Bacterial Endophytes: Exploration of Methods and Analysis of Community Variation

Total Page:16

File Type:pdf, Size:1020Kb

Bacterial Endophytes: Exploration of Methods and Analysis of Community Variation Bacterial Endophytes: Exploration of Methods and Analysis of Community Variation by Shu Yi Shen A thesis submitted in conformity with the requirements for the degree of Master of Science Ecology and Evolutionary Biology University of Toronto © Copyright by Shu Yi Shen 2013 Bacterial Endophytes: Exploration of Methods and Analysis of Community Variation Shu Yi Shen Master of Science Ecology and Evolutionary Biology University of Toronto 2013 Abstract Bacterial endophytes, bacteria residing within plants, play an important role in the growth and development of plants and their ability to thrive under adverse conditions. The endophytes of Acer negundo, Ulmus pumila and Ulmus parvifolia trees sampled from a hydrocarbon- contaminated site were analyzed for variation between seasons and plant species. Branches from the same trees over a span of 3 seasons were collected and analyzed via culture dependent and culture independent methods. Numerous culture independent approaches were tested, culminating in the development of a new method for the amplification of endophytic bacterial ribosomal DNA that excludes plastid DNA. Community analyses using this new method in combination with T-RFLP showed significant differences between the endophytic communities of different plants species and of the same species growing in different seasons. The proposed technique can be used for the future study of endophytic communities of plants. ii Acknowledgments I would like to first and foremost thank my supervisor, Dr. Roberta Fulthorpe, for allowing me to carry out this project under her supervision. I am very thankful for your constant motivation, support and guidance throughout this project and through my moments of panic and irrationality. I would like to all the past and present members of the Fulthorpe Lab who have helped me along the way: Tony Qian for all your help with programming and being a sounding board for ideas, providing an analytical view to everything in life; Nicole Ricker for your great life advice, knowledge of almost everything there is to know about anything and the calmness you bring to the lab; Rosemary for the fun you brought into the lab and to Rhea Lumactud for all the help you have provided me with everything from going to the field and sampling, helping me process my samples, keeping me company in the late lab nights and helping me understand stats. I will miss the talks and lab karaoke that got me through the long days and nights in the lab. Specials thanks goes out to other people who have helped with various aspects of this project: Richard Dickinson for helping me identify all the trees species, you still amaze me with your knowledge and ability to identify plants in general and Thanushiga Theivendram for helping me streak out bacteria, I know it wasn't easy but thanks for doing it. Lastly I would like to thank my family for being there as a constant source of support and encouragement through the ups and downs of this project and my life. iii Table of Contents Acknowledgments ........................................................................................................................ iii Table of Contents ......................................................................................................................... iv List of Tables ............................................................................................................................... vii List of Figures............................................................................................................................... ix List of Appendices....................................................................................................................... xx Chapter 1 An Introduction to Bacterial Endophytes ................................................................ 1 1.1 General Introduction.......................................................................................................... 1 1.2 Current Culture Independent Methods for Studying Endophytes ................................ 4 Chapter 2 Analysis of Molecular Methods for Post Extraction Exclusion of Plastid Amplicons and Analysis of Endophytic Community................................................................. 9 2.1 Methods................................................................................................................................ 9 2.1.1 Database Analysis of Primers ...................................................................................................9 2.1.2 Surface sterilization of Acer negundo and Ulmus spp. Branches ........................................10 2.1.3 Isolation of DNA from Acer negundo and Ulmus spp. Branches.........................................11 2.1.4 Isolation of Plastid 16S rRNA Amplicons..............................................................................11 2.1.5 Primer Testing on Extracted Plastid Amplicons ..................................................................12 2.2 Results ................................................................................................................................ 13 2.2.1 Database Analysis of Primers .................................................................................................13 2.2.2 Isolation of Plastid Amplicons ................................................................................................15 2.2.3 Analysis of Primer 783R..........................................................................................................15 2.2.3 Primer Testing on Extracted Plastid Amplicons ..................................................................16 2.2.4 Preliminary Testing of Plastid Excluding Primers on Extracted Plant Samples ..............17 2.3 Discussion.......................................................................................................................... 18 Chapter 3 Physical Separation of Plastid Cells via Differential Centrifugation and Density Gradient Centrifugation............................................................................................................. 21 3.1 Introduction....................................................................................................................... 21 3.2 Method .............................................................................................................................. 22 iv 3.2.1 Preparation of Plant Macerate ...............................................................................................22 3.2.2 Differential Centrifugation of the Macerate .........................................................................23 3.2.3 Sucrose Density Gradient Centrifugation .............................................................................23 3.3 Results ................................................................................................................................ 25 3.3.1 Differential Centrifugation of the Macerate .........................................................................25 3.3.2 Sucrose Density Gradient Centrifugation .............................................................................26 3.4 Discussion........................................................................................................................... 29 Chapter 4 Subtractive Hybridization........................................................................................ 32 4.1 Introduction....................................................................................................................... 32 4.2 Methods.............................................................................................................................. 34 4.2.1 Designing Plastid Specific Probes...........................................................................................34 4.2.2 Binding of Magnetic Beads to Phosphorus Dendrimers ......................................................34 4.2.3 Immobilization of Oligonucleotide Probes ............................................................................35 4.2.4 Subtractive Hybridization.......................................................................................................36 4.3 Results ................................................................................................................................ 39 4.3.1 Plastid Specific Probe ..............................................................................................................39 4.3.2 Subtractive Hybridization.......................................................................................................40 4.4 Discussion.......................................................................................................................... 42 Chapter 5 Enzymatic Digestion of Genomic DNA samples .................................................... 46 5.1 Introduction....................................................................................................................... 46 5.2 Methods.............................................................................................................................. 47 5.2.1 Database Analysis of Restriction Enzymes............................................................................47 5.2.2 Enzymatic Digest of DNA and Amplification of Bacterial DNA .........................................47 5.2.3 Amplification using DGGE primers ......................................................................................48
Recommended publications
  • Ice-Nucleating Particles Impact the Severity of Precipitations in West Texas
    Ice-nucleating particles impact the severity of precipitations in West Texas Hemanth S. K. Vepuri1,*, Cheyanne A. Rodriguez1, Dimitri G. Georgakopoulos4, Dustin Hume2, James Webb2, Greg D. Mayer3, and Naruki Hiranuma1,* 5 1Department of Life, Earth and Environmental Sciences, West Texas A&M University, Canyon, TX, USA 2Office of Information Technology, West Texas A&M University, Canyon, TX, USA 3Department of Environmental Toxicology, Texas Tech University, Lubbock, TX, USA 4Department of Crop Science, Agricultural University of Athens, Athens, Greece 10 *Corresponding authors: [email protected] and [email protected] Supplemental Information 15 S1. Precipitation and Particulate Matter Properties S1.1 Precipitation Categorization In this study, we have segregated our precipitation samples into four different categories, such as (1) snows, (2) hails/thunderstorms, (3) long-lasted rains, and (4) weak rains. For this categorization, we have considered both our observation-based as well as the disdrometer-assigned National Weather Service (NWS) 20 code. Initially, the precipitation samples had been assigned one of the four categories based on our manual observation. In the next step, we have used each NWS code and its occurrence in each precipitation sample to finalize the precipitation category. During this step, a precipitation sample was categorized into snow, only when we identified a snow type NWS code (Snow: S-, S, S+ and/or Snow Grains: SG). Likewise, a precipitation sample was categorized into hail/thunderstorm, only when the cumulative sum of NWS codes for hail was 25 counted more than five times (i.e., A + SP ≥ 5; where A and SP are the codes for soft hail and hail, respectively).
    [Show full text]
  • Phylogenetic Analyses of the Genus Hymenobacter and Description of Siccationidurans Gen
    etics & E en vo g lu t lo i y o h n a P r f y Journal of Phylogenetics & Sathyanarayana Reddy, J Phylogen Evolution Biol 2013, 1:4 o B l i a o n l r o DOI: 10.4172/2329-9002.1000122 u g o y J Evolutionary Biology ISSN: 2329-9002 Research Article Open Access Phylogenetic Analyses of the Genus Hymenobacter and Description of Siccationidurans gen. nov., and Parahymenobacter gen. nov Gundlapally Sathyanarayana Reddy* CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad-500 007, India Abstract Phylogenetic analyses of 26 species of the genus Hymenobacter based on the 16S rRNA gene sequences, resulted in polyphyletic clustering with three major groups, arbitrarily named as Clade1, Clade2 and Clade3. Delineation of Clade1 and Clade3 from Clade2 was supported by robust clustering and high bootstrap values of more than 90% and 100% in all the phylogenetic methods. 16S rRNA gene sequence similarity shared by Clade1 and Clade2 was 88 to 93%, Clade1 and Clade3 was 88 to 91% and Clade2 and Clade3 was 89 to 92%. Based on robust phylogenetic clustering, less than 93.0% sequence similarity, unique in silico restriction patterns, presence of distinct signature nucleotides and signature motifs in their 16S rRNA gene sequences, two more genera were carved to accommodate species of Clade1 and Clade3. The name Hymenobacter, sensu stricto, was retained to represent 17 species of Clade2. For members of Clade1 and Clade3, the names Siccationidurans gen. nov. and Parahymenobacter gen. nov. were proposed, respectively, and species belonging to Clade1 and Clade3 were transferred to their respective genera.
    [Show full text]
  • Moss Habitats Distinctly Affect Their Associated Bacterial Community Structures As Revealed by the High-Throughput Sequencing Method
    World Journal of Microbiology and Biotechnology (2018) 34:58 https://doi.org/10.1007/s11274-018-2436-5 ORIGINAL ARTICLE Moss habitats distinctly affect their associated bacterial community structures as revealed by the high-throughput sequencing method Su Wang1 · Jing Yan Tang1 · Jing Ma1 · Xue Dong Li1 · Yan Hong Li1 Received: 23 September 2017 / Accepted: 17 March 2018 © Springer Science+Business Media B.V., part of Springer Nature 2018 Abstract To better understand the factors that influence the distribution of bacteria associated with mosses, the communities inhabit- ing in five moss species from two different habitats in Beijing Songshan National Nature Reserve were investigated using the high-throughput sequencing method. The sequencing was performed based on the bacterial 16S rRNA and 16S rDNA libraries. Results showed that there are abundant bacteria inhabiting in all the mosses sampled. The taxonomic analysis of these bacteria showed that they mainly consisted of those in the phyla Proteobacteria and Actinobacteria, and seldom were from phylum Armatimonadetes, Bacteroidetes and Firmicutes. The hierarchical cluster tree, based on the OTU level, divided the bacteria associated with all samples into two branches according to the habitat types of the host (terrestrial and aquatic). The PCoA diagram further divided the bacterial compositions into four groups according to both types of habitats and the data sources (DNA and RNA). There were larger differences in the bacterial community composition in the mosses col- lected from aquatic habitat than those of terrestrial one, whether at the DNA or RNA level. Thus, this survey supposed that the habitat where the host was growing was a relevant factor influencing bacterial community composition.
    [Show full text]
  • Diversity and Biocontrol Potential of Cultivable Endophytic Bacteria Associated with Halophytes from the West Aral Sea Basin
    microorganisms Article Diversity and Biocontrol Potential of Cultivable Endophytic Bacteria Associated with Halophytes from the West Aral Sea Basin Lei Gao 1,2, Jinbiao Ma 1 , Yonghong Liu 1 , Yin Huang 1, Osama Abdalla Abdelshafy Mohamad 1 , Hongchen Jiang 1,3 , Dilfuza Egamberdieva 4,5 , Wenjun Li 1,6,* and Li Li 1,* 1 State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; [email protected] (L.G.); [email protected] (J.M.); [email protected] (Y.L.); [email protected] (Y.H.); [email protected] (O.A.A.M.); [email protected] (H.J.) 2 College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China 3 State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China 4 Faculty of Biology, National University of Uzbekistan, Tashkent 100174, Uzbekistan; [email protected] 5 Leibniz Centre for Agricultural Landscape Research (ZALF), 15374 Müncheberg, Germany 6 State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China * Correspondence: [email protected] (W.L.); [email protected] (L.L.) Abstract: Endophytes associated with halophytes may contribute to the host’s adaptation to adverse Citation: Gao, L.; Ma, J.; Liu, Y.; environmental conditions through improving their stress tolerance and protecting them from various Huang, Y.; Mohamad, O.A.A.; Jiang, soil-borne pathogens. In this study, the diversity and antifungal activity of endophytic bacteria H.; Egamberdieva, D.; Li, W.; Li, L.
    [Show full text]
  • Bacterial Diversity in a Dynamic and Extreme Sub-Arctic Watercourse (Pasvik River, Norwegian Arctic)
    water Article Bacterial Diversity in a Dynamic and Extreme Sub-Arctic Watercourse (Pasvik River, Norwegian Arctic) Maria Papale 1 , Alessandro Ciro Rappazzo 1, Anu Mikkonen 2, Carmen Rizzo 3 , 4 4 4, 1, Federica Moscheo , Antonella Conte , Luigi Michaud y and Angelina Lo Giudice * 1 Institute of Polar Sciences, National Research Council (CNR-ISP), 98122 Messina, Italy; [email protected] (M.P.); [email protected] (A.C.R.) 2 Department of Biological and Environmental Sciences, Nanoscience Center, University of Jyväskylä, 40014 Jyväskylä, Finland; anu.mikkonen@helsinki.fi 3 Department BIOTECH, National Institute of Biology, Stazione Zoologica Anton Dohrn, 98167 Messina, Italy; [email protected] 4 Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98122 Messina, Italy; [email protected] (F.M.); [email protected] (A.C.); [email protected] (L.M.) * Correspondence: [email protected]; Tel.: +39-090-6015-414 Posthumous. y Received: 19 August 2020; Accepted: 2 November 2020; Published: 4 November 2020 Abstract: Microbial communities promptly respond to the environmental perturbations, especially in the Arctic and sub-Arctic systems that are highly impacted by climate change, and fluctuations in the diversity level of microbial assemblages could give insights on their expected response. 16S rRNA gene amplicon sequencing was applied to describe the bacterial community composition in water and sediment through the sub-Arctic Pasvik River. Our results showed that river water and sediment harbored distinct communities in terms of diversity and composition at genus level. The distribution of the bacterial communities was mainly affected by both salinity and temperature in sediment samples, and by oxygen in water samples.
    [Show full text]
  • Actinobacteria Structure in Autogenic, Hydrogenic and Lithogenic Cultivated and Non-Cultivated Soils: a Culture-Independent Approach
    agronomy Article Actinobacteria Structure in Autogenic, Hydrogenic and Lithogenic Cultivated and Non-Cultivated Soils: A Culture-Independent Approach Agnieszka Woli ´nska 1,* , Dorota Górniak 2, Urszula Zielenkiewicz 3 , Agnieszka Ku´zniar 1, Dariusz Izak 3 , Artur Banach 1 and Mieczysław Błaszczyk 4 1 Department of Biology and Biotechnology of Microorganisms, The John Paul II Catholic University of Lublin; Konstantynów St. 1 I, 20-708 Lublin, Poland; [email protected] (A.K.); [email protected] (A.B.) 2 Department of Microbiology and Mycology, University of Warmia and Mazury in Olsztyn; Oczapowskiego St. 1a, 10-719 Olsztyn, Poland; [email protected] 3 Department of Microbial Biochemistry, Institute of Biochemistry and Biophysics PAS; Pawi´nskiegoSt. 5a, 02-206 Warsaw, Poland; [email protected] (U.Z.); [email protected] (D.I.) 4 Department of Microbial Biology, Warsaw University of Life Sciences; Nowoursynowska 159/37 St., 02-776 Warsaw, Poland; [email protected] * Correspondence: [email protected]; Tel.: +48-81-454-54-60; Fax: +48-81-445-46-11 Received: 12 August 2019; Accepted: 27 September 2019; Published: 29 September 2019 Abstract: The aim of the study was to determine the Actinobacteria structure in cultivated (C) versus non-cultivated (NC) soils divided into three groups (autogenic, hydrogenic, lithogenic) with consideration its formation process in order to assess the Actinobacteria sensitivity to agricultural soil use and soil genesis and to identify factors affecting their abundance. Sixteen C soil samples and sixteen NC samples serving as controls were taken for the study. Next generation sequencing (NGS) of the 16S rRNA metagenomic amplicons (Ion Torrent™ technology) and Denaturing Gradient Gel Electrophoresis (DGGE) were applied for precise determination of biodiversity.
    [Show full text]
  • Conexibacter Woesei Type Strain (ID131577T)
    Lawrence Berkeley National Laboratory Recent Work Title Complete genome sequence of Conexibacter woesei type strain (ID131577). Permalink https://escholarship.org/uc/item/7k20579b Journal Standards in genomic sciences, 2(2) ISSN 1944-3277 Authors Pukall, Rüdiger Lapidus, Alla Glavina Del Rio, Tijana et al. Publication Date 2010-03-30 DOI 10.4056/sigs.751339 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Standards in Genomic Sciences (2010) 2:212-219 DOI:10.4056/sigs.751339 Complete genome sequence of Conexibacter woesei type strain (ID131577T) Rüdiger Pukall1, Alla Lapidus2, Tijana Glavina Del Rio2, Alex Copeland2, Hope Tice2, Jan- Fang Cheng2, Susan Lucas2, Feng Chen2, Matt Nolan2, David Bruce2,3, Lynne Goodwin2,3, Sam Pitluck2, Konstantinos Mavromatis2, Natalia Ivanova2, Galina Ovchinnikova2, Amrita Pati2, Amy Chen4, Krishna Palaniappan4, Miriam Land2,5, Loren Hauser2,5, Yun-Juan Chang2,5, Cynthia D. Jeffries2,5, Patrick Chain2,6, Linda Meincke2,3, David Sims2,3,Thomas Brettin2,3, John C. Detter2,3, Manfred Rohde7, Markus Göker1, Jim Bristow2, Jonathan A. Eisen2,8, Victor Markowitz4, Nikos C. Kyrpides1, Hans-Peter Klenk1*, and Philip Hugenholtz2 1 DSMZ – German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany 2 DOE Joint Genome Institute, Walnut Creek, California, USA 3 Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA 4 Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, Berkeley, California, USA 5 Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA 6 Lawrence Livermore National Laboratory, Livermore, California, USA 7 HZI – Helmholtz Centre for Infection Research, Braunschweig, Germany 8 University of California Davis Genome Center, Davis, California, USA *Corresponding author: Hans-Peter Klenk Keywords: aerobic, short rods, forest soil, Solirubrobacterales, Conexibacteraceae, GEBA The genus Conexibacter (Monciardini et al.
    [Show full text]
  • Distribution and Isolation of Strains Belonging to the Order Solirubrobacterales
    The Journal of Antibiotics (2015) 68, 763–766 & 2015 Japan Antibiotics Research Association All rights reserved 0021-8820/15 www.nature.com/ja NOTE Distribution and isolation of strains belonging to the order Solirubrobacterales Tamae Seki1, Atsuko Matsumoto1,2, Satoshi Ōmura1 and Yōko Takahashi1 The Journal of Antibiotics (2015) 68, 763–766; doi:10.1038/ja.2015.67; published online 1 July 2015 The number of prokaryotes on earth is estimated to be in the order of initial denaturation at 95 °C for 1 min, followed by 30 cycles of 1030 cells,1 and it is well known that most microorganisms in the denaturation at 95 °C for 1 min, annealing at 50 °C for 1 min, environment are as-yet-uncultured.2 Many approaches have been tried extension at 72 °C for 1.5 min and an additional extension step at to isolate unknown bacterial strains. Davis et al.3 reported that 72 °C for 2 min. Reaction mixtures (50 μl) containing 0.4 μlofTaq medium choice and incubation time are significant for isolation of polymerase (TaKaRa, Shiga, Japan), 5.0 μl of 10 × Taq buffer, 2.0 μlof rare soil bacteria. Patulibacter minatonensis, belonging to the order dNTP mixtures (2.5 μM), 29.6 μlofdH2O, 4.0 μlofeachprimer(5μM) Solirubrobacterales, was isolated using medium supplemented with and 5.0 μl of DNA were prepared. As a second step, PCR with specific superoxide dismutase and proposed as a novel genus in 2006.4 At that primers (423PF-1012PR) was performed as follows: initial denatura- time, the order Solirubrobacterales5 consisted of only three families, tion at 94 °C for 1 min, followed by 30 cycles of denaturation at 94 °C three genera and three species; Patulibacter minatonensis, Conexibacter for 1 min, annealing at 65 °C for 1 min, extension at 72 °C for 1.5 min woesei6 and Solirubrobacter pauli,7 and presently there are still and an additional extension step at 72 °C for 2 min.
    [Show full text]
  • New Genus-Specific Primers for PCR Identification of Rubrobacter Strains
    Antonie van Leeuwenhoek (2019) 112:1863–1874 https://doi.org/10.1007/s10482-019-01314-3 (0123456789().,-volV)( 0123456789().,-volV) ORIGINAL PAPER New genus-specific primers for PCR identification of Rubrobacter strains Jean Franco Castro . Imen Nouioui . Juan A. Asenjo . Barbara Andrews . Alan T. Bull . Michael Goodfellow Received: 15 March 2019 / Accepted: 1 August 2019 / Published online: 12 August 2019 Ó The Author(s) 2019 Abstract A set of oligonucleotide primers, environmental DNA extracted from soil samples Rubro223f and Rubro454r, were found to amplify a taken from two locations in the Atacama Desert. 267 nucleotide sequence of 16S rRNA genes of Sequencing of a DNA library prepared from the bands Rubrobacter type strains. The primers distinguished showed that all of the clones fell within the evolu- members of this genus from other deeply-rooted tionary radiation occupied by the genus Rubrobacter. actinobacterial lineages corresponding to the genera Most of the clones were assigned to two lineages that Conexibacter, Gaiella, Parviterribacter, Patulibacter, were well separated from phyletic lines composed of Solirubrobacter and Thermoleophilum of the class Rubrobacter type strains. It can be concluded that Thermoleophilia. Amplification of DNA bands of primers Rubro223f and Rubro454r are specific for the about 267 nucleotides were generated from genus Rubrobacter and can be used to detect the presence and abundance of members of this genus in the Atacama Desert and other biomes. GenBank accession numbers: MK158160–75 for sequences from Salar de Tara and MK158176–92 for those from Quebrada Nacimiento. Keywords Actinobacteria Á Rubrobacter Á Atacama desert Á Taxonomy Á Genus-specific primers Electronic supplementary material The online version of this article (https://doi.org/10.1007/s10482-019-01314-3) con- tains supplementary material, which is available to authorized users.
    [Show full text]
  • Aquatic Microbial Ecology 79:115–125 (2017)
    The following supplement accompanies the article Unique and highly variable bacterial communities inhabiting the surface microlayer of an oligotrophic lake Mylène Hugoni, Agnès Vellet, Didier Debroas* *Corresponding author: [email protected] Aquatic Microbial Ecology 79:115–125 (2017) Table S1. Phylogenetic affiliation of the surface micro-layer (SML) specific OTUs, the epilimnion (E) specific OTUs and shared to both layers. OTUs number Taxonomic Affiliation Surface microlayer Epilimnion Shared Acidobacteria;Acidobacteria;Acidobacteriales;Acidobacteriaceae (Subgroup 1);Granulicella; 2 0 0 Acidobacteria;Acidobacteria;Acidobacteriales;Acidobacteriaceae (Subgroup 1);uncultured; 1 0 0 Acidobacteria;Acidobacteria;JG37-AG-116; 24 0 0 Acidobacteria;Acidobacteria;Subgroup 13; 0 1 0 Acidobacteria;Acidobacteria;Subgroup 3;Family Incertae Sedis;Bryobacter; 0 0 1 Acidobacteria;Acidobacteria;Subgroup 3;SJA-149; 0 1 1 Acidobacteria;Acidobacteria;Subgroup 4;RB41; 0 1 0 Acidobacteria;Acidobacteria;Subgroup 6; 0 0 1 Actinobacteria;AcI;AcI-A; 0 4 13 Actinobacteria;AcI;AcI-A;AcI-A3; 0 4 0 Actinobacteria;AcI;AcI-A;AcI-A5; 3 1 1 Actinobacteria;AcI;AcI-A;AcI-A7; 0 1 0 Actinobacteria;AcI;AcI-B;AcI-B1; 0 8 1 Actinobacteria;AcI;AcI-B;AcI-B2; 0 7 0 Actinobacteria;Acidimicrobia;Acidimicrobiales;Acidimicrobiaceae;CL500-29 marine group; 7 34 11 Actinobacteria;Acidimicrobia;Acidimicrobiales;Family Incertae Sedis;Candidatus Microthrix; 0 1 0 Actinobacteria;Acidimicrobia;Acidimicrobiales;uncultured; 0 4 1 Actinobacteria;AcIV; 0 2 0 Actinobacteria;AcIV;Iluma-A2;
    [Show full text]
  • New Genus-Specific Primers for PCR Identification of Rubrobacter
    Antonie van Leeuwenhoek https://doi.org/10.1007/s10482-019-01314-3 (0123456789().,-volV)( 0123456789().,-volV) ORIGINAL PAPER New genus-specific primers for PCR identification of Rubrobacter strains Jean Franco Castro . Imen Nouioui . Juan A. Asenjo . Barbara Andrews . Alan T. Bull . Michael Goodfellow Received: 15 March 2019 / Accepted: 1 August 2019 Ó The Author(s) 2019 Abstract A set of oligonucleotide primers, environmental DNA extracted from soil samples Rubro223f and Rubro454r, were found to amplify a taken from two locations in the Atacama Desert. 267 nucleotide sequence of 16S rRNA genes of Sequencing of a DNA library prepared from the bands Rubrobacter type strains. The primers distinguished showed that all of the clones fell within the evolu- members of this genus from other deeply-rooted tionary radiation occupied by the genus Rubrobacter. actinobacterial lineages corresponding to the genera Most of the clones were assigned to two lineages that Conexibacter, Gaiella, Parviterribacter, Patulibacter, were well separated from phyletic lines composed of Solirubrobacter and Thermoleophilum of the class Rubrobacter type strains. It can be concluded that Thermoleophilia. Amplification of DNA bands of primers Rubro223f and Rubro454r are specific for the about 267 nucleotides were generated from genus Rubrobacter and can be used to detect the presence and abundance of members of this genus in the Atacama Desert and other biomes. GenBank accession numbers: MK158160–75 for sequences from Salar de Tara and MK158176–92 for those from Quebrada Nacimiento. Keywords Actinobacteria Á Rubrobacter Á Atacama desert Á Taxonomy Á Genus-specific primers Electronic supplementary material The online version of this article (https://doi.org/10.1007/s10482-019-01314-3) con- tains supplementary material, which is available to authorized users.
    [Show full text]
  • Evolution of a Σ–(C-Di-GMP)–Anti-Σ Switch
    Evolution of a σ–(c-di-GMP)–anti-σ switch Maria A. Schumachera,1,2, Kelley A. Gallagherb,1,3, Neil A. Holmesb,1, Govind Chandrab, Max Hendersona, David T. Kyselac, Richard G. Brennana, and Mark J. Buttnerb,2 aDepartment of Biochemistry, Duke University School of Medicine, Durham, NC 27710; bDepartment of Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, United Kingdom; and cDépartement de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H3T 1J4, Canada Edited by Seth A. Darst, The Rockefeller University, New York, NY, and approved June 3, 2021 (received for review March 20, 2021) Filamentous actinobacteria of the genus Streptomyces have a com- GMP functions as the central integrator of development, directly plex lifecycle involving the differentiation of reproductive aerial hy- controlling the activity of two key regulators, BldD and WhiG (6, phae into spores. We recently showed c-di-GMP controls this 9). BldD sits at the top of the regulatory cascade, repressing the transition by arming a unique anti-σ, RsiG, to bind the sporulation- transcription of a large regulon of genes, thereby preventing entry σ Streptomyces venezuelae – – specific ,WhiG.The RsiG (c-di-GMP)2 into development (6–8, 16). The ability of BldD to repress this set WhiG structure revealed that a monomeric RsiG binds c-di-GMP via of sporulation genes depends on binding to a tetrameric cage of two E(X)3S(X)2R(X)3Q(X)3D repeat motifs, one on each helix of an an- c-di-GMP that enables BldD to dimerize and thus bind DNA tiparallel coiled-coil.
    [Show full text]