A Phase I/II Multicenter, Open-Label Study of the Oral Histone Deacetylase Inhibitor Abexinostat in Relapsed/Refractory Lymphoma Andrew M

Total Page:16

File Type:pdf, Size:1020Kb

A Phase I/II Multicenter, Open-Label Study of the Oral Histone Deacetylase Inhibitor Abexinostat in Relapsed/Refractory Lymphoma Andrew M Published OnlineFirst October 19, 2015; DOI: 10.1158/1078-0432.CCR-15-0624 Cancer Therapy: Clinical Clinical Cancer Research A Phase I/II Multicenter, Open-Label Study of the Oral Histone Deacetylase Inhibitor Abexinostat in Relapsed/Refractory Lymphoma Andrew M. Evens1, Sriram Balasubramanian2, Julie M. Vose3, Wael Harb4, Leo I. Gordon5, Robert Langdon6, Julian Sprague7, Mint Sirisawad2, Chitra Mani2, Jeanne Yue2,Ying Luan2, Sharon Horton2, Thorsten Graef2, and Nancy L. Bartlett8 Abstract Purpose: Additional targeted therapeutics are needed for the 86% of follicular lymphoma patients with an investigator- treatment of lymphoma. Abexinostat is an oral pan-histone dea- assessed ORR of 64.3% for evaluable patients [intent-to-treat cetylase inhibitor (HDACi) displaying potent activity in preclinical (ITT) ORR 56.3%]. Median duration of response was not reached, models. We conducted a multicenter phase I/II study (N ¼ 55) with and median progression-free survival (PFS) was 20.5 months single-agent abexinostat in relapsed/refractory lymphoma. (1.2–22.3þ). Of responding follicular lymphoma patients, Experimental Design: In phase I, 25 heavily pretreated patients 89% were on study/drug >8 months. In mantle cell lymphoma, with any lymphoma subtype received oral abexinostat ranging the ORR was 27.3% for evaluable patients (ITT ORR 21.4%), and from 30 to 60 mg/m2 twice daily 5 days/week for 3 weeks or 7 median PFS was 3.9 months (range, 0.1–11.5). Grade 3–4 treat- days/week given every other week. Phase II evaluated abexinostat ment-related adverse events (phase II) with 10% incidence were at the maximum tolerated dose in 30 patients with relapsed/ thrombocytopenia (20%), fatigue (16.7%), and neutropenia refractory follicular lymphoma or mantle cell lymphoma. (13.3%) with rare QTc prolongation and no deaths. Results: The recommended phase II dose was 45 mg/m2 twice Conclusions: The pan-HDACi, abexinostat, was overall well daily (90 mg/m2 total), 7 days/week given every other week. Of tolerated and had significant clinical activity in follicular lym- the 30 follicular lymphoma and mantle cell lymphoma patients phoma, including highly durable responses in this multiply enrolled in phase II, 25 (14 follicular lymphoma, 11 mantle cell relapsed patient population. Clin Cancer Res; 22(5); 1059–66. lymphoma) were response-evaluable. Tumor size was reduced in Ó2015 AACR. Introduction HDAC inhibitors (HDACi) promote an open chromatin structure by allowing the continued presence of acetyl groups resulting in Epigenetic modulation by histone deacetylation plays a critical transcription of relevant tumor suppressor genes that may favor regulatory role in normal cell processes and has been implicated apoptosis. Clinically, inhibition of HDAC has shown promise for in cancer development and progression (1, 2). Histone deacety- the treatment of B-cell (3) and T-cell lymphomas (4). The HDAC lases (HDAC) and histone acetylases can be aberrantly expressed inhibitors vorinostat, romidepsin, and belinostat are FDA- or deregulated in malignant tissues, resulting in inhibition of approved in cutaneous T-cell lymphoma (CTCL), CTCL and certain tumor suppressor genes and development of malignancy. peripheral T-cell lymphoma (PTCL), and PTCL, respectively (5, 6). There remains an unmet need for additional targeted 1Division of Hematology/Oncology, Tufts Medical Center, Boston, therapeutic options for the treatment of patients with relapsed/ Massachusetts. 2Pharmacyclics, Sunnyvale, California. 3University of refractory B- and T-cell lymphomas. Nebraska Medical Center, Omaha, Nebraska. 4Horizon Oncology Cen- The novel HDACi abexinostat is an oral broad-spectrum phenyl ter, Lafayette, Indiana. 5Northwestern University Feinberg School of Medicine, Chicago, Illinois. 6Nebraska Methodist Hospital, Omaha, hydroxamic acid-based compound being evaluated in the treat- Nebraska. 7Department of Medicine, Vermont Cancer Center, Univer- ment of neoplastic diseases. Abexinostat treatment of non-Hodg- sity of Vermont, Burlington, Vermont. 8Washington University School kin lymphoma (NHL) cell lines (7) resulted in dose-dependent of Medicine, St. Louis, Missouri. apoptosis, G0–G1 arrest, and decreased S-phase and increased p21 Note: Supplementary data for this article are available at Clinical Cancer protein expression. Abexinostat-induced cell death occurred Research Online (http://clincancerres.aacrjournals.org/). through caspase-8 and the Fas-associated death domain, and was Prior Presentation: Presented in abstract form at the 54th annual meeting of the associated with a prominent increase in reactive oxygen species American Society of Hematology (ASH), Atlanta, GA, December 9, 2012. Full and (8). Similar apoptotic responses were observed in neuroblastoma fi nal data presented at the 12th International Conference on Malignant Lym- and soft tissue sarcoma models (9–11). Abexinostat also affects phoma (ICML), Lugano, Switzerland, June 21, 2013. recombination by reducing RAD51, a recA homolog that binds Corresponding Author: Andrew M. Evens, Tufts Medical Center, 800 Washing- single-stranded DNA-forming nucleoprotein filaments essential ton Street, Boston, MA 02111. Phone: 617-636-6227; Fax: 617-636-7060; E-mail: for recombination repair (12, 13). [email protected] Based in part on these preclinical findings, a phase I/II clinical doi: 10.1158/1078-0432.CCR-15-0624 trial was initiated with abexinostat in patients with relapsed/ Ó2015 American Association for Cancer Research. refractory lymphoma. The phase I study examined safety, www.aacrjournals.org 1059 Downloaded from clincancerres.aacrjournals.org on September 25, 2021. © 2016 American Association for Cancer Research. Published OnlineFirst October 19, 2015; DOI: 10.1158/1078-0432.CCR-15-0624 Evens et al. after DLT assessment of patients at the end of cycle 1. Dose Translational Relevance escalation followed a 3 þ 3 principle. Inhibition of histone deacytelases (HDAC) has emerged Phase I and phase II enrolled different patients and responders as a promising therapeutic strategy in hematologic malig- who completed treatment were eligible to enroll in a separate nancies. Abexinostat is a novel, oral, broad-spectrum phenyl long-term extension study. In the efficacy evaluation phase hydroxamic acid–based HDAC inhibitor that has demon- (phase II), dosing was based on MTD results from the initial strated preclinical activity in lymphoma cell lines and ani- dose escalation phase and included patients with relapsed/refrac- mal models. This phase I/II study established the appropri- tory follicular lymphoma and mantle cell lymphoma based on ate dose and schedule for use in patients with relapsed/ phase I efficacy signals and historical data with other HDAC refractory non-Hodgkin lymphoma. An intermittent dosing inhibitors. In phase II, the primary end point was overall response schedule was used to achieve good tolerability even during rate (ORR) as defined by disease-specific criteria. Secondary end prolonged drug administration. Incidence of high grade points included duration of response (DOR); time to PD; pro- hematologic adverse events and cardiac toxicities were gression-free survival (PFS); and safety and tolerability. Refractory modest and comparatively encouraging among established disease was defined as no response to prior therapy or relapse agents of this class. In addition, abexinostat was particu- within 3 months of completing prior therapy. larly efficacious in relapsed/refractory follicular lymphoma with prolonged tumor control 18 months in most respon- Patients ders. Further evaluation of this agent as a single-agent Women and men aged 18 years with measurable, histolog- therapy and in combination is warranted and underway ically confirmed, previously treated lymphoma were included. in several tumor types. Phase I included patients with any lymphoma subtype; phase II included patients with follicular lymphoma or mantle cell lym- phoma. Patient requirements for both phases included receipt of prior therapies, an Eastern Cooperative Oncology Group (ECOG) performance status (PS) of 1, adequate organ function, and pharmacokinetics, and pharmacodynamics of different abexino- estimated life expectancy of >12 weeks. Patients were excluded stat treatment schedules in multiple lymphoma subtypes. Fol- from the study if they had platelets <75,000/mL (phase I) and fi lowing identi cation of the appropriate dosing schedule, and <100,000/mL (phase II) or if they had an absolute neutrophil fi based on early ef cacy signals, a phase II extension component count <1,500/mL. was completed in patients with relapsed/refractory follicular Patients were excluded if they had received prior HDACi (unless lymphoma and mantle cell lymphoma. for treatment of mycosis fungoides or Sezary syndrome); allogeneic bone marrow transplantation; immunotherapy, chemotherapy, Materials and Methods radiotherapy, or experimental therapy within 4 weeks before first Study design study dose. Patients were also excluded for primary central nervous This phase I/II study (NCT00724984) was conducted at seven system lymphoma or a history of meningeal carcinomatosis. centers across the United States in accordance with Good Clinical Practice guidelines, as provided by the International Conference Pharmacokinetic analyses on Harmonisation and principles of the Declaration of Helsinki. Plasma concentrations of abexinostat were determined by The institutional review board at each site approved the study. All high-performance liquid chromatography (HPLC) with tandem
Recommended publications
  • Combined Treatment with Epigenetic, Differentiating, and Chemotherapeutic
    Author Manuscript Published OnlineFirst on January 19, 2016; DOI: 10.1158/0008-5472.CAN-15-1619 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Combined treatment with epigenetic, differentiating, and chemotherapeutic agents cooperatively targets tumor-initiating cells in triple negative breast cancer. Vanessa F. Merino1,7, Nguyen Nguyen1,7, Kideok Jin1, Helen Sadik1, Soonweng Cho1, Preethi Korangath1, Liangfeng Han1, Yolanda M. N. Foster1, Xian C. Zhou1, Zhe Zhang1, Roisin M. Connolly1, Vered Stearns1, Syed Z. Ali2, Christina Adams2, Qian Chen3, Duojia Pan3, David L. Huso4, Peter Ordentlich5, Angela Brodie6, Saraswati Sukumar1*. 1Department of Oncology, 2Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, 3Department of Molecular Biology and Genetics, 4Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA, 5Syndax Pharmaceuticals, Department of Translational Medicine, Waltham, MA, USA, 6Department of Pharmacology and Experimental Therapeutics, University of Maryland School of Medicine, Baltimore, MD, USA. 7These authors contributed equally. *Correspondence: Saraswati Sukumar, PhD, 1650 Orleans Street, Baltimore, MD, 21231, Ph. 410-614-2479, [email protected] and Vanessa F. Merino, PhD, 1650 Orleans Street, Baltimore, MD, 21231, Ph. 410-614-4075, [email protected]. Key words: Breast, cancer, entinostat, RAR-beta, epigenetic Grant Support: This work was funded by the DOD BCRP Center of Excellence Grant W81XWH-04-1-0595 to S.S, and DOD BCRP, W81XWH-09-1-0499 to V.M. Downloaded from cancerres.aacrjournals.org on September 27, 2021. © 2016 American Association for Cancer Research. Author Manuscript Published OnlineFirst on January 19, 2016; DOI: 10.1158/0008-5472.CAN-15-1619 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.
    [Show full text]
  • An Overview of the Role of Hdacs in Cancer Immunotherapy
    International Journal of Molecular Sciences Review Immunoepigenetics Combination Therapies: An Overview of the Role of HDACs in Cancer Immunotherapy Debarati Banik, Sara Moufarrij and Alejandro Villagra * Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, 800 22nd St NW, Suite 8880, Washington, DC 20052, USA; [email protected] (D.B.); [email protected] (S.M.) * Correspondence: [email protected]; Tel.: +(202)-994-9547 Received: 22 March 2019; Accepted: 28 April 2019; Published: 7 May 2019 Abstract: Long-standing efforts to identify the multifaceted roles of histone deacetylase inhibitors (HDACis) have positioned these agents as promising drug candidates in combatting cancer, autoimmune, neurodegenerative, and infectious diseases. The same has also encouraged the evaluation of multiple HDACi candidates in preclinical studies in cancer and other diseases as well as the FDA-approval towards clinical use for specific agents. In this review, we have discussed how the efficacy of immunotherapy can be leveraged by combining it with HDACis. We have also included a brief overview of the classification of HDACis as well as their various roles in physiological and pathophysiological scenarios to target key cellular processes promoting the initiation, establishment, and progression of cancer. Given the critical role of the tumor microenvironment (TME) towards the outcome of anticancer therapies, we have also discussed the effect of HDACis on different components of the TME. We then have gradually progressed into examples of specific pan-HDACis, class I HDACi, and selective HDACis that either have been incorporated into clinical trials or show promising preclinical effects for future consideration.
    [Show full text]
  • Vorinostat—An Overview Aditya Kumar Bubna
    E-IJD RESIDENTS' PAGE Vorinostat—An Overview Aditya Kumar Bubna Abstract From the Consultant Vorinostat is a new drug used in the management of cutaneous T cell lymphoma when the Dermatologist, Kedar Hospital, disease persists, gets worse or comes back during or after treatment with other medicines. It is Chennai, Tamil Nadu, India an efficacious and well tolerated drug and has been considered a novel drug in the treatment of this condition. Currently apart from cutaneous T cell lymphoma the role of Vorinostat for Address for correspondence: other types of cancers is being investigated both as mono-therapy and combination therapy. Dr. Aditya Kumar Bubna, Kedar Hospital, Mugalivakkam Key Words: Cutaneous T cell lymphoma, histone deacytelase inhibitor, Vorinostat Main Road, Porur, Chennai - 600 125, Tamil Nadu, India. E-mail: [email protected] What was known? • Vorinostat is a histone deacetylase inhibitor. • It is an FDA approved drug for the treatment of cutaneous T cell lymphoma. Introduction of Vorinostat is approximately 9. Vorinostat is slightly Vorinostat is a histone deacetylase (HDAC) inhibitor, soluble in water, alcohol, isopropanol and acetone and is structurally belonging to the hydroxymate group. Other completely soluble in dimethyl sulfoxide. drugs in this group include Givinostat, Abexinostat, Mechanism of action Panobinostat, Belinostat and Trichostatin A. These Vorinostat is a broad inhibitor of HDAC activity and inhibits are an emergency class of drugs with potential anti- class I and class II HDAC enzymes.[2,3] However, Vorinostat neoplastic activity. These drugs were developed with the does not inhibit HDACs belonging to class III. Based on realization that apart from genetic mutation, alteration crystallographic studies, it has been seen that Vorinostat of HDAC enzymes affected the phenotypic and genotypic binds to the zinc atom of the catalytic site of the HDAC expression in cells, which in turn lead to disturbed enzyme with the phenyl ring of Vorinostat projecting out of homeostasis and neoplastic growth.
    [Show full text]
  • Current Understanding of Epigenetics Mechanism As a Novel Target In
    Keyvani‑Ghamsari et al. Clin Epigenet (2021) 13:120 https://doi.org/10.1186/s13148‑021‑01107‑4 REVIEW Open Access Current understanding of epigenetics mechanism as a novel target in reducing cancer stem cells resistance Saeedeh Keyvani‑Ghamsari1, Khatereh Khorsandi2* , Azhar Rasul3 and Muhammad Khatir Zaman4 Abstract At present, after extensive studies in the feld of cancer, cancer stem cells (CSCs) have been proposed as a major fac‑ tor in tumor initiation, progression, metastasis, and recurrence. CSCs are a subpopulation of bulk tumors, with stem cell‑like properties and tumorigenic capabilities, having the abilities of self‑renewal and diferentiation, thereby being able to generate heterogeneous lineages of cancer cells and lead to resistance toward anti‑tumor treatments. Highly resistant to conventional chemo‑ and radiotherapy, CSCs have heterogeneity and can migrate to diferent organs and metastasize. Recent studies have demonstrated that the population of CSCs and the progression of cancer are increased by the deregulation of diferent epigenetic pathways having efects on gene expression patterns and key pathways connected with cell proliferation and survival. Further, epigenetic modifcations (DNA methylation, histone modifcations, and RNA methylations) have been revealed to be key drivers in the formation and maintenance of CSCs. Hence, identifying CSCs and targeting epigenetic pathways therein can ofer new insights into the treatment of cancer. In the present review, recent studies are addressed in terms of the characteristics of CSCs, the resistance thereof, and the factors infuencing the development thereof, with an emphasis on diferent types of epigenetic changes in genes and main signaling pathways involved therein. Finally, targeted therapy for CSCs by epigenetic drugs is referred to, which is a new approach in overcoming resistance and recurrence of cancer.
    [Show full text]
  • Design and Synthesis of Novel Classes of Hdacs and Kmts Inhibitors
    University of East Anglia School of Pharmacy Design and synthesis of novel classes of HDACs and KMTs inhibitors by Remy Thomas Narozny Supervisor: Prof. A. Ganesan Second Supervisor: Prof. Mark Searcey Thesis for the degree of Doctor of Philosophy November 2018 This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with the author and that use of any information derived therefrom must be in accordance with current UK Copyright Law. In addition, any quotation or extract must include full attribution. “Your genetics is not your destiny.” George McDonald Church Abstract For long, scientists thought that our body was driven only by our genetic code that we inherited at birth. However, this determinism was shattered entirely and proven as false in the second half of the 21st century with the discovery of epigenetics. Instead, cells turn genes on and off using reversible chemical marks. With the tremendous progression of epigenetic science, it is now believed that we have a certain power over the expression of our genetic traits. Over the years, these epigenetic modifications were found to be at the core of how diseases alter healthy cells, and environmental factors and lifestyle were identified as top influencers. Epigenetic dysregulation has been observed in every major domain of medicine, with a reported implication in cancer development, neurodegenerative pathologies, diabetes, infectious disease and even obesity. Substantially, an epigenetic component is expected to be involved in every human disease. Hence, the modulation of these epigenetics mechanisms has emerged as a therapeutic strategy.
    [Show full text]
  • Histone Deacetylase Inhibitors: a Prospect in Drug Discovery Histon Deasetilaz İnhibitörleri: İlaç Keşfinde Bir Aday
    Turk J Pharm Sci 2019;16(1):101-114 DOI: 10.4274/tjps.75047 REVIEW Histone Deacetylase Inhibitors: A Prospect in Drug Discovery Histon Deasetilaz İnhibitörleri: İlaç Keşfinde Bir Aday Rakesh YADAV*, Pooja MISHRA, Divya YADAV Banasthali University, Faculty of Pharmacy, Department of Pharmacy, Banasthali, India ABSTRACT Cancer is a provocative issue across the globe and treatment of uncontrolled cell growth follows a deep investigation in the field of drug discovery. Therefore, there is a crucial requirement for discovering an ingenious medicinally active agent that can amend idle drug targets. Increasing pragmatic evidence implies that histone deacetylases (HDACs) are trapped during cancer progression, which increases deacetylation and triggers changes in malignancy. They provide a ground-breaking scaffold and an attainable key for investigating chemical entity pertinent to HDAC biology as a therapeutic target in the drug discovery context. Due to gene expression, an impending requirement to prudently transfer cytotoxicity to cancerous cells, HDAC inhibitors may be developed as anticancer agents. The present review focuses on the basics of HDAC enzymes, their inhibitors, and therapeutic outcomes. Key words: Histone deacetylase inhibitors, apoptosis, multitherapeutic approach, cancer ÖZ Kanser tedavisi tüm toplum için büyük bir kışkırtıcıdır ve ilaç keşfi alanında bir araştırma hattını izlemektedir. Bu nedenle, işlemeyen ilaç hedeflerini iyileştirme yeterliliğine sahip, tıbbi aktif bir ajan keşfetmek için hayati bir gereklilik vardır. Artan pragmatik kanıtlar, histon deasetilazların (HDAC) kanserin ilerleme aşamasında deasetilasyonu arttırarak ve malignite değişikliklerini tetikleyerek kapana kısıldığını ifade etmektedir. HDAC inhibitörleri, ilaç keşfi bağlamında terapötik bir hedef olarak HDAC biyolojisiyle ilgili kimyasal varlığı araştırmak için, çığır açıcı iskele ve ulaşılabilir bir anahtar sağlarlar.
    [Show full text]
  • Patent Application Publication ( 10 ) Pub . No . : US 2019 / 0192440 A1
    US 20190192440A1 (19 ) United States (12 ) Patent Application Publication ( 10) Pub . No. : US 2019 /0192440 A1 LI (43 ) Pub . Date : Jun . 27 , 2019 ( 54 ) ORAL DRUG DOSAGE FORM COMPRISING Publication Classification DRUG IN THE FORM OF NANOPARTICLES (51 ) Int . CI. A61K 9 / 20 (2006 .01 ) ( 71 ) Applicant: Triastek , Inc. , Nanjing ( CN ) A61K 9 /00 ( 2006 . 01) A61K 31/ 192 ( 2006 .01 ) (72 ) Inventor : Xiaoling LI , Dublin , CA (US ) A61K 9 / 24 ( 2006 .01 ) ( 52 ) U . S . CI. ( 21 ) Appl. No. : 16 /289 ,499 CPC . .. .. A61K 9 /2031 (2013 . 01 ) ; A61K 9 /0065 ( 22 ) Filed : Feb . 28 , 2019 (2013 .01 ) ; A61K 9 / 209 ( 2013 .01 ) ; A61K 9 /2027 ( 2013 .01 ) ; A61K 31/ 192 ( 2013. 01 ) ; Related U . S . Application Data A61K 9 /2072 ( 2013 .01 ) (63 ) Continuation of application No. 16 /028 ,305 , filed on Jul. 5 , 2018 , now Pat . No . 10 , 258 ,575 , which is a (57 ) ABSTRACT continuation of application No . 15 / 173 ,596 , filed on The present disclosure provides a stable solid pharmaceuti Jun . 3 , 2016 . cal dosage form for oral administration . The dosage form (60 ) Provisional application No . 62 /313 ,092 , filed on Mar. includes a substrate that forms at least one compartment and 24 , 2016 , provisional application No . 62 / 296 , 087 , a drug content loaded into the compartment. The dosage filed on Feb . 17 , 2016 , provisional application No . form is so designed that the active pharmaceutical ingredient 62 / 170, 645 , filed on Jun . 3 , 2015 . of the drug content is released in a controlled manner. Patent Application Publication Jun . 27 , 2019 Sheet 1 of 20 US 2019 /0192440 A1 FIG .
    [Show full text]
  • Histone Deacetylase Inhibitors As Anticancer Drugs
    International Journal of Molecular Sciences Review Histone Deacetylase Inhibitors as Anticancer Drugs Tomas Eckschlager 1,*, Johana Plch 1, Marie Stiborova 2 and Jan Hrabeta 1 1 Department of Pediatric Hematology and Oncology, 2nd Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84/1, Prague 5 CZ-150 06, Czech Republic; [email protected] (J.P.); [email protected] (J.H.) 2 Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030/8, Prague 2 CZ-128 43, Czech Republic; [email protected] * Correspondence: [email protected]; Tel.: +42-060-636-4730 Received: 14 May 2017; Accepted: 27 June 2017; Published: 1 July 2017 Abstract: Carcinogenesis cannot be explained only by genetic alterations, but also involves epigenetic processes. Modification of histones by acetylation plays a key role in epigenetic regulation of gene expression and is controlled by the balance between histone deacetylases (HDAC) and histone acetyltransferases (HAT). HDAC inhibitors induce cancer cell cycle arrest, differentiation and cell death, reduce angiogenesis and modulate immune response. Mechanisms of anticancer effects of HDAC inhibitors are not uniform; they may be different and depend on the cancer type, HDAC inhibitors, doses, etc. HDAC inhibitors seem to be promising anti-cancer drugs particularly in the combination with other anti-cancer drugs and/or radiotherapy. HDAC inhibitors vorinostat, romidepsin and belinostat have been approved for some T-cell lymphoma and panobinostat for multiple myeloma. Other HDAC inhibitors are in clinical trials for the treatment of hematological and solid malignancies. The results of such studies are promising but further larger studies are needed.
    [Show full text]
  • An Overview of Epigenetic Agents and Natural Nutrition Products Targeting
    Food and Chemical Toxicology 123 (2019) 574–594 Contents lists available at ScienceDirect Food and Chemical Toxicology journal homepage: www.elsevier.com/locate/foodchemtox Review An overview of epigenetic agents and natural nutrition products targeting T DNA methyltransferase, histone deacetylases and microRNAs ∗∗ Deyu Huanga, LuQing Cuia, Saeed Ahmeda, Fatima Zainabb, Qinghua Wuc, Xu Wangb, , ∗ Zonghui Yuana,b, a The Key Laboratory for the Detection of Veterinary Drug Residues, Ministry of Agriculture, PR China b Laboratory of Quality & Safety Risk Assessment for Livestock and Poultry Products (Wuhan), Ministry of Agriculture, PR China c College of Life Science, Institute of Biomedicine, Yangtze University, Jingzhou, 434025, China ARTICLE INFO ABSTRACT Keywords: Several humans’ diseases such as; cancer, heart disease, diabetes retain an etiology of epigenetic, and a new Epigenetic therapy therapeutic option termed as “epigenetic therapy” can offer a potential way to treat these diseases. A numbers of DNMT epigenetic agents such as; inhibitors of DNA methyltransferase (DNMT) and histone deacetylases (HDACs) have HDAC grew an intensive investigation, and many of these agents are currently being tested in a clinical trial, while microRNA some of them have been approved for the use by the authorities. Since miRNAs can act as tumor suppressors or DNA methylation oncogenes, the miRNA mimics and molecules targeted at miRNAs (antimiRs) have been designed to treat some of Histone modifications the diseases. Much naturally occurring nutrition were discovered to alter the epigenetic states of cells. The nutrition, including polyphenol, flavonoid compounds, and cruciferous vegetables possess multiple beneficial effects, and some can simultaneously change the DNA methylation, histone modifications and expressionof microRNA (miRNA).
    [Show full text]
  • The Histone Deacetylase Inhibitor Abexinostat Induces Cancer Stem Cells Differentiation in Breast Cancer with Low Xist Expression
    Published OnlineFirst October 18, 2013; DOI: 10.1158/1078-0432.CCR-13-0877 Clinical Cancer Predictive Biomarkers and Personalized Medicine Research The Histone Deacetylase Inhibitor Abexinostat Induces Cancer Stem Cells Differentiation in Breast Cancer with Low Xist Expression Marion A. Salvador1,3,4, Julien Wicinski1,3,4, Olivier Cabaud1,3,4, Yves Toiron3,4,5, Pascal Finetti1,3,4, Emmanuelle Josselin1,3,4,Hel ene Lelievre 6, Laurence Kraus-Berthier6,Stephane Depil6, Francois¸ Bertucci1,3,4, Yves Collette3,4,5, Daniel Birnbaum1,3,4, Emmanuelle Charafe-Jauffret1,2,3,4, and Christophe Ginestier1,3,4 Abstract Purpose: Cancer stem cells (CSC) are the tumorigenic cell population that has been shown to sustain tumor growth and to resist conventional therapies. The purpose of this study was to evaluate the potential of histone deacetylase inhibitors (HDACi) as anti-CSC therapies. Experimental Design: We evaluated the effect of the HDACi compound abexinostat on CSCs from 16 breast cancer cell lines (BCL) using ALDEFLUOR assay and tumorsphere formation. We performed gene expression profiling to identify biomarkers predicting drug response to abexinostat. Then, we used patient- derived xenograft (PDX) to confirm, in vivo, abexinostat treatment effect on breast CSCs according to the identified biomarkers. Results: We identified two drug-response profiles to abexinostat in BCLs. Abexinostat induced CSC differentiation in low-dose sensitive BCLs, whereas it did not have any effect on the CSC population from high-dose sensitive BCLs. Using gene expression profiling, we identified the long noncoding RNA Xist (X- inactive specific transcript) as a biomarker predicting BCL response to HDACi. We validated that low Xist expression predicts drug response in PDXs associated with a significant reduction of the breast CSC population.
    [Show full text]
  • Targeting Histone Deacetylases with Natural and Synthetic Agents: an Emerging Anticancer Strategy
    nutrients Review Targeting Histone Deacetylases with Natural and Synthetic Agents: An Emerging Anticancer Strategy Amit Kumar Singh 1 ID , Anupam Bishayee 2 ID and Abhay K. Pandey 1,* ID 1 Department of Biochemistry, University of Allahabad, Allahabad 211 002, Uttar Pradesh, India; [email protected] 2 Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, Miami, FL 33169, USA; [email protected] or [email protected] * Correspondence: [email protected]; Tel.: +91-983-952-1138 Received: 7 May 2018; Accepted: 4 June 2018; Published: 6 June 2018 Abstract: Cancer initiation and progression are the result of genetic and/or epigenetic alterations. Acetylation-mediated histone/non-histone protein modification plays an important role in the epigenetic regulation of gene expression. Histone modification is controlled by the balance between histone acetyltransferase and (HAT) and histone deacetylase (HDAC) enzymes. Imbalance between the activities of these two enzymes is associated with various forms of cancer. Histone deacetylase inhibitors (HDACi) regulate the activity of HDACs and are being used in cancer treatment either alone or in combination with other chemotherapeutic drugs/radiotherapy. The Food and Drug Administration (FDA) has already approved four compounds, namely vorinostat, romidepsin, belinostat, and panobinostat, as HDACi for the treatment of cancer. Several other HDACi of natural and synthetic origin are under clinical trial for the evaluation of efficiency and side-effects. Natural compounds of plant, fungus, and actinomycetes origin, such as phenolics, polyketides, tetrapeptide, terpenoids, alkaloids, and hydoxamic acid, have been reported to show potential HDAC-inhibitory activity. Several HDACi of natural and dietary origin are butein, protocatechuic aldehyde, kaempferol (grapes, green tea, tomatoes, potatoes, and onions), resveratrol (grapes, red wine, blueberries and peanuts), sinapinic acid (wine and vinegar), diallyl disulfide (garlic), and zerumbone (ginger).
    [Show full text]
  • S13229-020-00387-6.Pdf
    Cavallo et al. Molecular Autism (2020) 11:88 https://doi.org/10.1186/s13229-020-00387-6 RESEARCH Open Access High-throughput screening identifes histone deacetylase inhibitors that modulate GTF2I expression in 7q11.23 microduplication autism spectrum disorder patient-derived cortical neurons Francesca Cavallo1†, Flavia Troglio2†, Giovanni Fagà3,4, Daniele Fancelli3,4, Reinald Shyti2, Sebastiano Trattaro1,2, Matteo Zanella2,10, Giuseppe D’Agostino2,11, James M. Hughes2,12, Maria Rosaria Cera3,4, Maurizio Pasi3,4, Michele Gabriele2,13, Maddalena Lazzarin1, Marija Mihailovich1,2, Frank Kooy9, Alessandro Rosa5,6, Ciro Mercurio3,4, Mario Varasi3,4 and Giuseppe Testa2,7,8* Abstract Background: Autism spectrum disorder (ASD) is a highly prevalent neurodevelopmental condition afecting almost 1% of children, and represents a major unmet medical need with no efective drug treatment available. Duplication at 7q11.23 (7Dup), encompassing 26–28 genes, is one of the best characterized ASD-causing copy number variations and ofers unique translational opportunities, because the hemideletion of the same interval causes Williams–Beuren syndrome (WBS), a condition defned by hypersociability and language strengths, thereby providing a unique refer- ence to validate treatments for the ASD symptoms. In the above-indicated interval at 7q11.23, defned as WBS critical region, several genes, such as GTF2I, BAZ1B, CLIP2 and EIF4H, emerged as critical for their role in the pathogenesis of WBS and 7Dup both from mouse models and human studies. Methods: We performed a high-throughput screening of 1478 compounds, including central nervous system agents, epigenetic modulators and experimental substances, on patient-derived cortical glutamatergic neurons dif- ferentiated from our cohort of induced pluripotent stem cell lines (iPSCs), monitoring the transcriptional modulation of WBS interval genes, with a special focus on GTF2I, in light of its overriding pathogenic role.
    [Show full text]