Concatenative Synthesis Applied to Rhythm

Total Page:16

File Type:pdf, Size:1020Kb

Concatenative Synthesis Applied to Rhythm UNIVERSIDADE DE COIMBRA MASTER THESIS Concatenative Synthesis Applied to Rhythm Author: Supervisors: Francisco MONTEIRO Dr. Amílcar CARDOSO Dr. Fernando PERDIGÃO Dr. Pedro MARTINS A thesis submitted in fulfillment of the requirements for the degree of Mestrado Integrado em Engenheria Eletrotécnica e Computadores in the Departmento de Engenheria Eletrotécnica e Computadores February 19, 2019 iii Declaration of Authorship I, Francisco MONTEIRO, declare that this thesis titled, “Concatenative Synthesis Applied to Rhythm” and the work presented in it are my own. I confirm that: • Where any part of this thesis has previously been submitted for a degree or any other qualification at this University or any other institution, this has been clearly stated. • Where I have consulted the published work of others, this is always clearly attributed. • Where I have quoted from the work of others, the source is always given. With the exception of such quotations, this thesis is entirely my own work. • I have acknowledged all main sources of help. • Where the thesis is based on work done by myself jointly with others, I have made clear exactly what was done by others and what I have contributed my- self. Signed: Date: v “When I’m writing, sometimes it gets to that place where I feel like the piece is writing itself and I’m trying not to get in the way.” John Zorn vii UNIVERSIDADE DE COIMBRA Abstract Faculdade de Ciências e Tecnologia Departmento de Engenheria Eletrotécnica e Computadores Mestrado Integrado em Engenheria Eletrotécnica e Computadores Concatenative Synthesis Applied to Rhythm by Francisco MONTEIRO Music and Technology have a long symbiotic history together and became even more related in recent times, when technology is so present in our everyday lives. Technological breakthroughs have greatly impacted the way many tasks are carried, including the music composition process. The digital era allowed the access to large databases of music and sounds on digital format and has changed the way we cre- ate music. There is an ongoing need to develop new tools and new ways to explore these new possibilities. Different forms of sound synthesis have surfaced over the years, including Granular and Concatenative Synthesis, which offered the ability to use these unlimited sound databases. Alongside with these, developments in the Music Information Retrieval field opened doors for sound interpretation, improv- ing the indexing ability of digital files. We have seen Concatenative Synthesis being applied in the past for speech synthesis and for music composition, but few applica- tions focused on live generation of rhythms. We propose a Concatenative Synthesizer oriented towards rhythmic composi- tion, which has the ability to create its own drum kit by interpreting an input drum audio signal. The system then recreates the input through different ways, includ- ing an variation algorithm based on Euclidean Rhythms. It was implemented in the programming language Max/MSP and the extension Max For Live, in order to make it usable in the DAW environment. We have also created a basic interface to interact with the user. In the end, we present a user-based evaluation and discuss the possible future developments. ix Acknowledgements To my family, the unwavering pillar of my life. To all of them, a big acknowledge- ment for the unconditional love. Julia for for the comprehension and eternal pa- tience. Diogo for always being there, even when I’m the worst. Mário for the eternal support and for being my biggest music influence. Arménio, Graciema, Emília and Adriano. All my uncles, aunts and cousins. You are everything to me. To my supervisors, Amílcar Cardoso, Pedro Martins and Fernando Perdigão for believing in my project, for their constant support, for always leaving the door open for me and bringing me down to earth when I needed. To all my friends. Antonio for all the help in this entire project and for the end- less discussions about music. Filipe for the tips, the design help and the being the greatest person on the planet. Bicá, Craveiro, Gonçalo, Martins, João, Joana, Ritas, Maria, Francisco, Bernardo, Miguel, Ivan, Gabriel, António and many many more, way too many to mention. Seriously, thank you all. To all my friends, colleagues and mentors from Radio Universidade de Coimbra who taught and still teach me everyday so much about music. A shoutout to the Magia Negra crew. To all those who participated in the tests. xi Contents Declaration of Authorship iii Abstract vii Acknowledgements ix 1 Introduction1 1.1 Context.....................................1 1.2 Goals......................................2 1.3 Motivation...................................2 1.4 Structure....................................3 2 State of the Art5 2.1 Automatic Composition...........................5 2.1.1 Algorithmic Composition......................6 2.1.2 Computer-Aided Algorithmic Composition...........8 2.2 Concatenative Synthesis...........................8 2.3 Music Information Retrieval......................... 11 2.3.1 Drum Transcription......................... 14 2.4 Conclusion................................... 16 3 Methodology 17 3.1 Conceptualization............................... 17 3.2 Objectives................................... 17 3.3 Process..................................... 18 3.4 Task Planning................................. 18 4 System Description 21 4.1 Definition................................... 21 4.2 Tools...................................... 22 4.2.1 Ableton Live............................. 22 4.2.2 Max/MSP............................... 23 4.2.3 Max For Live............................. 24 4.3 Implementation................................ 25 4.3.1 Unit Definition............................ 25 4.3.2 The Sampler: chucker~ ........................ 27 4.3.3 Segment Analysis........................... 29 4.4 Concatenative Synthesizer.......................... 32 4.4.1 Main Sequence............................ 32 4.4.2 Euclidean Rhythms.......................... 33 4.4.3 Concatenation Process........................ 35 4.5 Interface.................................... 37 4.6 Conclusion................................... 38 xii 5 Tests and Evaluation 39 5.1 Testing Method................................ 39 5.2 Questions................................... 40 5.3 Answers.................................... 40 6 Conclusions and Future Work 45 6.1 Future Work.................................. 46 Bibliography 49 A Max/MSP Patchers 53 A.1 Chucker Arguments............................. 53 A.2 Analysis.................................... 54 A.3 Synthesis.................................... 54 B Sequence Database Creation 59 B.1 Matlab Scripts................................. 59 B.1.1 main.m ................................. 59 B.1.2 ExtractDrum.m ............................ 60 B.1.3 WriteLine.m .............................. 61 B.1.4 LineCount.m .............................. 61 B.2 Drum Articulation.............................. 62 xiii List of Figures 2.1 Brian Eno’s Scape ...............................7 2.2 CataRT interface................................9 2.3 Eargram interface............................... 10 2.4 RhythmCAT interface............................ 11 2.5 Illustration of traditional drum instrument sounds............ 15 3.1 Task Planning................................. 19 4.1 Device Diagram................................ 21 4.2 Ableton Live 9 interface........................... 22 4.3 Ableton Temporal Control Bar........................ 22 4.4 MAX/MSP Final Patch............................ 23 4.5 Interface Patcher............................... 24 4.6 Excerpt of a Music Score........................... 25 4.7 Roland Tr-909................................. 26 4.8 Unquantized Drum Break Segmentation.................. 27 4.9 Quantized Drum Break Segmentation................... 28 4.10 Spectral Representation of a Drum Sound................. 29 4.11 Diagram representing the Analysis Process................ 30 4.12 Patcher: AnalysisSegm............................ 31 4.13 Fixed Segmentation Problem illustration.................. 32 4.14 Euclidean Rhythm Geometric Representation............... 34 4.15 Patcher: Concatenation Process....................... 35 4.16 Spectral Analysis of Sample Length Correction.............. 36 4.17 Max For Live Device Interface........................ 37 5.1 Test Form.................................... 41 5.2 Answers 1, 2, 3................................. 42 5.3 Answers 4, 5, 6................................. 43 A.1 Patcher: DrumChuckers........................... 53 A.2 Patcher: LDT kNN.............................. 54 A.6 Patcher: loadfile................................ 54 A.3 Patcher: FilterOutGhost........................... 55 A.4 Patcher: FindIsolated............................. 56 A.5 Patcher: findDrumLength.......................... 57 A.7 Patcher: LengthCorrection.......................... 58 xv List of Tables 2.1 MIR Subfields................................. 13 2.2 Drum Transcription Tasks.......................... 13 4.1 Example of chucker~ list based communication.............. 28 B.1 Drum Articulation Example......................... 62 xvii List of Abbreviations ADC Analog (to) Digital Conversion ADSR Attack Decay Sustain Release BFCC Bark (-) Frequency Cepstrum Coefficients BPM Beats Per Minute CAAC Computer (-) Aided Algorithmic Composition DAW Digital Audio Workstation DSP Digital Signal Processing GUI Graphical User Interface tools HMM Hidden Markov Model LVT Live Drum Transcription
Recommended publications
  • Estimating Complex Production Functions: the Importance of Starting Values
    Version: January 26 Estimating complex production functions: The importance of starting values Mark Neal Presented at the 51st Australian Agricultural and Resource Economics Society Conference, Queenstown, New Zealand, 14-16 February, 2007. Postdoctoral Research Fellow Risk and Sustainable Management Group University of Queensland Room 519, School of Economics, Colin Clark Building (39) University of Queensland, St Lucia, QLD, 4072 Email: [email protected] Ph: +61 (0) 7 3365 6601 Fax: +61 (0) 7 3365 7299 http://www.uq.edu.au/rsmg Acknowledgements Chris O’Donnell helpfully provided access to Gauss code that he had written for estimation of latent class models so it could be translated into Shazam. Leighton Brough (UQ), Ariel Liebman (UQ) and Tom Pechey (UMelb) helped by organising a workshop with Nimrod/enFuzion at UQ in June 2006. enFuzion (via Rok Sosic) provided a limited license for use in the project. Leighton Brough, tools coordinator for the ARC Centre for Complex Systems (ACCS), assisted greatly in setting up an enFuzion grid and collating the large volume of results. Son Nghiem provided assistance in collating and analysing data as well as in creating some of the figures. Page 1 of 30 Version: January 26 ABSTRACT Production functions that take into account uncertainty can be empirically estimated by taking a state contingent view of the world. Where there is no a priori information to allocate data amongst a small number of states, the estimation may be carried out with finite mixtures model. The complexity of the estimation almost guarantees a large number of local maxima for the likelihood function.
    [Show full text]
  • Apple / Shazam Merger Procedure Regulation (Ec)
    EUROPEAN COMMISSION DG Competition CASE M.8788 – APPLE / SHAZAM (Only the English text is authentic) MERGER PROCEDURE REGULATION (EC) 139/2004 Article 8(1) Regulation (EC) 139/2004 Date: 06/09/2018 This text is made available for information purposes only. A summary of this decision is published in all EU languages in the Official Journal of the European Union. Parts of this text have been edited to ensure that confidential information is not disclosed; those parts are enclosed in square brackets. EUROPEAN COMMISSION Brussels, 6.9.2018 C(2018) 5748 final COMMISSION DECISION of 6.9.2018 declaring a concentration to be compatible with the internal market and the EEA Agreement (Case M.8788 – Apple/Shazam) (Only the English version is authentic) TABLE OF CONTENTS 1. Introduction .................................................................................................................. 6 2. The Parties and the Transaction ................................................................................... 6 3. Jurisdiction of the Commission .................................................................................... 7 4. The procedure ............................................................................................................... 8 5. The investigation .......................................................................................................... 8 6. Overview of the digital music industry ........................................................................ 9 6.1. The digital music distribution value
    [Show full text]
  • Statistics and GIS Assistance Help with Statistics
    Statistics and GIS assistance An arrangement for help and advice with regard to statistics and GIS is now in operation, principally for Master’s students. How do you seek advice? 1. The users, i.e. students at INA, make direct contact with the person whom they think can help and arrange a time for consultation. Remember to be well prepared! 2. Doctoral students and postdocs register the time used in Agresso (if you have questions about this contact Gunnar Jensen). Help with statistics Research scientist Even Bergseng Discipline: Forest economy, forest policies, forest models Statistical expertise: Regression analysis, models with random and fixed effects, controlled/truncated data, some time series modelling, parametric and non-parametric effectiveness analyses Software: Stata, Excel Postdoc. Ole Martin Bollandsås Discipline: Forest production, forest inventory Statistics expertise: Regression analysis, sampling Software: SAS, R Associate Professor Sjur Baardsen Discipline: Econometric analysis of markets in the forest sector Statistical expertise: General, although somewhat “rusty”, expertise in many econometric topics (all-rounder) Software: Shazam, Frontier Associate Professor Terje Gobakken Discipline: GIS og long-term predictions Statistical expertise: Regression analysis, ANOVA and PLS regression Software: SAS, R Ph.D. Student Espen Halvorsen Discipline: Forest economy, forest management planning Statistical expertise: OLS, GLS, hypothesis testing, autocorrelation, ANOVA, categorical data, GLM, ANOVA Software: (partly) Shazam, Minitab og JMP Ph.D. Student Jan Vidar Haukeland Discipline: Nature based tourism Statistical expertise: Regression and factor analysis Software: SPSS Associate Professor Olav Høibø Discipline: Wood technology Statistical expertise: Planning of experiments, regression analysis (linear and non-linear), ANOVA, random and non-random effects, categorical data, multivariate analysis Software: R, JMP, Unscrambler, some SAS Ph.D.
    [Show full text]
  • Bab 1 Pendahuluan
    BAB 1 PENDAHULUAN Bab ini akan membahas pengertian dasar statistik dengan sub-sub pokok bahasan sebagai berikut : Sub Bab Pokok Bahasan A. Sejarah dan Perkembangan Statistik B. Tokoh-tokoh Kontributor Statistika C. Definisi dan Konsep Statistik Modern D. Kegunaan Statistik E. Pembagian Statistik F. Statistik dan Komputer G. Soal Latihan A. Sejarah dan Perkembangan Statistik Penggunaan istilah statistika berakar dari istilah-istilah dalam bahasa latin modern statisticum collegium (“dewan negara”) dan bahasa Italia statista (“negarawan” atau “politikus”). Istilah statistik pertama kali digunakan oleh Gottfried Achenwall (1719-1772), seorang guru besar dari Universitas Marlborough dan Gottingen. Gottfried Achenwall (1749) menggunakan Statistik dalam bahasa Jerman untuk pertama kalinya sebagai nama bagi kegiatan analisis data kenegaraan, dengan mengartikannya sebagai “ilmu tentang negara/state”. Pada awal abad ke- 19 telah terjadi pergeseran arti menjadi “ilmu mengenai pengumpulan dan klasifikasi data”. Sir John Sinclair memperkenalkan nama dan pengertian statistics ini ke dalam bahasa Inggris. E.A.W. Zimmerman mengenalkan kata statistics ke negeri Inggris. Kata statistics dipopulerkan di Inggris oleh Sir John Sinclair dalam karyanya: Statistical Account of Scotland 1791-1799. Namun demikian, jauh sebelum abad XVIII masyarakat telah mencatat dan menggunakan data untuk keperluan mereka. Pada awalnya statistika hanya mengurus data yang dipakai lembaga- lembaga administratif dan pemerintahan. Pengumpulan data terus berlanjut, khususnya melalui sensus yang dilakukan secara teratur untuk memberi informasi kependudukan yang selalu berubah. Dalam bidang pemerintahan, statistik telah digunakan seiring dengan perjalanan sejarah sejak jaman dahulu. Kitab perjanjian lama (old testament) mencatat adanya kegiatan sensus penduduk. Pemerintah kuno Babilonia, Mesir, dan Roma mengumpulkan data lengkap tentang penduduk dan kekayaan alam yang dimilikinya.
    [Show full text]
  • An Exploration of the Relationship Between Mathematics and Music
    An Exploration of the Relationship between Mathematics and Music Shah, Saloni 2010 MIMS EPrint: 2010.103 Manchester Institute for Mathematical Sciences School of Mathematics The University of Manchester Reports available from: http://eprints.maths.manchester.ac.uk/ And by contacting: The MIMS Secretary School of Mathematics The University of Manchester Manchester, M13 9PL, UK ISSN 1749-9097 An Exploration of ! Relation"ip Between Ma#ematics and Music MATH30000, 3rd Year Project Saloni Shah, ID 7177223 University of Manchester May 2010 Project Supervisor: Professor Roger Plymen ! 1 TABLE OF CONTENTS Preface! 3 1.0 Music and Mathematics: An Introduction to their Relationship! 6 2.0 Historical Connections Between Mathematics and Music! 9 2.1 Music Theorists and Mathematicians: Are they one in the same?! 9 2.2 Why are mathematicians so fascinated by music theory?! 15 3.0 The Mathematics of Music! 19 3.1 Pythagoras and the Theory of Music Intervals! 19 3.2 The Move Away From Pythagorean Scales! 29 3.3 Rameau Adds to the Discovery of Pythagoras! 32 3.4 Music and Fibonacci! 36 3.5 Circle of Fifths! 42 4.0 Messiaen: The Mathematics of his Musical Language! 45 4.1 Modes of Limited Transposition! 51 4.2 Non-retrogradable Rhythms! 58 5.0 Religious Symbolism and Mathematics in Music! 64 5.1 Numbers are God"s Tools! 65 5.2 Religious Symbolism and Numbers in Bach"s Music! 67 5.3 Messiaen"s Use of Mathematical Ideas to Convey Religious Ones! 73 6.0 Musical Mathematics: The Artistic Aspect of Mathematics! 76 6.1 Mathematics as Art! 78 6.2 Mathematical Periods! 81 6.3 Mathematics Periods vs.
    [Show full text]
  • 1 Reliability of Programming Software: Comparison of SHAZAM and SAS
    Reliability of Programming Software: Comparison of SHAZAM and SAS. Oluwarotimi Odeh Department of Agricultural Economics, Kansas State University, Manhattan, KS 66506-4011 Phone: (785)-532-4438 Fax: (785)-523-6925 Email: [email protected] Allen M. Featherstone Department of Agricultural Economics, Kansas State University, Manhattan, KS 66506-4011 Phone: (785)-532-4441 Fax: (785)-523-6925 Email: [email protected] Selected Paper for Presentation at the Western Agricultural Economics Association Annual Meeting, Honolulu, HI, June 30-July 2, 2004 Copyright 2004 by Odeh and Featherstone. All rights reserved. Readers may make verbatim copies for commercial purposes by any means, provided that this copyright notice appears on all such copies. 1 Reliability of Programming Software: Comparison of SHAZAM and SAS. Introduction The ability to combine quantitative methods, econometric techniques, theory and data to analyze societal problems has become one of the major strengths of agricultural economics. The inability of agricultural economists to perform this task perfectly in some cases has been linked to the fragility of econometric results (Learner, 1983; Tomek, 1993). While small changes in model specification may result in considerable impact and changes in empirical results, Hendry and Richard (1982) have shown that two models of the same relationship may result in contradicting result. Results like these weaken the value of applied econometrics (Tomek, 1993). Since the study by Tice and Kletke (1984) computer programming software have undergone tremendous improvements. However, experience in recent times has shown that available software packages are not foolproof and may not be as efficient and consistent as researchers often assume. Compounding errors, convergence, error due to how software read, interpret and process data impact the values of analytical results (see Tomek, 1993; Dewald, Thursby and Anderson, 1986).
    [Show full text]
  • 1 a NEW MUSIC COMPOSITION TECHNIQUE USING NATURAL SCIENCE DATA D.M.A Document Presented in Partial Fulfillment of the Requiremen
    A NEW MUSIC COMPOSITION TECHNIQUE USING NATURAL SCIENCE DATA D.M.A Document Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Musical Arts in the Graduate School of The Ohio State University By Joungmin Lee, B.A., M.M. Graduate Program in Music The Ohio State University 2019 D.M.A. Document Committee Dr. Thomas Wells, Advisor Dr. Jan Radzynski Dr. Arved Ashby 1 Copyrighted by Joungmin Lee 2019 2 ABSTRACT The relationship of music and mathematics are well documented since the time of ancient Greece, and this relationship is evidenced in the mathematical or quasi- mathematical nature of compositional approaches by composers such as Xenakis, Schoenberg, Charles Dodge, and composers who employ computer-assisted-composition techniques in their work. This study is an attempt to create a composition with data collected over the course 32 years from melting glaciers in seven areas in Greenland, and at the same time produce a work that is expressive and expands my compositional palette. To begin with, numeric values from data were rounded to four-digits and converted into frequencies in Hz. Moreover, the other data are rounded to two-digit values that determine note durations. Using these transformations, a prototype composition was developed, with data from each of the seven Greenland-glacier areas used to compose individual instrument parts in a septet. The composition Contrast and Conflict is a pilot study based on 20 data sets. Serves as a practical example of the methods the author used to develop and transform data. One of the author’s significant findings is that data analysis, albeit sometimes painful and time-consuming, reduced his overall composing time.
    [Show full text]
  • Peer Institution Research: Recommendations and Trends 2016
    Peer Institution Research: Recommendations and Trends 2016 New Mexico State University Abstract This report evaluates the common technology services from New Mexico State University’s 15 peer institutions. Based on the findings, a summary of recommendations and trends are explained within each of the general areas researched: peer institution enrollment, technology fees, student computing, software, help desk services, classroom technology, equipment checkout and loan programs, committees and governing bodies on technology, student and faculty support, printing, emerging technologies and trends, homepage look & feel and ease of navigation, UNM and UTEP my.nmsu.edu comparison, top IT issues, and IT organization charts. Peer Institution Research 1 Table of Contents Peer Institution Enrollment ................................................................................. 3 Technology Fees ................................................................................................. 3 Student Computing ............................................................................................. 6 Software ............................................................................................................. 8 Help Desk Services .............................................................................................. 9 Classroom Technology ...................................................................................... 11 Equipment Checkout and Loan Programs .........................................................
    [Show full text]
  • The Euclidean Algorithm Generates Traditional Musical Rhythms
    The Euclidean Algorithm Generates Traditional Musical Rhythms Godfried Toussaint∗ School of Computer Science, McGill University Montreal,´ Quebec,´ Canada [email protected] Abstract The Euclidean algorithm (which comes down to us from Euclid’s Elements) computes the greatest com- mon divisor of two given integers. It is shown here that the structure of the Euclidean algorithm may be used to generate, very efficiently, a large family of rhythms used as timelines (ostinatos), in sub-Saharan African music in particular, and world music in general. These rhythms, here dubbed Euclidean rhythms, have the property that their onset patterns are distributed as evenly as possible. Euclidean rhythms also find application in nuclear physics accelerators and in computer science, and are closely related to several families of words and sequences of interest in the study of the combinatorics of words, such as Euclidean strings, to which the Euclidean rhythms are compared. 1. Introduction What do African rhythms, spallation neutron source (SNS) accelerators in nuclear physics, string theory (stringology) in computer science, and an ancient algorithm described by Euclid have in common? The short answer is: patterns distributed as evenly as possible. For the long answer please read on. Mathematics and music have been intimately intertwined since the days of Pythagoras. However, most of this interaction has been in the domain of pitch and scales. For some historical snapshots of this interaction the reader is referred to H. S. M. Coxeter’s delightful account [9]. Rhythm, on the other hand has been his- torically mostly ignored. Here we make some mathematical connections between musical rhythm and other areas of knowledge such as nuclear physics and computer science, as well as the work of another famous ancient Greek mathematician, Euclid of Alexandria.
    [Show full text]
  • Insight MFR By
    Manufacturers, Publishers and Suppliers by Product Category 11/6/2017 10/100 Hubs & Switches ASCEND COMMUNICATIONS CIS SECURE COMPUTING INC DIGIUM GEAR HEAD 1 TRIPPLITE ASUS Cisco Press D‐LINK SYSTEMS GEFEN 1VISION SOFTWARE ATEN TECHNOLOGY CISCO SYSTEMS DUALCOMM TECHNOLOGY, INC. GEIST 3COM ATLAS SOUND CLEAR CUBE DYCONN GEOVISION INC. 4XEM CORP. ATLONA CLEARSOUNDS DYNEX PRODUCTS GIGAFAST 8E6 TECHNOLOGIES ATTO TECHNOLOGY CNET TECHNOLOGY EATON GIGAMON SYSTEMS LLC AAXEON TECHNOLOGIES LLC. AUDIOCODES, INC. CODE GREEN NETWORKS E‐CORPORATEGIFTS.COM, INC. GLOBAL MARKETING ACCELL AUDIOVOX CODI INC EDGECORE GOLDENRAM ACCELLION AVAYA COMMAND COMMUNICATIONS EDITSHARE LLC GREAT BAY SOFTWARE INC. ACER AMERICA AVENVIEW CORP COMMUNICATION DEVICES INC. EMC GRIFFIN TECHNOLOGY ACTI CORPORATION AVOCENT COMNET ENDACE USA H3C Technology ADAPTEC AVOCENT‐EMERSON COMPELLENT ENGENIUS HALL RESEARCH ADC KENTROX AVTECH CORPORATION COMPREHENSIVE CABLE ENTERASYS NETWORKS HAVIS SHIELD ADC TELECOMMUNICATIONS AXIOM MEMORY COMPU‐CALL, INC EPIPHAN SYSTEMS HAWKING TECHNOLOGY ADDERTECHNOLOGY AXIS COMMUNICATIONS COMPUTER LAB EQUINOX SYSTEMS HERITAGE TRAVELWARE ADD‐ON COMPUTER PERIPHERALS AZIO CORPORATION COMPUTERLINKS ETHERNET DIRECT HEWLETT PACKARD ENTERPRISE ADDON STORE B & B ELECTRONICS COMTROL ETHERWAN HIKVISION DIGITAL TECHNOLOGY CO. LT ADESSO BELDEN CONNECTGEAR EVANS CONSOLES HITACHI ADTRAN BELKIN COMPONENTS CONNECTPRO EVGA.COM HITACHI DATA SYSTEMS ADVANTECH AUTOMATION CORP. BIDUL & CO CONSTANT TECHNOLOGIES INC Exablaze HOO TOO INC AEROHIVE NETWORKS BLACK BOX COOL GEAR EXACQ TECHNOLOGIES INC HP AJA VIDEO SYSTEMS BLACKMAGIC DESIGN USA CP TECHNOLOGIES EXFO INC HP INC ALCATEL BLADE NETWORK TECHNOLOGIES CPS EXTREME NETWORKS HUAWEI ALCATEL LUCENT BLONDER TONGUE LABORATORIES CREATIVE LABS EXTRON HUAWEI SYMANTEC TECHNOLOGIES ALLIED TELESIS BLUE COAT SYSTEMS CRESTRON ELECTRONICS F5 NETWORKS IBM ALLOY COMPUTER PRODUCTS LLC BOSCH SECURITY CTC UNION TECHNOLOGIES CO FELLOWES ICOMTECH INC ALTINEX, INC.
    [Show full text]
  • The Distance Geometry of Music
    The Distance Geometry of Music Erik D. Demaine∗ Francisco Gomez-Martin† Henk Meijer‡ David Rappaport§ Perouz Taslakian¶ Godfried T. Toussaint§k Terry Winograd∗∗ David R. Wood†† Abstract We demonstrate relationships between the classical Euclidean algorithm and many other fields of study, particularly in the context of music and distance geometry. Specifically, we show how the structure of the Euclidean algorithm defines a family of rhythms that encompass over forty timelines (ostinatos) from traditional world music. We prove that these Euclidean rhythms have the mathematical property that their onset patterns are distributed as evenly as possible: they maximize the sum of the Euclidean distances between all pairs of onsets, viewing onsets as points on a circle. Indeed, Euclidean rhythms are the unique rhythms that maximize this notion of evenness. We also show that essentially all Euclidean rhythms are deep: each distinct distance between onsets occurs with a unique multiplicity, and these multiplicities form an interval 1, 2, . , k − 1. Finally, we characterize all deep rhythms, showing that they form a subclass of generated rhythms, which in turn proves a useful property called shelling. All of our results for musical rhythms apply equally well to musical scales. In addition, many of the problems we explore are interesting in their own right as distance geometry problems on the circle; some of the same problems were explored by Erd˝osin the plane. ∗Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology,
    [Show full text]
  • Euclidean Rhythm Music Sequencer Using Actors in Python
    Euclidean Rhythm Music Sequencer using Actors in Python Daniel Prince Department of Electrical and Computer Engineering University of Dayton 300 College Park Dayton, Ohio 45469 USA [email protected] ABSTRACT entry by the user, and can feel tedious at worst. In this A real-time sequencer that implements the Euclidean Rhythm work, the Euclidean rhythm algorithm is explored for its Algorithm is created for creative generation of drum se- immediacy and ability to quickly define complex sequences. quences by musicians or producers. The Actor model of Audio production software necessitates a unique set of concurrency is used to simplify the communication required technical demands in order to facilitate an experience con- for interactivity and musical timing. Generator comprehen- sistent with modern standards. Software used for music pro- sions and higher-order functions are used for simplification. duction must not only provide precise timing for the gener- The resulting application sends Musical Instrument Digital ation and playback of musical passages that often involves Interface data interactively to another application for sound demanding digital signal processing algorithms, but it must generation. also provide an interface to a user that allows for real-time configuration of the model behind the music. This combi- nation of synchronous and asynchronous work is a demand- 1. INTRODUCTION ing task for synchronization models. Fundamental models A vast range of music production software has become of synchronization such as semaphores would be difficult to available recently due to the increasing power of personal scale to applications involving several concurrent tasks. Due computers and increasing popularity of audio production to the complex synchronization issues related to creating an among hobbyists and professionals alike.
    [Show full text]