 8.2 keV 1,030 nm 515 nm FP X-ray SHG O meter 1S1/2 Pump laser Spectroscopy laser Fig. 1 | Energy-level scheme and experimental setup. Left: energy levels of About 1 μs after the trigger, the laser pulse arrives at the target, is coupled into 4 + interest in (μ He) . We drive the 2S → 2P transitions ν1 and ν2 (at wavelengths of the multipass cavity and distributed over the entire muon stop volume 813 nm and 899 nm, respectively) and measure the 8.2-keV Lyman-α X-ray from (hatched area). The pulse is produced by a Ti:Sa oscillator seeded by a the subsequent decay to the 1S1/2 ground state. Indicated are the Lamb shift (LS) continuous-wave (CW) Ti:Sa laser and pumped by a frequency-doubled pulsed 2 and the shift due to the finite nuclear size (FNS), which is proportional to rα. thin-disk laser. The continuous-wave Ti:Sa laser is stabilized to a Fabry–Pérot Right: sketch of the experimental setup (not to scale). On the way to the He (FP) cavity and referenced to a wavemeter. The Lyman-α X-rays are measured target, the muon is detected, thereby triggering the laser system. After the via LAAPDs (not shown) mounted above and below the cavity. SHG, second muon is stopped in 2 mbar of He gas at room temperature, (μ4He)+ is formed. harmonic generation. theory of H is applicable, will soon be available20,21. Thus, the present contribution computed using a state-of-the-art ab initio few-nucleon work, with a muonic ion, provides the first, to our knowledge, deter- approach26. mination of a nuclear charge radius from laser spectroscopy beyond The last term in equation (1) is the sum of the calculated elastic and the proton and the deuteron. the unknown inelastic three-photon exchange (3PE) contributions. The In light muonic atoms and ions, a single muon orbits a bare nucleus. former was used to estimate the latter, considering the cancellation 27 Owing to the large muon mass mμ ≈ 200me, where me denotes the elec- of the two terms observed in muonic deuterium , as detailed in the tron mass, the muon’s Bohr radius is smaller than the electron’s Bohr Methods. We assign to the sum a conservative 100% uncertainty (1σ). orbit in the corresponding H-like ion by a factor of about 200. This The 2P fine structure23 results in a roughly 2003 ≈ 8 million times increased overlap of the Δ=Etheo 146.1828(3)meV muon’s wave function with the nucleus and a correspondingly increased 2P3/21−2P /2 (2) sensitivity to nuclear properties, such as the nuclear charge radius. This finite extension of the nucleus modifies the so-called Lamb shift22, is about half as large as the finite-size effect and can be calculated with which is the energy difference between the 2S1/2 and 2P1/2 states. Here great precision due to the absence of both the hyperfine structure and we present the first measurement of the 2P–2S energy splittings in the leading-order nuclear finite-size effects. the H-like muonic He ion (μ4He)+. Combined with the corresponding The experimental determination of the Lamb shift and the fine theoretical prediction, our measurement yields a precise determina- structure of (μ4He)+ reported here follows the technique of our pre- 2,3,6 tion of the α-particle charge radius rα. vious muonic H and muonic D measurements . About 500 muons The lowest atomic levels in (μ4He)+ are sketched in Fig. 1 (left). The per second from the world’s most intense beam of negative muons at Lamb shift is dominated by pure quantum electrodynamics (QED) ultralow energy (a few kiloelectronvolts) at the πE5 beam line of the effects, in particular, vacuum polarization, which is vastly enhanced Paul Scherrer Institute (Switzerland) are stopped in 2 mbar of He gas in muonic atoms23 (see Methods), but the effect of the finite nuclear at room temperature. The slowing down in the He gas occurs through size amounts to as much as 20% of the total energy splitting.
Recommended publications
  • Appendix 1 Dynamic Polarizability of an Atom
    Appendix 1 Dynamic Polarizability of an Atom Definition of Dynamic Polarizability The dynamic (dipole) polarizability aoðÞis an important spectroscopic characteris- tic of atoms and nanoobjects describing the response to external electromagnetic disturbance in the case that the disturbing field strength is much less than the atomic << 2 5 4 : 9 = electric field strength E Ea ¼ me e h ffi 5 14 Á 10 V cm, and the electromag- netic wave length is much more than the atom size. From the mathematical point of view dynamic polarizability in the general case is the tensor of the second order aij connecting the dipole moment d induced in the electron core of a particle and the strength of the external electric field E (at the frequency o): X diðÞ¼o aijðÞo EjðÞo : (A.1) j For spherically symmetrical systems the polarizability aij is reduced to a scalar: aijðÞ¼o aoðÞdij; (A.2) where dij is the Kronnecker symbol equal to one if the indices have the same values and to zero if not. Then the Eq. A.1 takes the simple form: dðÞ¼o aoðÞEðÞo : (A.3) The polarizability of atoms defines the dielectric permittivity of a medium eoðÞ according to the Clausius-Mossotti equation: eoðÞÀ1 4 ¼ p n aoðÞ; (A.4) eoðÞþ2 3 a V. Astapenko, Polarization Bremsstrahlung on Atoms, Plasmas, Nanostructures 347 and Solids, Springer Series on Atomic, Optical, and Plasma Physics 72, DOI 10.1007/978-3-642-34082-6, # Springer-Verlag Berlin Heidelberg 2013 348 Appendix 1 Dynamic Polarizability of an Atom where na is the concentration of substance atoms.
    [Show full text]
  • THE STRONG INTERACTION by J
    MISN-0-280 THE STRONG INTERACTION by J. R. Christman 1. Abstract . 1 2. Readings . 1 THE STRONG INTERACTION 3. Description a. General E®ects, Range, Lifetimes, Conserved Quantities . 1 b. Hadron Exchange: Exchanged Mass & Interaction Time . 1 s 0 c. Charge Exchange . 2 d L u 4. Hadron States a. Virtual Particles: Necessity, Examples . 3 - s u - S d e b. Open- and Closed-Channel States . 3 d n c. Comparison of Virtual and Real Decays . 4 d e 5. Resonance Particles L0 a. Particles as Resonances . .4 b. Overview of Resonance Particles . .5 - c. Resonance-Particle Symbols . 6 - _ e S p p- _ 6. Particle Names n T Y n e a. Baryon Names; , . 6 b. Meson Names; G-Parity, T , Y . 6 c. Evolution of Names . .7 d. The Berkeley Particle Data Group Hadron Tables . 7 7. Hadron Structure a. All Hadrons: Possible Exchange Particles . 8 b. The Excited State Hypothesis . 8 c. Quarks as Hadron Constituents . 8 Acknowledgments. .8 Project PHYSNET·Physics Bldg.·Michigan State University·East Lansing, MI 1 2 ID Sheet: MISN-0-280 THIS IS A DEVELOPMENTAL-STAGE PUBLICATION Title: The Strong Interaction OF PROJECT PHYSNET Author: J. R. Christman, Dept. of Physical Science, U. S. Coast Guard The goal of our project is to assist a network of educators and scientists in Academy, New London, CT transferring physics from one person to another. We support manuscript Version: 11/8/2001 Evaluation: Stage B1 processing and distribution, along with communication and information systems. We also work with employers to identify basic scienti¯c skills Length: 2 hr; 12 pages as well as physics topics that are needed in science and technology.
    [Show full text]
  • The MUSE Experiment and the Proton Radius
    Introduction Resolutions to the Puzzle MUSE - MUon Scattering Experiment The MUSE experiment and the Proton Radius Cristina Collicott SPIN 2016 Cristina Collicott SPIN 2016 1/17 Introduction Resolutions to the Puzzle MUSE - MUon Scattering Experiment The Proton Radius Puzzle How big is the proton? Easy question to ask, not so easy to answer! Currently an unanswered problem in physics Cristina Collicott SPIN 2016 2/17 Introduction Resolutions to the Puzzle MUSE - MUon Scattering Experiment The Proton Radius Puzzle What is the proton radius puzzle? The proton charge radius, measured via muonic hydrogen spectroscopy, is 4% smaller than results from hydrogen spectroscopy and elastic electron proton scattering experiments. Cristina Collicott SPIN 2016 3/17 Introduction Resolutions to the Puzzle MUSE - MUon Scattering Experiment The Proton Radius Puzzle - scattering Rosenbluth scattering: 2 2 2 2 dσ dσ GE (Q )+ xGM (Q ) 2 2 2 θ = + 2xGM (Q ) tan dΩ dΩ (point.) 1 + x 2 Sach's form factors (F1,F2 Dirac and Pauli FFs) 2 2 2 GE (Q ) = F1(Q ) − xF2(Q ) 2 2 2 GE (Q ) = F1(Q ) − xF2(Q ) hq 2 x = 2Mc Cristina Collicott SPIN 2016 4/17 Introduction Resolutions to the Puzzle MUSE - MUon Scattering Experiment The Proton Radius Puzzle - scattering Rosenbluth scattering: 2 2 2 2 dσ dσ GE (Q )+ xGM (Q ) 2 2 2 θ = + 2xGM (Q ) tan dΩ dΩ (point.) 1 + x 2 Derivative in the Q2 ! 0 limit 2 2 dGE (Q ) < rE >= −6 2 dQ Q2!0 We expect identical results for hq 2 experiments with ep and µp x = 2Mc scattering..
    [Show full text]
  • Arxiv:2103.17101V1 [Physics.Hist-Ph] 29 Mar 2021 1/2 1/2 Are Equal, While That of 2P3/2 Is Higher by About 40 Μev; This Is the fine Structure (FS), Fig
    April 1, 2021 0:46 WSPC Proceedings - 9in x 6in protonr page 1 1 THE QUEST FOR THE PROTON CHARGE RADIUS ISTVAN´ ANGELI Institute of Experimental Physics, University of Debrecen, Hungary A slight anomaly in optical spectra of the hydrogen atom led Willis E. Lamb to the search for the proton size. As a result, he found the shift of the 2S1/2 level, the first experimental demonstration of quantum electrodynamics (QED). In return, a modern test of QED yielded a new value of the charge radius of the proton. This sounds like Baron M¨unchausen's tale: to pull oneself out from the marsh by seizing his own hair. An independent method was necessary. Muonic hydrogen spectroscopy came to the aid. However, the high-precision result significantly differed from the previous { electronic { values: this is (was?) the proton radius puzzle (2010-2020?). This puzzle produced a decade-long activity both in experimental work and in theory. Even if the puzzle seems to be solved, the precise determination of the proton charge radius requires further efforts in the future. 1. The Dirac equation; anomalies in hydrogen spectra (1928{1938) In 1928, P.A.M. Dirac published his relativistic wave equation implying two important consequences: (1) The electron has an intrinsic magnetic dipole moment µe = 1 × µB (µB: Bohr magneton) in agreement with the experiment (1925: George Uhlenbeck, Samuel Goudsmit). (2) If in the hydrogen atom the electron moves in the field of a Coulomb potential V (r) ∼ 1=r, then its energy E(n; j) is determined by the principal quantum number n and the total angular momentum quan- tum number j, but not by the orbital angular momentum l and spin s, separately.
    [Show full text]
  • The Proton Radius Puzzle Μ
    The proton radius puzzle µ A. Antognini Paul Scherrer Institute ETH, Zurich Switzerland CREMA collaboration Laser spectroscopy of muonic atoms µ 2P 2S-2P Laser excitation Energy 2S 1S μ • 2S-2P p From 2S-2P • 2S-2P μd ꔄ charge radii • 2S-2P μ3He, μ4He Aldo Antognini Rencontres de Moriond 19.03.2017 2 Three ways to the proton radius p p e- H 2 e- µ- e--p scattering H spectroscopy µp spectroscopy 6.7 σ CODATA-2010 µp 2013 scatt. JLab µp 2010 scatt. Mainz H spectroscopy 0.82 0.83 0.84 0.85 0.86 0.87 0.88 0.89 0.9 Proton charge radius [fm] Pohl et al., Nature 466, 213 (2010) Antognini et al., Science 339, 417 (2013) Pohl et al., Science 353, 669 (2016) Aldo Antognini Rencontres de Moriond 19.03.2017 3 Extracting the proton radius from 훍p Measure 2S-2P splitting (20 ppm) 8.4 meV 2P F=2 and compare with theory 3/2 F=1 2P1/2 F=1 → proton radius F=0 ∆Eth . − . r2 . 2P −2S = 206 0336(15) 5 2275(10) p +00332(20) [meV] 206 meV 50 THz 6 µm fin. size: 3.8 meV F=1 2π(Zα) 2 2 2S ∆Esize = r |Ψnl(0)| 1/2 m ≈ 200m 3 p 23 meV µ e 4 2(Zα) 3 2 F=0 3 m r δl = 3n r p 0 Aldo Antognini Rencontres de Moriond 19.03.2017 4 Principle of the µp 2S-2P experiment Produce many µ− at keV energy − Form µp by stopping µ in 1 mbar H2 gas Fire laser to induce the 2S-2P transition Measure the 2 keV X-rays from 2P-1S decay µp formation Laser excitation Plot number of X-rays vs laser frequency ] n~14 2 P -4 7 Laser 6 1 % 99 % 2 S 5 2 P 4 2 S 3 2 keV 2 keV γ γ 2 delayed / prompt events [10 1 0 1 S 49.75 49.8 49.85 49.9 49.95 1 S laser frequency [THz] Aldo Antognini Rencontres de Moriond 19.03.2017 5 The setup at the Paul Scherrer Institute Aldo Antognini Rencontres de Moriond 19.03.2017 6 The first 훍p resonance (2010) Discrepancy: 5.0 σ ↔ 75 GHz ↔ δν/ν =1.5 × 10−3 ] -4 7 CODATA-06 our value 6 e-p scattering H2O 5 calib.
    [Show full text]
  • Charge Radius of the Short-Lived Ni68 and Correlation with The
    PHYSICAL REVIEW LETTERS 124, 132502 (2020) Charge Radius of the Short-Lived 68Ni and Correlation with the Dipole Polarizability † S. Kaufmann,1 J. Simonis,2 S. Bacca,2,3 J. Billowes,4 M. L. Bissell,4 K. Blaum ,5 B. Cheal,6 R. F. Garcia Ruiz,4,7, W. Gins,8 C. Gorges,1 G. Hagen,9 H. Heylen,5,7 A. Kanellakopoulos ,8 S. Malbrunot-Ettenauer,7 M. Miorelli,10 R. Neugart,5,11 ‡ G. Neyens ,7,8 W. Nörtershäuser ,1,* R. Sánchez ,12 S. Sailer,13 A. Schwenk,1,5,14 T. Ratajczyk,1 L. V. Rodríguez,15, L. Wehner,16 C. Wraith,6 L. Xie,4 Z. Y. Xu,8 X. F. Yang,8,17 and D. T. Yordanov15 1Institut für Kernphysik, Technische Universität Darmstadt, D-64289 Darmstadt, Germany 2Institut für Kernphysik and PRISMA+ Cluster of Excellence, Johannes Gutenberg-Universität Mainz, D-55128 Mainz, Germany 3Helmholtz Institute Mainz, GSI Helmholtzzentrum für Schwerionenforschung GmbH, D-64291 Darmstadt, Germany 4School of Physics and Astronomy, The University of Manchester, Manchester, M13 9PL, United Kingdom 5Max-Planck-Institut für Kernphysik, D-69117 Heidelberg, Germany 6Oliver Lodge Laboratory, Oxford Street, University of Liverpool, Liverpool L69 7ZE, United Kingdom 7Experimental Physics Department, CERN, CH-1211 Geneva 23, Switzerland 8KU Leuven, Instituut voor Kern- en Stralingsfysica, B-3001 Leuven, Belgium 9Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA and Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA 10TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia, V6T 2A3, Canada 11Institut
    [Show full text]
  • The Proton Radius Puzzle-Why We All Should Care
    SNSN-323-63 September 27, 2018 The Proton Radius Puzzle- Why We All Should Care Gerald A. Miller1 Physics Department, University of Washington, Seattle, Washington 98195-1560, USA The status of the proton radius puzzle (as of the date of the Confer- ence) is reviewed. The most likely potential theoretical and experimental explanations are discussed. Either the electronic hydrogen experiments were not sufficiently accurate to measure the proton radius, the two- photon exchange effect was not properly accounted for, or there is some kind of new physics. I expect that upcoming experiments will resolve this issue within the next year or so. PRESENTED AT Conference on the Intersections between particle and nuclear physics, arXiv:1809.09635v1 [physics.atom-ph] 25 Sep 2018 Indian Wells, USA, May 29{ June 3, 2018 1This work was supported by the U. S. Department of Energy Office of Science, Office of Nuclear Physics under Award Number DE-FG02-97ER-41014,. This title is chosen because understanding of the proton radius puzzle requires knowledge of atomic, nuclear and particle physics. The puzzle began with the pub- lication of the results of the 2010 muon-hydrogen experiment in 2010 [1] and its confirmation [2]. The proton radius (r2 = 1=6G0 (Q2 = 0) was measured to be p − E rp = 0:84184(67) fm, which contrasted with the value obtained from electron spec- troscopy rp = 0:8768(69) fm. This difference of about 4% has become known as the proton radius puzzle [3]. We use the technical terms: the radius 0.87 fm is denoted as large, and the one of 0.84 fm as small.
    [Show full text]
  • Muonic Atoms and Radii of the Lightest Nuclei
    Muonic atoms and radii of the lightest nuclei Randolf Pohl Uni Mainz MPQ Garching Tihany 10 June 2019 Outline ● Muonic hydrogen, deuterium and the Proton Radius Puzzle New results from H spectroscopy, e-p scattering ● Muonic helium-3 and -4 Charge radii and the isotope shift ● Muonic present: HFS in μH, μ3He 10x better (magnetic) Zemach radii ● Muonic future: muonic Li, Be 10-100x better charge radii ● Ongoing: Triton charge radius from atomic T(1S-2S) 400fold improved triton charge radius Nuclear rms charge radii from measurements with electrons values in fm * elastic electron scattering * H/D: laser spectroscopy and QED (a lot!) * He, Li, …. isotope shift for charge radius differences * for medium-high Z (C and above): muonic x-ray spectroscopy sources: * p,d: CODATA-2014 * t: Amroun et al. (Saclay) , NPA 579, 596 (1994) * 3,4He: Sick, J.Phys.Chem.Ref Data 44, 031213 (2015) * Angeli, At. Data Nucl. Data Tab. 99, 69 (2013) The “Proton Radius Puzzle” Measuring Rp using electrons: 0.88 fm ( +- 0.7%) using muons: 0.84 fm ( +- 0.05%) 0.84 fm 0.88 fm 5 μd 2016 CODATA-2014 4 μp 2013 5.6 σ 3 e-p scatt. μp 2010 2 H spectroscopy 1 0.83 0.84 0.85 0.86 0.87 0.88 0.89 0.9 Proton charge radius R [fm] ch μd 2016: RP et al (CREMA Coll.) Science 353, 669 (2016) μp 2013: A. Antognini, RP et al (CREMA Coll.) Science 339, 417 (2013) The “Proton Radius Puzzle” Measuring Rp using electrons: 0.88 fm ( +- 0.7%) using muons: 0.84 fm ( +- 0.05%) 0.84 fm 0.88 fm 5 μd 2016 CODATA-2014 4 μp 2013 5.6 σ 3 e-p scatt.
    [Show full text]
  • The Proton Radius Puzzle and the Electro-Strong Interaction
    The Proton Radius Puzzle and the Electro-Strong Interaction The resolution of the Proton Radius Puzzle is the diffraction pattern, giving another wavelength in case of muonic hydrogen oscillation for the proton than it is in case of normal hydrogen because of the different mass rate. Taking into account the Planck Distribution Law of the electromagnetic oscillators, we can explain the electron/proton mass rate and the Weak and Strong Interactions. Lattice QCD gives the same results as the diffraction patterns of the electromagnetic oscillators, explaining the color confinement and the asymptotic freedom of the Strong Interactions. Contents Preface ................................................................................................................................... 2 The Proton Radius Puzzle ......................................................................................................... 2 Asymmetry in the interference occurrences of oscillators ............................................................ 2 Spontaneously broken symmetry in the Planck distribution law .................................................... 4 The structure of the proton ...................................................................................................... 6 The weak interaction ............................................................................................................... 6 The Strong Interaction - QCD .................................................................................................... 7 Confinement
    [Show full text]
  • The MITP Proton Radius Puzzle Workshop
    Report on The MITP Proton Radius Puzzle Workshop June 2–6, 2014 in Waldthausen Castle, Mainz, Germany 1 Description of the Workshop The organizers of the workshop were: • Carl Carlson, William & Mary, [email protected] • Richard Hill, University of Chicago, [email protected] • Savely Karshenboim, MPI fur¨ Quantenoptik & Pulkovo Observatory, [email protected] • Marc Vanderhaeghen, Universitat¨ Mainz, [email protected] The web page of the workshop, which contains all talks, can be found at https://indico.mitp.uni-mainz.de/conferenceDisplay.py?confId=14 . The size of the proton is one of the most fundamental observables in hadron physics. It is measured through an electromagnetic form factor. The latter is directly related to the distribution of charge and magnetization of the baryon and through such imaging provides the basis of nearly all studies of the hadron structure. In very recent years, a very precise knowledge of nucleon form factors has become more and more im- portant as input for precision experiments in several fields of physics. Well known examples are the hydrogen Lamb shift and the hydrogen hyperfine splitting. The atomic physics measurements of energy level splittings reach an impressive accuracy of up to 13 significant digits. Its theoretical understanding however is far less accurate, being at the part-per-million level (ppm). The main theoretical uncertainty lies in proton structure corrections, which limits the search for new physics in these kinds of experiment. In this context, the recent PSI measurement of the proton charge radius from the Lamb shift in muonic hydrogen has given a value that is a startling 4%, or 5 standard deviations, lower than the values ob- tained from energy level shifts in electronic hydrogen and from electron-proton scattering experiments, see figure below.
    [Show full text]
  • Charm Meson Molecules and the X(3872)
    Charm Meson Molecules and the X(3872) DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Masaoki Kusunoki, B.S. ***** The Ohio State University 2005 Dissertation Committee: Approved by Professor Eric Braaten, Adviser Professor Richard J. Furnstahl Adviser Professor Junko Shigemitsu Graduate Program in Professor Brian L. Winer Physics Abstract The recently discovered resonance X(3872) is interpreted as a loosely-bound S- wave charm meson molecule whose constituents are a superposition of the charm mesons D0D¯ ¤0 and D¤0D¯ 0. The unnaturally small binding energy of the molecule implies that it has some universal properties that depend only on its binding energy and its width. The existence of such a small energy scale motivates the separation of scales that leads to factorization formulas for production rates and decay rates of the X(3872). Factorization formulas are applied to predict that the line shape of the X(3872) differs significantly from that of a Breit-Wigner resonance and that there should be a peak in the invariant mass distribution for B ! D0D¯ ¤0K near the D0D¯ ¤0 threshold. An analysis of data by the Babar collaboration on B ! D(¤)D¯ (¤)K is used to predict that the decay B0 ! XK0 should be suppressed compared to B+ ! XK+. The differential decay rates of the X(3872) into J=Ã and light hadrons are also calculated up to multiplicative constants. If the X(3872) is indeed an S-wave charm meson molecule, it will provide a beautiful example of the predictive power of universality.
    [Show full text]
  • Coupled Electricity and Magnetism: Multiferroics and Beyond
    Coupled electricity and magnetism: multiferroics and beyond Daniel Khomskii Cologne University, Germany JMMM 306, 1 (2006) Physics (Trends) 2, 20 (2009) Degrees of freedom charge Charge ordering Ferroelectricity Qαβ ρ(r) (monopole) P or D (dipole) (quadrupole) Spin Orbital ordering Magnetic ordering Lattice Maxwell's equations Magnetoelectric effect In Cr2O3 inversion is broken --- it is linear magnetoelectric In Fe2O3 – inversion is not broken, it is not ME (but it has weak ferromagnetism) Magnetoelectric coefficient αij can have both symmetric and antisymmetric parts Pi = αij Hi ; Symmetric: Then along main axes P║H , M║E For antisymmetric tensor αij one can introduce a dual vector T is the toroidal moment (both P and T-odd). Then P ┴ H, M ┴ E, P = [T x H], M = - [T x E] For localized spins For example, toroidal moment exists in magnetic vortex Coupling of electric polarization to magnetism Time reversal symmetry P → +P t → −t M → −M Inversion symmetry E ∝ αHE P → −P r → −r M → +M MULTIFERROICS Materials combining ferroelectricity, (ferro)magnetism and (ferro)elasticity If successful – a lot of possible applications (e.g. electrically controlling magnetic memory, etc) Field active in 60-th – 70-th, mostly in the Soviet Union Revival of the interest starting from ~2000 • Perovskites: either – or; why? • The ways out: Type-I multiferroics: Independent FE and magnetic subsystems 1) “Mixed” systems 2) Lone pairs 3) “Geometric” FE 4) FE due to charge ordering Type-II multiferroics:FE due to magnetic ordering 1) Magnetic spirals (spin-orbit interaction) 2) Exchange striction mechanism 3) Electronic mechanism Two general sets of problems: Phenomenological treatment of coupling of M and P; symmetry requirements, etc.
    [Show full text]