Planetary Accretion in the Inner Solar System

Total Page:16

File Type:pdf, Size:1020Kb

Planetary Accretion in the Inner Solar System Earth and Planetary Science Letters 223 (2004) 241–252 www.elsevier.com/locate/epsl Frontiers Planetary accretion in the inner Solar System John E. Chambers* Department of Terrestrial Magnetism, Carnegie Institution of Washington, 5241 Broad Branch Road N.W., Washington, DC 20015, USA Received 15 December 2003; received in revised form 23 April 2004; accepted 27 April 2004 Available online 4 June 2004 Abstract Unlike gas-giant planets, we lack examples of terrestrial planets orbiting other Sun-like stars to help us understand how they formed. We can draw hints from elsewhere though. Astronomical observations of young stars; the chemical and isotopic compositions of Earth, Mars and meteorites; and the structure of the Solar System all provide clues to how the inner rocky planets formed. These data have inspired and helped to refine a widely accepted model for terrestrial planet formation—the planetesimal hypothesis. In this model, the young Sun is surrounded by a disk of gas and fine dust grains. Grains stick together to form mountain-size bodies called planetesimals. Collisions and gravitational interactions between planetesimals combine to produce a few tens of Moon-to-Mars-size planetary embryos in roughly 0.1–1 million years. Finally, the embryos collide to form the planets in 10–100 million years. One of these late collisions probably led to the formation of Earth’s Moon. This basic sequence of events is clear, but a number of issues are unresolved. In particular, we do not really understand the physics of planetesimal formation, or how the planets came to have their present chemical compositions. We do not know why Mars is so much smaller than Earth, or exactly what prevented a planet from forming in the asteroid belt. Progress is being made in all of these areas, although definitive answers may have to wait for observations of Earth-like planets orbiting other stars. D 2004 Elsevier B.V. All rights reserved. Keywords: earth; terrestrial planets; asteroids; accretion; solar nebula 1. Introduction planets. This is in a most unfamiliar place: orbiting a pulsar, the extinct remnant of a supernova explosion We are witnessing a revolution in planetary science. [1]. Remarkably, the pulsar planets bear a striking The discovery of about a hundred other planetary resemblance to the inner planets of the Solar System systems has provided a wealth of new information to in terms of their orbits and masses, although they may afieldthatwaspreviouslyfocussedononlyone. have originated under very different conditions. Cur- However, the new planets are probably all gas giants, rently, we lack a way to detect terrestrial planets in orbit akin to Jupiter and Saturn, so they tell us relatively little around ordinary stars [2], so we have almost no notion about the nature and origin of small, rocky planets like of how common or otherwise Earth-like planets may Earth. We know of only one other system of terrestrial be. As tantalizing as the new planetary discoveries are, we must look elsewhere for clues to the origin of the * SETI Institute, 2035 Landings Drive, Mountain View, CA Sun’s terrestrial planets. 94043, USA. Tel.: +1-650-604-5514; fax: +1-650-604-6779. Astronomical observations of newborn stars show E-mail address: [email protected] (J.E. Chambers). that many are surrounded by a disk-shaped region of 0012-821X/$ - see front matter D 2004 Elsevier B.V. All rights reserved. doi:10.1016/j.epsl.2004.04.031 242 J.E. Chambers / Earth and Planetary Science Letters 223 (2004) 241–252 gas clouded with fine dust [3]. The disks generally have up the rock, metal and ice that resides in the planets, radii at least as large as the Sun’s planetary system, and and adding enough hydrogen and helium to give a contain at least as much mass as our planets. These composition similar to the Sun. This minimum mass observations, together with the planar geometry of the nebula contains a few percent of a solar mass—a Solar System, and the fact that the Sun’s planets all number that fits snugly within the range of values orbit in the same direction, suggest the planets formed estimated for circumstellar disks. However, this ma- in a similar disk environment. This is often called the terial did not quietly metamorphose into the planets protoplanetary disk or protoplanetary nebula. If this we see today. Most of the gas has gone, somewhere. disk had the same composition as the Sun, roughly Some of the dust has disappeared too, or at least it has 0.5% of the mass in Earth’s locale would have existed moved around a great deal. The giant planets probably in solid grains of rock and metal. The remaining 99.5% contain tens of Earth masses of rocky and icy mate- would have been gas: hydrogen, helium and volatile rial, while the vast expanse of the asteroid belt, materials such as water and carbon monoxide. Since between 2 and 4 astronomical units (AU) from the Earth is made almost entirely of rock and metal, it is Sun, has only enough stuff to make a planet 1% the clear that planet formation in the inner Solar System mass of Mercury. Just as curiously, 90% of the total was a sideshow compared to the evolution of the more mass of the inner Solar System now resides in a massive protoplanetary nebula itself, although the narrow strip between 0.7 and 1 AU. conventional viewpoint is just the opposite. Much of what we know about the early history of Interestingly, most known giant planets orbit stars the Solar System comes from studying primitive (the Sun included) that contain above average meteorites. These rocks come from asteroids that amounts of dust-forming elements such as iron [4]. never became hot enough to melt. Thus, primitive One way to interpret this correlation is that giant meteorites and their parent bodies act as a kind of planets form most readily where solid materials are archaeological site, preserving the detritus formed in abundant. The same may be true of rocky planets. It is the first few million years of the Solar System. Most also apparent that planet formation is an inefficient primitive meteorites are composed largely of chon- process, because even stars with dust-poor disks drules—beads of rock typically about 1 mm in size. contain enough material to form a respectable system The composition and texture of most chondrules of planets. Stars older than a few million years (Myr) suggests they were once balls of dust floating in apparently lack massive gas-rich disks [5]. If massive the solar nebula that were strongly heated and cooled disks are essential in order to generate planets then over the space of a few hours [9]. The heating melted planet formation must begin within a few million the chondrules but was not sufficiently protracted to years. Some older stars possess tenuous disks con- allow all the more volatile elements such as sulfur to taining some dust but apparently little gas [6,7]. Dust escape. Particular types of meteorite contain chon- in these systems should be ground down to small sizes drules with distinctive sizes and compositions. This and pushed out of the system on time scales of 104 – may mean that chondrules formed in small regions of 106 years by the gentle but insistent pressure of light the protoplanetary nebula in a series of separate from the star itself [8]. This may be second-generation events. Theories abound for the origin of chondrules dust formed by high speed collisions between solid [9]. Models in which dust is melted by shock waves bodies orbiting these stars or dust evaporating from in the nebula are currently in vogue [10,11], although the surface of comets [8]. If so, this suggests that dust the source of these shock waves is unclear. Chon- is able to accumulate into large solid bodies in a drule formation may be intimately tied to other variety of protoplanetary disks. events in the Solar System. In particular, shock driven chondrule formation could require the early formation of Jupiter [11,12]. A small fraction of 2. Physical and cosmochemical constraints chondrules appear to have formed as a result of impacts on asteroids [13], which implies that large We can make a crude estimate of the minimum bodies had already accreted by the time these chon- mass of the Sun’s protoplanetary nebula by totalling drules formed. J.E. Chambers / Earth and Planetary Science Letters 223 (2004) 241–252 243 Primitive meteorites also contain refractory com- the decay of U isotopes to Pb, and also the short-lived ponents, similar in size to chondrules. These calcium isotope 182Hf, which decays to 182W with a half-life of aluminium rich inclusions (CAIs) are a minor com- 9 Myr. These isotope systems are useful because the ponent of meteorites, and their origin is even more parent nuclei are lithophile (silicate loving) while the enigmatic than that of chondrules. They are important daughter isotopes are more siderophile. Assuming core here because their age places timing constraints on formation happened continuously and that accretion planet formation. The relative ages of CAIs and tailed off roughly exponentially over time, the lead chondrules can be estimated from the abundances of isotopes indicate that Earth accreted/differentiated with the decay products of short-lived isotopes. Particularly a mean life of 15–40 Myr [22]. Somewhat confusing- useful are, 41Ca, 26Al and 53Mn, with half lives of 0.1, ly, the Hf–W isotopes provide a shorter mean life of 0.7 and 3.7 Myr respectively [14]. The absolute ages about 11 Myr [23].
Recommended publications
  • Exploring Exoplanet Populations with NASA's Kepler Mission
    SPECIAL FEATURE: PERSPECTIVE PERSPECTIVE SPECIAL FEATURE: Exploring exoplanet populations with NASA’s Kepler Mission Natalie M. Batalha1 National Aeronautics and Space Administration Ames Research Center, Moffett Field, 94035 CA Edited by Adam S. Burrows, Princeton University, Princeton, NJ, and accepted by the Editorial Board June 3, 2014 (received for review January 15, 2014) The Kepler Mission is exploring the diversity of planets and planetary systems. Its legacy will be a catalog of discoveries sufficient for computing planet occurrence rates as a function of size, orbital period, star type, and insolation flux.The mission has made significant progress toward achieving that goal. Over 3,500 transiting exoplanets have been identified from the analysis of the first 3 y of data, 100 planets of which are in the habitable zone. The catalog has a high reliability rate (85–90% averaged over the period/radius plane), which is improving as follow-up observations continue. Dynamical (e.g., velocimetry and transit timing) and statistical methods have confirmed and characterized hundreds of planets over a large range of sizes and compositions for both single- and multiple-star systems. Population studies suggest that planets abound in our galaxy and that small planets are particularly frequent. Here, I report on the progress Kepler has made measuring the prevalence of exoplanets orbiting within one astronomical unit of their host stars in support of the National Aeronautics and Space Admin- istration’s long-term goal of finding habitable environments beyond the solar system. planet detection | transit photometry Searching for evidence of life beyond Earth is the Sun would produce an 84-ppm signal Translating Kepler’s discovery catalog into one of the primary goals of science agencies lasting ∼13 h.
    [Show full text]
  • Formation of TRAPPIST-1
    EPSC Abstracts Vol. 11, EPSC2017-265, 2017 European Planetary Science Congress 2017 EEuropeaPn PlanetarSy Science CCongress c Author(s) 2017 Formation of TRAPPIST-1 C.W Ormel, B. Liu and D. Schoonenberg University of Amsterdam, The Netherlands ([email protected]) Abstract start to drift by aerodynamical drag. However, this growth+drift occurs in an inside-out fashion, which We present a model for the formation of the recently- does not result in strong particle pileups needed to discovered TRAPPIST-1 planetary system. In our sce- trigger planetesimal formation by, e.g., the streaming nario planets form in the interior regions, by accre- instability [3]. (a) We propose that the H2O iceline (r 0.1 au for TRAPPIST-1) is the place where tion of mm to cm-size particles (pebbles) that drifted ice ≈ the local solids-to-gas ratio can reach 1, either by from the outer disk. This scenario has several ad- ∼ vantages: it connects to the observation that disks are condensation of the vapor [9] or by pileup of ice-free made up of pebbles, it is efficient, it explains why the (silicate) grains [2, 8]. Under these conditions plan- TRAPPIST-1 planets are Earth mass, and it provides etary embryos can form. (b) Due to type I migration, ∼ a rationale for the system’s architecture. embryos cross the iceline and enter the ice-free region. (c) There, silicate pebbles are smaller because of col- lisional fragmentation. Nevertheless, pebble accretion 1. Introduction remains efficient and growth is fast [6]. (d) At approx- TRAPPIST-1 is an M8 main-sequence star located at a imately Earth masses embryos reach their pebble iso- distance of 12 pc.
    [Show full text]
  • Water, Habitability, and Detectability Steve Desch
    Water, Habitability, and Detectability Steve Desch PI, “Exoplanetary Ecosystems” NExSS team School of Earth and Space Exploration, Arizona State University with Ariel Anbar, Tessa Fisher, Steven Glaser, Hilairy Hartnett, Stephen Kane, Susanne Neuer, Cayman Unterborn, Sara Walker, Misha Zolotov Astrobiology Science Strategy NAS Committee, Beckmann Center, Irvine, CA (remotely), January 17, 2018 How to look for life on (Earth-like) exoplanets: find oxygen in their atmospheres How Earth-like must an exoplanet be for this to work? Seager et al. (2013) How to look for life on (Earth-like) exoplanets: find oxygen in their atmospheres Oxygen on Earth overwhelmingly produced by photosynthesizing life, which taps Sun’s energy and yields large disequilibrium signature. Caveats: Earth had life for billions of years without O2 in its atmosphere. First photosynthesis to evolve on Earth was anoxygenic. Many ‘false positives’ recognized because O2 has abiotic sources, esp. photolysis (Luger & Barnes 2014; Harman et al. 2015; Meadows 2017). These caveats seem like exceptions to the ‘rule’ that ‘oxygen = life’. How non-Earth-like can an exoplanet be (especially with respect to water content) before oxygen is no longer a biosignature? Part 1: How much water can terrestrial planets form with? Part 2: Are Aqua Planets or Water Worlds habitable? Can we detect life on them? Part 3: How should we look for life on exoplanets? Part 1: How much water can terrestrial planets form with? Theory says: up to hundreds of oceans’ worth of water Trappist-1 system suggests hundreds of oceans, especially around M stars Many (most?) planets may be Aqua Planets or Water Worlds How much water can terrestrial planets form with? Earth- “snow line” Standard Sun distance models of distance accretion suggest abundant water.
    [Show full text]
  • Formation of the Solar System (Chapter 8)
    Formation of the Solar System (Chapter 8) Based on Chapter 8 • This material will be useful for understanding Chapters 9, 10, 11, 12, 13, and 14 on “Formation of the solar system”, “Planetary geology”, “Planetary atmospheres”, “Jovian planet systems”, “Remnants of ice and rock”, “Extrasolar planets” and “The Sun: Our Star” • Chapters 2, 3, 4, and 7 on “The orbits of the planets”, “Why does Earth go around the Sun?”, “Momentum, energy, and matter”, and “Our planetary system” will be useful for understanding this chapter Goals for Learning • Where did the solar system come from? • How did planetesimals form? • How did planets form? Patterns in the Solar System • Patterns of motion (orbits and rotations) • Two types of planets: Small, rocky inner planets and large, gas outer planets • Many small asteroids and comets whose orbits and compositions are similar • Exceptions to these patterns, such as Earth’s large moon and Uranus’s sideways tilt Help from Other Stars • Use observations of the formation of other stars to improve our theory for the formation of our solar system • Use this theory to make predictions about the formation of other planetary systems Nebular Theory of Solar System Formation • A cloud of gas, the “solar nebula”, collapses inwards under its own weight • Cloud heats up, spins faster, gets flatter (disk) as a central star forms • Gas cools and some materials condense as solid particles that collide, stick together, and grow larger Where does a cloud of gas come from? • Big Bang -> Hydrogen and Helium • First stars use this
    [Show full text]
  • University of Groningen Evaluating Galactic Habitability Using High
    University of Groningen Evaluating galactic habitability using high-resolution cosmological simulations of galaxy formation Forgan, Duncan; Dayal, Pratika; Cockell, Charles; Libeskind, Noam Published in: International Journal of Astrobiology DOI: 10.1017/S1473550415000518 IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Final author's version (accepted by publisher, after peer review) Publication date: 2017 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Forgan, D., Dayal, P., Cockell, C., & Libeskind, N. (2017). Evaluating galactic habitability using high- resolution cosmological simulations of galaxy formation. International Journal of Astrobiology, 16(1), 60–73. https://doi.org/10.1017/S1473550415000518 Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne- amendment. Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal.
    [Show full text]
  • Kuchner, M. & Seager, S., Extrasolar Carbon Planets, Arxiv:Astro-Ph
    Extrasolar Carbon Planets Marc J. Kuchner1 Princeton University Department of Astrophysical Sciences Peyton Hall, Princeton, NJ 08544 S. Seager Carnegie Institution of Washington, 5241 Broad Branch Rd. NW, Washington DC 20015 [email protected] ABSTRACT We suggest that some extrasolar planets . 60 ML will form substantially from silicon carbide and other carbon compounds. Pulsar planets and low-mass white dwarf planets are especially good candidate members of this new class of planets, but these objects could also conceivably form around stars like the Sun. This planet-formation pathway requires only a factor of two local enhancement of the protoplanetary disk’s C/O ratio above solar, a condition that pileups of carbonaceous grains may create in ordinary protoplanetary disks. Hot, Neptune- mass carbon planets should show a significant paucity of water vapor in their spectra compared to hot planets with solar abundances. Cooler, less massive carbon planets may show hydrocarbon-rich spectra and tar-covered surfaces. The high sublimation temperatures of diamond, SiC, and other carbon compounds could protect these planets from carbon depletion at high temperatures. arXiv:astro-ph/0504214v2 2 May 2005 Subject headings: astrobiology — planets and satellites, individual (Mercury, Jupiter) — planetary systems: formation — pulsars, individual (PSR 1257+12) — white dwarfs 1. INTRODUCTION The recent discoveries of Neptune-mass extrasolar planets by the radial velocity method (Santos et al. 2004; McArthur et al. 2004; Butler et al. 2004) and the rapid development 1Hubble Fellow –2– of new technologies to study the compositions of low-mass extrasolar planets (see, e.g., the review by Kuchner & Spergel 2003) have compelled several authors to consider planets with chemistries unlike those found in the solar system (Stevenson 2004) such as water planets (Kuchner 2003; Leger et al.
    [Show full text]
  • Why Should We Care About TRAPPIST-1?
    PUBLISHED: 27 MARCH 2017 | VOLUME: 1 | ARTICLE NUMBER: 0104 news & views EXOPLANETS Why should we care about TRAPPIST-1? The discovery of a system of six (possibly system we’ve found with terrestrial planets seven) terrestrial planets around the tightly packed together and in resonance. TRAPPIST-1 star, announced in a paper Their orbits are also all co-planar, as the by Michaël Gillon and collaborators image shows, and luckily for us this orbital (Nature 542, 456–460; 2017) attracted a plane passes through the line of sight great deal of attention from researchers between us and TRAPPIST-1: all these as well as the general public. Reactions planets are ‘transiting’. This is much more ranged from the enthusiastic — already than a simple technical detail, as it allows us hypothesizing a string of inhabited to characterize all their atmospheres — an planets — to those who felt that it essential step to understand their climate didn’t add anything substantial to our and propensity for habitability. current knowledge of exoplanets and Finally and maybe most importantly, was ultimately not worth the hype. The these planets are distributed over all of cover of the Nature issue hosting the the three zones related to different phases paper (pictured), made by Robert Hurt, (IPAC) HURT NASA/JPL-CALTECH/ROBERT of water, as cleverly represented by the a visualization scientist at Caltech, is a illustration. However, this information, fine piece of artwork, but it also helps us They can thus be called ‘terrestrial’ without linked to the concept of habitable or in assessing the actual relevance of the any qualms about terminology.
    [Show full text]
  • 1 Towards a Molecular Inventory of Protostellar
    TOWARDS A MOLECULAR INVENTORY OF PROTOSTELLAR DISCS Glenn J White (1), Mark A. Thompson (1), C.V. Malcolm Fridlund (2), Monica Huldtgren White (3) (1) University of Kent, UK, [email protected] (2) ESTEC, NL, (3) Stockholm Observatory, Sweden Abstract solid, atomic and ionised material in the pre- planetary environment. The chemical environment in circumstellar discs is a unique diagnostic of the thermal, physical and Details of the survey chemical environment. In this paper we examine the structure of star formation regions giving rise to low We are carrying out a survey of nearby star mass stars, and the chemical environment inside formation regions to them, and the circumstellar discs around the developing stars. • Search in the optical/IR region for triggered/induced solar-type star formation. Introduction We measure the boundary conditions, such as external pressure of ionised gas that Life develops from a sequence of organic chemical triggering the star formation using radio processes that develop sufficient complexity to lead observations, and from molecular line to mutating and self-replicating sentient organisms. tracers, estimate the internal pressure in the Cellular structures, formed following selective molecular gas. evolution along the Tree of Life, emerged from the • Characterise the properties of the central reactions amongst these simple organic compounds, protostellar core and protostellar discs at which were derived from cosmically abundant submm, mid and near-IR wavelengths, by elements and molecules that are abundant in space. measuring the spectral energy distributions Much of this early chemical inventory was delivered and the atomic and molecular inventory of a to the surfaces of planets, including the Earth, during sample of circumstellar discs the early phase of massive cometary bombardment of • Measure the chemical inventory of gas- the earth - e.g.
    [Show full text]
  • Observing Dust Grain Growth and Sedimentation in Circumstellar Discs Interpretations and Predictions of Their Observable Quantities in a Multi-Wavelength Approach
    Observing dust grain growth and sedimentation in circumstellar discs Interpretations and predictions of their observable quantities in a multi-wavelength approach Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftliche Fakult¨at der Christian-Albrechts Universit¨atzu Kiel vorgelegt von J¨urgenSauter Kiel, 2011 Referent : Prof. Dr. S. Wolf Koreferent: Prof. Dr. C. Dullemond Tag der m¨undlichen Pr¨ufung: 7. Juli 2011 Zum Druck genehmigt: 7. Juli 2011 gez. Prof. Dr. L. Kipp, Dekan To my growing family Abstract In the present thesis, the observational effects of dust grain growth and sedimentation in circumstellar discs are investigated. The growth of dust grains from some nanometres in diameter as found in the inter- stellar medium towards planetesimal bodies some meters in diameter is an important step in the formation of planets. However, this process is currently not entirely un- derstood. Especially, in the literature several `barriers' are discussed that apparently prohibit an effective growth of dust grains. Hence, it is of particular interest to compare theories and observational data in this respect. State-of-the-art radiative transfer techniques allow one to derive observable quantities from theoretical models that allow this comparison. In this thesis, generic tracers of dust grain growth in spatially high resolution multi-wavelength images are identified for the first time. Further, a possibility to detect a dust trapping mechanism for dust grains by local pressure maxima using the new interferometer, ALMA, is established. By fitting parametric models to new observations of the disc in the Bok globule CB 26, unexpected features of the system are revealed, such as a large inner void and the possibility to interpret the data without the need for grain growth.
    [Show full text]
  • The Planetary Luminosity Problem:" Missing Planets" and The
    Draft version March 27, 2020 Typeset using LATEX twocolumn style in AASTeX62 The Planetary Luminosity Problem: \Missing Planets" and the Observational Consequences of Episodic Accretion Sean D. Brittain,1, ∗ Joan R. Najita,2 Ruobing Dong,3 and Zhaohuan Zhu4 1Clemson University 118 Kinard Laboratory Clemson, SC 29634, USA 2National Optical Astronomical Observatory 950 North Cherry Avenue Tucson, AZ 85719, USA 3Department of Physics & Astronomy University of Victoria Victoria BC V8P 1A1, Canada 4Department of Physics and Astronomy University of Nevada, Las Vegas 4505 S. Maryland Pkwy. Las Vegas, NV 89154, USA (Received March 27, 2020; Revised TBD; Accepted TBD) Submitted to ApJ ABSTRACT The high occurrence rates of spiral arms and large central clearings in protoplanetary disks, if interpreted as signposts of giant planets, indicate that gas giants form commonly as companions to young stars (< few Myr) at orbital separations of 10{300 au. However, attempts to directly image this giant planet population as companions to more mature stars (> 10 Myr) have yielded few successes. This discrepancy could be explained if most giant planets form \cold start," i.e., by radiating away much of their formation energy as they assemble their mass, rendering them faint enough to elude detection at later times. In that case, giant planets should be bright at early times, during their accretion phase, and yet forming planets are detected only rarely through direct imaging techniques. Here we explore the possibility that the low detection rate of accreting planets is the result of episodic accretion through a circumplanetary disk. We also explore the possibility that the companion orbiting the Herbig Ae star HD 142527 may be a giant planet undergoing such an accretion outburst.
    [Show full text]
  • Strong Accretion on a Deuterium-Burning Brown Dwarf? F
    Astronomy & Astrophysics manuscript no. GY11* c ESO 2010 June 27, 2010 Strong accretion on a deuterium-burning brown dwarf? F. Comeron´ 1, L. Testi1, and A. Natta2 1 ESO, Karl-Schwarzschild-Strasse 2, D-85748 Garching bei Munchen,¨ Germany e-mail: [email protected] 2 Osservatorio Astrofisico di Arcetri, INAF, Largo E. Fermi 5, I-50125 Firenze, Italy Received ; accepted ABSTRACT Context. The accretion processes that accompany the earliest stages of star formation have been shown in recent years to extend to masses well below the substellar limit, and even to masses close to the deuterium-burning limit, suggesting that the features characteristic of the T Tauri phase are also common to brown dwarfs. Aims. We discuss new observations of GY 11, a young brown dwarf in the ρ Ophiuchi embedded cluster. Methods. We have obtained for the first time low resolution long-slit spectroscopy of GY 11 in the red visible region, using the FORS1 instrument at the VLT. The spectral region includes accretion diagnostic lines such as Hα and the CaII infrared triplet. Results. The visible spectrum allows us to confirm that GY 11 lies well below the hydrogen-burning limit, in agreement with earlier findings based on the near-infrared spectral energy distribution. We obtain an improved derivation of its physical parameters, which −3 suggest that GY 11 is on or near the deuterium-burning phase. We estimate a mass of 30 MJup, a luminosity of 6 × 10 M , and a temperature of 2700 K. We detect strong Hα and CaII triplet emission, and we estimate from the latter an accretion rate M˙ acc = −10 −1 9:5 × 10 M yr , which places GY 11 among the objects with the largest M˙ acc=M∗ ratios measured thus far in their mass range.
    [Show full text]
  • Lecture 32 Planetary Accretion –
    Lecture 32 Planetary Accretion – Growth and Differentiation of Planet Earth Reading this week: White Ch 11 (sections 11.1 -11.4) Today – Guest Lecturer, Greg Ravizza 1. Earth Accretion 2. Core Formation – to be continued in Friday’s lecture Next time The core continued, plus, the origin of the moon GG325 L32, F2013 Growth and Differentiation of Planet Earth Last lecture we looked at Boundary Conditions for earth's early history as a prelude to deducing a likely sequence of events for planetary accretion. Today we consider three scenarios for actual accretion: homogeneous condensation/accretion, followed by differentiation – Earth accretes from materials of the same composition AFTER condensation, followed by differentiation heterogeneous condensation/accretion (partial fractionation of materials from each other) before and during planetary buildup – Earth accretes DURING condensation, forming a differentiated planet as it grows. something intermediate between these two end-members GG325 L32, F2013 1 Growth and Differentiation of Planet Earth Both homogeneous and heterogeneous accretion models require that the core segregates from the primitive solid Earth at some point by melting of accreted Fe. The molten Fe sinks to the Earth’s center because it is denser than the surrounding silicate rock and can flow through it in the form of droplets. However, the original distribution of the Fe and the size and character of the iron segregation event differ between these two models. GG325 L32, F2013 Heterogeneous accretion Earth builds up first from cooling materials (initially hot and then cool). This requires a very rapid build up of earth, perhaps within 10,000 yrs of the initiation of condensation.
    [Show full text]