Engineered Gray Mold Resistance, Antioxidant Capacity, and Pigmentation in Betalain-Producing Crops and Ornamentals
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Opuntia Dillenii (Ker-Gawl) Haw
Available online on www.ijppr.com International Journal of Pharmacognosy and Phytochemical Research 2015; 7(6); 1101-1110 ISSN: 0975-4873 Research Article Pectin and Isolated Betalains from Opuntia dillenii (Ker-Gawl) Haw. Fruit Exerts Antiproliferative Activity by DNA Damage Induced Apoptosis Pavithra K1, Sumanth, M S2, Manonmani,H K2, ShashirekhaM N1* 1Fruit and Vegetable Technology, CSIR-Central Food Technological Research Institute Mysore -570 020, Karnataka, India 2Food Protectants and Infestation Control, CSIR-Central Food Technological Research Institute, Mysore -570 020, Karnataka, India Available Online: 11th October, 2015 ABSTRACT In India, nearly three million patients are suffering from Cancer. There is an alarming increase in new cancer cases and every year ~ 4.5 million people die from cancer in the world. In recent years there is a trend to adopt botanical therapy that uses many different plant constituents as medicine. One plant may be able to address many problems simultaneously by stimulating the immune system to help fight off cancer cells. There appears to be exceptional and growing public enthusiasm for botanical or "herbal" medicines, especially amongst cancer patients. In present study, we studied the in vitro anticancer properties of various fractions of cactus Opuntia dillenii (Ker-Gawl) Haw.employing Erlich ascites carcinoma (EAC) cell lines. The EAC cells when treated with fractions of O. dillenii showed apoptosis that was further confirmed by fluorescent and confocal microscopy. In addition, Cellular DNA content was determined by Flow cytometric analysis, wherein pigment treated cells exhibited 78.88 % apoptosis while pulp and pectin treated cells showed 39 and 38% apoptosis respectively. Tunnel assay was carried out to detect extensive DNA degradation in late stages of apoptosis. -
Fabrication of Eco-Friendly Betanin Hybrid Materials Based on Palygorskite and Halloysite
materials Article Fabrication of Eco-Friendly Betanin Hybrid Materials Based on Palygorskite and Halloysite Shue Li 1,2,3, Bin Mu 1,3,*, Xiaowen Wang 1,3, Yuru Kang 1,3 and Aiqin Wang 1,3,* 1 Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-Materials and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; [email protected] (S.L.); [email protected] (X.W.); [email protected] (Y.K.) 2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China 3 Center of Xuyi Palygorskite Applied Technology, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Xuyi 211700, China * Correspondence: [email protected] (B.M.); [email protected] (A.W.); Tel.: +86-931-486-8118 (B.M.); Fax: +86-931-496-8019 (B.M.) Received: 3 September 2020; Accepted: 15 October 2020; Published: 18 October 2020 Abstract: Eco-friendly betanin/clay minerals hybrid materials with good stability were synthesized by combining with adsorption, grinding, and heating treatment using natural betanin extracted from beetroot and natural 2:1 type palygorskite or 1:1 type halloysite. After incorporation of clay minerals, the thermal stability and solvent resistance of natural betanin were obviously enhanced. Due to the difference in the structure of palygorskite and halloysite, betanin was mainly adsorbed on the outer surface of palygorskite or halloysite through hydrogen-bond interaction, but also part of them also entered into the lumen of Hal via electrostatic interaction. Compared with palygorskite, hybrid materials prepared with halloysite exhibited the better color performance, heating stability and solvent resistance due to the high loading content of betanin and shielding effect of lumen of halloysite. -
What Pigments Are in Plants?
BUILD YOUR FUTURE! ANYANG BEST COMPLETE MACHINERY ENGINEERING CO.,LTD WHAT PIGMENTS ARE IN PLANTS? Pigments Pigments are chemical compounds responsible for color in a range of living substances and in the inorganic world. Pigments absorb some of the light they receive, and so reflect only certain wavelengths of visible light. This makes them appear "colorful.” Cave paintings by early man show the early use of pigments, in a limited range from straw color to reddish brown and black. These colors occurred naturally in charcoals, and in mineral oxides such as chalk and ochre. The WebExhibit on Pigments has more information on these early painting palettes. Many early artists used natural pigments, but nowadays they have been replaced by cheaper and less toxic synthetic pigments. Biological Pigments Pigments are responsible for many of the beautiful colors we see in the plant world. Dyes have often been made from both animal sources and plant extracts . Some of the pigments found in animals have also recently been found in plants. Website: www.bestextractionmachine.com Email: [email protected] Tel: +86 372 5965148 Fax: +86 372 5951936 Mobile: ++86 8937276399 BUILD YOUR FUTURE! ANYANG BEST COMPLETE MACHINERY ENGINEERING CO.,LTD Major Plant Pigments White Bird Of Paradise Tree Bilirubin is responsible for the yellow color seen in jaundice sufferers and bruises, and is created when hemoglobin (the pigment that makes blood red) is broken down. Recently this pigment has also been found in plants, specifically in the orange fuzz on seeds of the white Bird of Paradise tree. The bilirubin in plants doesn’t come from breaking down hemoglobin. -
Changes in Physical Properties and Chemical Composition
Health Benefits and Bioactive Components of the Fruits from Opuntia ficus-indica [L.] Mill.♦ Maria A. Livrea* and Luisa Tesoriere Dipartimento Farmacochimico Tossicologico e Biologico, Università di Palermo Via Michele Cipolla 74, 90128 Palermo. Italy *corresponding author [email protected] ABSTRACT The health-promoting properties of edible fruits from Opuntia ficus-indica have been the object of recent interest. Scientific evidence has been provided about benefits from the consumption of the fruits in humans, with special attention to the non-nutritive components as potentially active antioxidant phytochemicals. Information about bioavailability and bioactivity of betalains, mode of action as antioxidants in cells, and other biological models are now available. The use of cactus pear components as nutraceuticals and functional food is discussed. Keywords: Opuntia ficus-indica, edible cactus, betanin, indicaxanthin, betalains, health benefits, in vivo, in vitro, natural oxidants, free-radical scavengers 1. INTRODUCTION An equilibrated life-style, a balanced diet, no smoking, and moderate physical activity are fundamental for maintaining a healthy status. Importantly, epidemiological evidence has been provided that various age-related pathologies, including cardiovascular diseases, cancer and neurodegenerative disorders have a minor incidence among people usually consuming a traditional Mediterranean-style diet, rich in fruit and vegetables (Ames et al., 1993; Lampe, 1999; Lee et al., 2004; Rice-Evans and Miller, 1985). Since these diseases -
Effects of Spermine and Putrescine Polyamines on Capsaicin Accumula- Tion in Capsicum Annuum L
doi:10.14720/aas.2020.115.2.1199 Original research article / izvirni znanstveni članek Effects of spermine and putrescine polyamines on capsaicin accumula- tion in Capsicum annuum L. cell suspension cultures Esra KOÇ 1, 2, Cemil İŞLEK 3, Belgizar KARAYİĞİT 1 Received June 25, 2019; accepted April 11, 2020. Delo je prispelo 25. junija 2019, sprejeto 11. aprila 2020 Effects of spermine and putrescine polyamines on capsaicin Učinki poliaminov spermina in putrescina na akumulacijo accumulation in Capsicum annuum L. cell suspension cul- kapsaicina v suspenzijski kulturi celic paprike Capsicum an- tures nuum L. Abstract: This study examined the effects of different con- Izvleček: V raziskavi so bili preučevani učinki različnih centrations of spermine (Spm) and putrescine (Put) elicitors on koncentracij spermina (Spm) in putrescina (Put) kot elicitorjev capsaicin production at different times in cell suspension cul- na tvorbo kapsaicina v različnih časovnih intervalih v suspen- ture of peper (Capsicum annuum L‘Kahramanmaraş Hat-187’.), zijski celični kulturi paprike (Capsicum annuum ‘Kahramanma- raised from pepper seeds. Callus was obtained from hypocotyl raş Hat-187’. Kalus je bil pridobljen iz izsečkov hipokotila kalic explants of pepper seedlings germinated in vitro conditions, paprike, ki je vzkalila v in vitro razmerah, celične suspenzije so and cell suspensions were prepared from calluses. Spm (0.1, 0.2 bile pripravljene iz kalusov. Spm (0,1; 0,2 in 0,4 mg l-1) in Put -1) and Put (0.1, 0.2 and 0.4 mg l-1) elicitors were ap- and 0.4 mg l (0,1; 0,2 in 0,4 mg l-1) sta bila dodajana kor elicitorja v celične plied on cell suspensions, and control groups free from elicitor suspenzije, hkrati so bile vzpostavljene kontrolne celične kul- treatment were created. -
Pitaia (Hylocereus Sp.): Uma Revisão Para O Brasil
Gaia Scientia (2014) Volume 8 (1): 90-98 Versão On line ISSN 1981-1268 http://periodicos.ufpb.br/ojs2/index.php/gaia/index Pitaia (Hylocereus sp.): Uma revisão para o Brasil Ernane Nogueira Nunes1*, Alex Sandro Bezerra de Sousa2, Camilla Marques de Lucena3, Silvanda de Melo Silva4, Reinaldo Farias Paiva de Lucena5, Carlos Antônio Belarmino Alves6 e Ricardo Elesbão Alves7. 1Aluno de Pós Graduação (Mestrado) do Programa de Pós Graduação em Agronomia. Universidade Federal da Paraíba. Campus II. Centro de Ciências Agrárias. Areia, Paraíba, Brasil. CEP: 58.397-000. 2Aluno de Graduação em Agronomia. Universidade Federal da Paraíba. Campus II. Centro de Ciências Agrárias. Areia, Paraíba, Brasil. CEP: 58.397-000. e-mail: [email protected] 3Aluna de Pós Graduação (Doutorado) do Programa de Pós Graduação em Desenvolvimento e Meio Ambiente. Universidade Federal da Paraíba. Campus I. João Pessoa, Paraíba, Brasil. CEP: 5801-970. e-mail: [email protected] 4Professora da Universidade Federal da Paraíba. Campus II. Centro de Ciências Agrárias. Departamento de Ciências Fundamentais e Sociais. Areia. Paraíba. Brasil. CEP: 58.397-000. e-mail: [email protected] 5Professor da Universidade Federal da Paraíba. Campus II. Centro de Ciências Agrárias. Departamento de Fitotecnia e Ciências Ambientais. Setor de Ecologia e Biodiversidade. Laboratório de Etnoecologia. Areia. Paraíba. Brasil. CEP: 58.397-000. e-mail: [email protected] 6Professor da Universidade Estadual da Paraíba. Centro de Humanidades. Guarabira, Paraíba, Brasil. CEP: 58.200-000. e-mail: [email protected] 7Pesquisadores da Empresa Brasileira de Pesquisa Agropecuária. EMBRAPA Agroindústria Tropical. Fortaleza. Ceará, Brasil. CEP: 60511-110. e-mail: [email protected]; [email protected] Artigo recebido em 17 janeiro 2013; aceito para publicação em 8 março 2014; publicado 12 março 2014 Resumo As espécies da família Cactaceae, possivelmente tiveram sua origem na América do Norte, Central e do Sul. -
How to Improve the Functionality, Nutritional Value and Health
a ISSN 0101-2061 (Print) Food Science and Technology ISSN 1678-457X (Online) DOI: https://doi.org/10.1590/fst.17721 How to improve the functionality, nutritional value and health properties of fermented milks added of fruits bioactive compounds: a review Amanda Alves PRESTES1, Maryella Osório VARGAS2, Cristiane Vieira HELM3, Erick Almeida ESMERINO4, Ramon SILVA4, Elane Schwinden PRUDENCIO1,2* Abstract Fermented milks, with diverse manufacturing, fermentations and specific strains, have been consumed around the world, with a millennial knowledge of their production. These dairy products have a potential nutritional value, taking food industries to invest, nowadays, in dairy products with a functional and healthy appeal due to the changes in the habits and diet of the population. The addition of natural ingredients from vegetables and fruits into fermented milks is a tendency nowadays. The inclusion of natural additives may change the texture, composition, sensory attributes and increase of the shelf life since some compounds are related to have a high antioxidant activity, which decreases the development of deteriorating microorganisms. These called bioactive compounds are synthesized by plants and also may contribute to the fermented milk formulation, in special from fruits, which increase the sensory acceptance. Several classes of fruits bioactive compounds are associated to several health benefits and are a base of many studies about functional fermented milks, reported in this review. This theory background becomes essential for future studies and dairy products development. Keywords: dairy products; functional food; natural additives; antioxidant activity; prebiotics. Practical Application: Potential functional properties of fermented milks added of fruit bioactive compounds. 1 Introduction The dairy products manufacturing is known since Foods with a functional appeal are those that, besides to antiquity, with the fermentation process as a traditional promote basic nutrients, when consumed in a routine, produce approach to food preservation. -
Natural Colour Book
THE COLOUR BOOK Sensient Food Colors Europe INDEX NATURAL COLOURS AND COLOURING FOODS INDEX 46 Lycopene 4 We Brighten Your World 47 Antho Blends – Pink Shade 6 Naturally Different 48 Red Cabbage 8 The Colour of Innovation 49 Beetroot – with reduced bluish tone 10 Natural Colours, Colouring Foods 50 Beetroot 11 Cardea™, Pure-S™ 51 Black Carrot 12 YELLOW 52 Grape 14 Colourful Impulses 53 Enocianin 15 Carthamus 54 Red Blends 16 Curcumin 56 VIOLET & BLUE 17 Riboflavin 59 Violet Blends 18 Lutein 61 Spirulina 19 Carrot 62 GREEN 20 Natural Carotene 65 Green Blends 22 Beta-Carotene 66 Copper-Chlorophyllin 24 Annatto 67 Copper-Chlorophyll 25 Yellow/ Orange Blends 68 Chlorophyll/-in 26 ORANGE 69 Spinach 29 Natural Carotene 70 BROWN 30 Paprika Extract 73 Burnt Sugar 32 Carrot 74 Apple 33 Apocarotenal 75 Caramel 34 Carminic Acid 76 BLACK & WHITE 35 Beta-Carotene 79 Vegetable Carbon 36 RED 80 Titanium Dioxide 39 Antho Blends – Strawberry Shade 81 Natural White 40 Aronia 41 Elderberry 83 Regulatory Information 42 Black Carrot 84 Disclaimer 43 Hibiscus 85 Contact Address 44 Carmine 3 INDEX NATURAL COLOURS AND COLOURING FOODS WE BRIGHTEN YOUR WORLD Sensient is as colourful as the world around us. Whatever you are looking for, across the whole spectrum of colour use, we can deliver colouring solutions to best meet your needs in your market. Operating in the global market place for over 100 years Sensient both promises and delivers proven international experience, expertise and capabilities in product development, supply chain management, manufacture, quality management and application excellence of innovative colours for food and beverages. -
Studies on Betalain Phytochemistry by Means of Ion-Pair Countercurrent Chromatography
STUDIES ON BETALAIN PHYTOCHEMISTRY BY MEANS OF ION-PAIR COUNTERCURRENT CHROMATOGRAPHY Von der Fakultät für Lebenswissenschaften der Technischen Universität Carolo-Wilhelmina zu Braunschweig zur Erlangung des Grades einer Doktorin der Naturwissenschaften (Dr. rer. nat.) genehmigte D i s s e r t a t i o n von Thu Tran Thi Minh aus Vietnam 1. Referent: Prof. Dr. Peter Winterhalter 2. Referent: apl. Prof. Dr. Ulrich Engelhardt eingereicht am: 28.02.2018 mündliche Prüfung (Disputation) am: 28.05.2018 Druckjahr 2018 Vorveröffentlichungen der Dissertation Teilergebnisse aus dieser Arbeit wurden mit Genehmigung der Fakultät für Lebenswissenschaften, vertreten durch den Mentor der Arbeit, in folgenden Beiträgen vorab veröffentlicht: Tagungsbeiträge T. Tran, G. Jerz, T.E. Moussa-Ayoub, S.K.EI-Samahy, S. Rohn und P. Winterhalter: Metabolite screening and fractionation of betalains and flavonoids from Opuntia stricta var. dillenii by means of High Performance Countercurrent chromatography (HPCCC) and sequential off-line injection to ESI-MS/MS. (Poster) 44. Deutscher Lebensmittelchemikertag, Karlsruhe (2015). Thu Minh Thi Tran, Tamer E. Moussa-Ayoub, Salah K. El-Samahy, Sascha Rohn, Peter Winterhalter und Gerold Jerz: Metabolite profile of betalains and flavonoids from Opuntia stricta var. dilleni by HPCCC and offline ESI-MS/MS. (Poster) 9. Countercurrent Chromatography Conference, Chicago (2016). Thu Tran Thi Minh, Binh Nguyen, Peter Winterhalter und Gerold Jerz: Recovery of the betacyanin celosianin II and flavonoid glycosides from Atriplex hortensis var. rubra by HPCCC and off-line ESI-MS/MS monitoring. (Poster) 9. Countercurrent Chromatography Conference, Chicago (2016). ACKNOWLEDGEMENT This PhD would not be done without the supports of my mentor, my supervisor and my family. -
Survey of Plant Pigments: Molecular and Environmental Determinants of Plant Colors
ACTA BIOLOGICA CRACOVIENSIA Series Botanica 51/1: 7–16, 2009 SURVEY OF PLANT PIGMENTS: MOLECULAR AND ENVIRONMENTAL DETERMINANTS OF PLANT COLORS EWA MŁODZIŃSKA* Department of Plant Physiology, Wroclaw University, ul. Kanonia 6/8, 50-328 Wrocław, Poland Received January 7, 2009; revision accepted February 20, 2009 It is difficult to estimate the importance of plant pigments in plant biology. Chlorophylls are the most important pigments, as they are required for photosynthesis. Carotenoids are also necessary for their functions in photosyn- thesis. Other plant pigments such as flavonoids play a crucial role in the interaction between plants and animals as visual signals for pollination and seed scattering. Studies related to plant pigmentation are one of the oldest areas of work in plant science. The first publication about carotenoids appeared in the early nineteenth century, and the term "chlorophyll" was first used in 1818 (Davies, 2004). Since then, the biochemical structure of plant pigments has been revealed, as have the biosynthetic pathways for the major pigments that provide a useful variety of colors to blossoms and other plant organs. There is widespread interest in the application of molecular methods to improve our knowledge of gene regulation mechanisms and changes in plant pigment content. Genetic modification has been used to alter pigment production in transgenic plants. This review focuses on flower pigmentation, its bio- chemistry and biology. It presents a general overview of the major plant pigment groups as well as rarer plant dyes and their diversity and function in generating the range of colors observed in plants. Key words: Flower and fruit colors, co-pigmentation, plant dyes, pigment groups. -
Functional Role of Betalains in Disphyma Australe Under Salinity Stress
FUNCTIONAL ROLE OF BETALAINS IN DISPHYMA AUSTRALE UNDER SALINITY STRESS BY GAGANDEEP JAIN A thesis submitted to the Victoria University of Wellington In fulfillment of the requirements for the degree of Doctor of Philosophy Victoria University of Wellington (2016) i “ An understanding of the natural world and what’s in it is a source of not only a great curiosity but great fulfillment” -- David Attenborough ii iii Abstract Foliar betalainic plants are commonly found in dry and exposed environments such as deserts and sandbanks. This marginal habitat has led many researchers to hypothesise that foliar betalains provide tolerance to abiotic stressors such as strong light, drought, salinity and low temperatures. Among these abiotic stressors, soil salinity is a major problem for agriculture affecting approximately 20% of the irrigated lands worldwide. Betacyanins may provide functional significance to plants under salt stress although this has not been unequivocally demonstrated. The purpose of this thesis is to add knowledge of the various roles of foliar betacyanins in plants under salt stress. For that, a series of experiments were performed on Disphyma australe, which is a betacyanic halophyte with two distinct colour morphs in vegetative shoots. In chapter two, I aimed to find the effect of salinity stress on betacyanin pigmentation in D. australe and it was hypothesised that betacyanic morphs are physiologically more tolerant to salinity stress than acyanic morphs. Within a coastal population of red and green morphs of D. australe, betacyanin pigmentation in red morphs was a direct result of high salt and high light exposure. Betacyanic morphs were physiologically more tolerant to salt stress as they showed greater maximum CO2 assimilation rates, water use efficiencies, photochemical quantum yields and photochemical quenching than acyanic morphs. -
Betalains and Phenolics in Red Beetroot (Beta Vulgaris)
Betalains and Phenolics in Red Beetroot (Beta vulgaris) Peel Extracts: Extraction and Characterisation Tytti Kujala*, Jyrki Loponen and Kalevi Pihlaja Department of Chemistry, Vatselankatu 2, FIN-20014 University of Turku, Finland. Fax: +3582-333 67 00. E-mail: [email protected] * Author for correspondence and reprint requests Z. Naturforsch. 56 c, 343-348 (2001); received January 9/February 12, 2001 Beta vulgaris , Betalains, Phenolics The extraction of red beetroot (Beta vulgaris ) peel betalains and phenolics was compared with two extraction methods and solvents. The content of total phenolics in the extracts was determined according to a modification of the Folin-Ciocalteu method and expressed as gallic acid equivalents (GAE). The profiles of extracts were analysed by high-performance liquid chromatography (HPLC). The compounds of beetroot peel extracted with 80% aqueous methanol were characterised from separated fractions using HPLC- diode array detection (HPLC-DAD) and HPLC- electrospray ionisation-mass spectrometry (HPLC-ESI-MS) tech niques. The extraction methods and the choice of solvent affected noticeably the content of individual compounds in the extract. The betalains found in beetroot peel extract were vulgaxanthin I, vulgaxanthin II, indicaxanthin, betanin, prebetanin, isobetanin and neobe- tanin. Also cyclodopa glucoside, /V-formylcyclodopa glucoside, glucoside of dihydroxyindol- carboxylic acid, betalamic acid, L-tryptophan, p-coumaric acid, ferulic acid and traces of un identified flavonoids were detected. Introduction acid in their cell walls (Jackman and Smith, 1996). Phenolic compounds are ubiquitous in the plant Except ferulic acid, also other phenolic acids and kingdom and they have been reported to possess phenolic acid conjugates have been reported in many biological effects.