Generalizing Convolutional Neural Networks for Equivariance to Lie Groups on Arbitrary Continuous Data
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Entropy Generation in Gaussian Quantum Transformations: Applying the Replica Method to Continuous-Variable Quantum Information Theory
www.nature.com/npjqi All rights reserved 2056-6387/15 ARTICLE OPEN Entropy generation in Gaussian quantum transformations: applying the replica method to continuous-variable quantum information theory Christos N Gagatsos1, Alexandros I Karanikas2, Georgios Kordas2 and Nicolas J Cerf1 In spite of their simple description in terms of rotations or symplectic transformations in phase space, quadratic Hamiltonians such as those modelling the most common Gaussian operations on bosonic modes remain poorly understood in terms of entropy production. For instance, determining the quantum entropy generated by a Bogoliubov transformation is notably a hard problem, with generally no known analytical solution, while it is vital to the characterisation of quantum communication via bosonic channels. Here we overcome this difficulty by adapting the replica method, a tool borrowed from statistical physics and quantum field theory. We exhibit a first application of this method to continuous-variable quantum information theory, where it enables accessing entropies in an optical parametric amplifier. As an illustration, we determine the entropy generated by amplifying a binary superposition of the vacuum and a Fock state, which yields a surprisingly simple, yet unknown analytical expression. npj Quantum Information (2015) 2, 15008; doi:10.1038/npjqi.2015.8; published online 16 February 2016 INTRODUCTION Gaussian states (e.g., the vacuum state, resulting after amplifica- Gaussian transformations are ubiquitous in quantum physics, tion in a thermal state of well-known -
About Symmetries in Physics
LYCEN 9754 December 1997 ABOUT SYMMETRIES IN PHYSICS Dedicated to H. Reeh and R. Stora1 Fran¸cois Gieres Institut de Physique Nucl´eaire de Lyon, IN2P3/CNRS, Universit´eClaude Bernard 43, boulevard du 11 novembre 1918, F - 69622 - Villeurbanne CEDEX Abstract. The goal of this introduction to symmetries is to present some general ideas, to outline the fundamental concepts and results of the subject and to situate a bit the following arXiv:hep-th/9712154v1 16 Dec 1997 lectures of this school. [These notes represent the write-up of a lecture presented at the fifth S´eminaire Rhodanien de Physique “Sur les Sym´etries en Physique” held at Dolomieu (France), 17-21 March 1997. Up to the appendix and the graphics, it is to be published in Symmetries in Physics, F. Gieres, M. Kibler, C. Lucchesi and O. Piguet, eds. (Editions Fronti`eres, 1998).] 1I wish to dedicate these notes to my diploma and Ph.D. supervisors H. Reeh and R. Stora who devoted a major part of their scientific work to the understanding, description and explo- ration of symmetries in physics. Contents 1 Introduction ................................................... .......1 2 Symmetries of geometric objects ...................................2 3 Symmetries of the laws of nature ..................................5 1 Geometric (space-time) symmetries .............................6 2 Internal symmetries .............................................10 3 From global to local symmetries ...............................11 4 Combining geometric and internal symmetries ...............14 -
TEC Forecasting Based on Manifold Trajectories
Article TEC forecasting based on manifold trajectories Enrique Monte Moreno 1,* ID , Alberto García Rigo 2,3 ID , Manuel Hernández-Pajares 2,3 ID and Heng Yang 1 ID 1 Department of Signal Theory and Communications, TALP research center, Technical University of Catalonia, Barcelona, Spain 2 UPC-IonSAT, Technical University of Catalonia, Barcelona, Spain 3 IEEC-CTE-CRAE, Institut d’Estudis Espacials de Catalunya, Barcelona, Spain * Correspondence: [email protected]; Tel.: +34-934016435 Academic Editor: name Version June 8, 2018 submitted to Remote Sens. 1 Abstract: In this paper, we present a method for forecasting the ionospheric Total Electron Content 2 (TEC) distribution from the International GNSS Service’s Global Ionospheric Maps. The forecasting 3 system gives an estimation of the value of the TEC distribution based on linear combination of 4 previous TEC maps (i.e. a set of 2D arrays indexed by time), and the computation of a tangent 5 subspace in a manifold associated to each map. The use of the tangent space to each map is justified 6 because it allows to model the possible distortions from one observation to the next as a trajectory on 7 the tangent manifold of the map. The coefficients of the linear combination of the last observations 8 along with the tangent space are estimated at each time stamp in order to minimize the mean square 9 forecasting error with a regularization term. The the estimation is made at each time stamp to adapt 10 the forecast to short-term variations in solar activity.. 11 Keywords: Total Electron Content; Ionosphere; Forecasting; Tangent Distance; GNSS 12 1. -
Symmetries in Physics Are [2, 4, 5]
Symmetries in physics ∗ Roelof Bijker ICN-UNAM, AP 70-543, 04510 M´exico, DF, M´exico E-mail: [email protected] August 24, 2005 Abstract The concept of symmetries in physics is briefly reviewed. In the first part of these lecture notes, some of the basic mathematical tools needed for the understanding of symmetries in nature are presented, namely group theory, Lie groups and Lie algebras, and Noether’s theorem. In the sec- ond part, some applications of symmetries in physics are discussed, ranging from isospin and flavor symmetry to more recent developments involving the interacting boson model and its extension to supersymmetries in nuclear physics. 1 Introduction Symmetry and its mathematical framework—group theory—play an increasingly important role in physics. Both classical and quantum systems usually display great complexity, but the analysis of their symmetry properties often gives rise to simplifications and new insights which can lead to a deeper understanding. In addition, symmetries themselves can point the way toward the formulation of a correct physical theory by providing constraints and guidelines in an otherwise intractable situation. It is remarkable that, in spite of the wide variety of systems one may consider, all the way from classical ones to molecules, nuclei, and elementary particles, group theory applies the same basic principles and extracts the same kind of useful information from all of them. This universality in the applicability of symmetry considerations is one of the most attractive features of group theory. Most people have an intuitive understanding of symmetry, particularly in its most obvious manifestation in terms of geometric transformations that leave a body arXiv:nucl-th/0509007v1 2 Sep 2005 or system invariant. -
MATRICES Part 2 3. Linear Equations
MATRICES part 2 (modified content from Wikipedia articles on matrices http://en.wikipedia.org/wiki/Matrix_(mathematics)) 3. Linear equations Matrices can be used to compactly write and work with systems of linear equations. For example, if A is an m-by-n matrix, x designates a column vector (i.e., n×1-matrix) of n variables x1, x2, ..., xn, and b is an m×1-column vector, then the matrix equation Ax = b is equivalent to the system of linear equations a1,1x1 + a1,2x2 + ... + a1,nxn = b1 ... am,1x1 + am,2x2 + ... + am,nxn = bm . For example, 3x1 + 2x2 – x3 = 1 2x1 – 2x2 + 4x3 = – 2 – x1 + 1/2x2 – x3 = 0 is a system of three equations in the three variables x1, x2, and x3. This can be written in the matrix form Ax = b where 3 2 1 1 1 A = 2 2 4 , x = 2 , b = 2 1 1/2 −1 푥3 0 � − � �푥 � �− � A solution to− a linear system− is an assignment푥 of numbers to the variables such that all the equations are simultaneously satisfied. A solution to the system above is given by x1 = 1 x2 = – 2 x3 = – 2 since it makes all three equations valid. A linear system may behave in any one of three possible ways: 1. The system has infinitely many solutions. 2. The system has a single unique solution. 3. The system has no solution. 3.1. Solving linear equations There are several algorithms for solving a system of linear equations. Elimination of variables The simplest method for solving a system of linear equations is to repeatedly eliminate variables. -
Symmetries in Quantum Field Theory and Quantum Gravity
Symmetries in Quantum Field Theory and Quantum Gravity Daniel Harlowa and Hirosi Oogurib;c aCenter for Theoretical Physics Massachusetts Institute of Technology, Cambridge, MA 02139, USA bWalter Burke Institute for Theoretical Physics California Institute of Technology, Pasadena, CA 91125, USA cKavli Institute for the Physics and Mathematics of the Universe (WPI) University of Tokyo, Kashiwa, 277-8583, Japan E-mail: [email protected], [email protected] Abstract: In this paper we use the AdS/CFT correspondence to refine and then es- tablish a set of old conjectures about symmetries in quantum gravity. We first show that any global symmetry, discrete or continuous, in a bulk quantum gravity theory with a CFT dual would lead to an inconsistency in that CFT, and thus that there are no bulk global symmetries in AdS/CFT. We then argue that any \long-range" bulk gauge symmetry leads to a global symmetry in the boundary CFT, whose consistency requires the existence of bulk dynamical objects which transform in all finite-dimensional irre- ducible representations of the bulk gauge group. We mostly assume that all internal symmetry groups are compact, but we also give a general condition on CFTs, which we expect to be true quite broadly, which implies this. We extend all of these results to the case of higher-form symmetries. Finally we extend a recently proposed new motivation for the weak gravity conjecture to more general gauge groups, reproducing the \convex hull condition" of Cheung and Remmen. An essential point, which we dwell on at length, is precisely defining what we mean by gauge and global symmetries in the bulk and boundary. -
Continuous Symmetries and Lie Algebras
Continuous Symmetries and Lie Algebras Gian Gentinetta Proseminar: Algebra and Topology in Quantum Mechanics and Field Theory Prof. Matthias Gaberdiel Tutor: Dr. Pietro Longhi May 2020 Abstract Continuous symmetries are an important tool in the calculation of eigenstates of the Hamiltonian in quantum mechanics. With the example of the hydrogen atom, we show how Lie groups and Lie algebras are used to represent symmetries in physics and how Lie group and Lie algebra representations are defined and calculated. In addition to the rotational symmetry of the hydrogen atom, the Runge-Lenz vector is also considered to derive an so(4) symmetry. Finally, using this symmetry the energy mk2 2 eigenvalues En = − 2n2 with their their n degeneracy are calculated. 1 Contents 1 Introduction and Motivation 3 1.1 Hydrogen Atom . 3 1.2 Continuous Symmetries and Noether’s Theorem . 3 2 Lie Groups and Lie Algebras 5 2.1 Lie Algebras . 6 2.2 The Exponential Map . 7 3 Representation Theory of sl(2; C) 8 3.1 Lie Algebra of SO(3) .............................. 8 3.2 Isomorphism so(3) ⊗ C ! sl(2; C) ....................... 9 3.3 Simple Lie Algebras . 10 3.4 Irreducible Representations of sl(2; C) ..................... 11 3.5 Representations of SO(3) ............................ 12 4 Runge-Lenz Vector 13 4.1 so(4) Symmetry of the Hydrogen Atom . 14 4.2 Isomorphism so(4) ! so(3) ⊕ so(3) ...................... 15 4.3 Calculating the Energy Eigenvalues . 16 4.4 Degeneracy . 17 5 Conclusion 17 References 18 2 1 Introduction and Motivation In previous talks we have seen that symmetries can be used to simplify the calculation of eigenstates of the Hamiltonian. -
TEC Forecasting Based on Manifold Trajectories
remote sensing Article TEC Forecasting Based on Manifold Trajectories Enrique Monte Moreno 1,* ID , Alberto García Rigo 2,3 ID , Manuel Hernández-Pajares 2,3 ID and Heng Yang 1 ID 1 TALP Research Center, Department of Signal Theory and Communications, Polytechnical University of Catalonia, 08034 Barcelona, Spain; [email protected] 2 UPC-IonSAT, Polytechnical University of Catalonia, 08034 Barcelona, Spain; [email protected] (A.G.R.); [email protected] (M.H.-P.) 3 IEEC-CTE-CRAE, Institut d’Estudis Espacials de Catalunya, 08034 Barcelona, Spain * Correspondence: [email protected]; Tel.: +34-934016435 Received: 18 May 2018; Accepted: 13 June 2018; Published: 21 June 2018 Abstract: In this paper, we present a method for forecasting the ionospheric Total Electron Content (TEC) distribution from the International GNSS Service’s Global Ionospheric Maps. The forecasting system gives an estimation of the value of the TEC distribution based on linear combination of previous TEC maps (i.e., a set of 2D arrays indexed by time), and the computation of a tangent subspace in a manifold associated to each map. The use of the tangent space to each map is justified because it allows modeling the possible distortions from one observation to the next as a trajectory on the tangent manifold of the map. The coefficients of the linear combination of the last observations along with the tangent space are estimated at each time stamp to minimize the mean square forecasting error with a regularization term. The estimation is made at each time stamp to adapt the forecast to short-term variations in solar activity. -
Geometric Analysis: Partial Differential Equations and Surfaces
570 Geometric Analysis: Partial Differential Equations and Surfaces UIMP-RSME Lluis Santaló Summer School 2010: Geometric Analysis June 28–July 2, 2010 University of Granada, Spain Joaquín Pérez José A. Gálvez Editors American Mathematical Society Real Sociedad Matemática Española American Mathematical Society Geometric Analysis: Partial Differential Equations and Surfaces UIMP-RSME Lluis Santaló Summer School 2010: Geometric Analysis June 28–July 2, 2010 University of Granada, Spain Joaquín Pérez José A. Gálvez Editors 570 Geometric Analysis: Partial Differential Equations and Surfaces UIMP-RSME Lluis Santaló Summer School 2010: Geometric Analysis June 28–July 2, 2010 University of Granada, Spain Joaquín Pérez José A. Gálvez Editors American Mathematical Society Real Sociedad Matemática Española American Mathematical Society Providence, Rhode Island EDITORIAL COMMITTEE Dennis DeTurck, Managing Editor George Andrews Abel Klein Martin J. Strauss Editorial Committee of the Real Sociedad Matem´atica Espa˜nola Pedro J. Pa´ul, Director Luis Al´ıas Emilio Carrizosa Bernardo Cascales Javier Duoandikoetxea Alberto Elduque Rosa Maria Mir´o Pablo Pedregal Juan Soler 2010 Mathematics Subject Classification. Primary 53A10; Secondary 35B33, 35B40, 35J20, 35J25, 35J60, 35J96, 49Q05, 53C42, 53C45. Library of Congress Cataloging-in-Publication Data UIMP-RSME Santal´o Summer School (2010 : University of Granada) Geometric analysis : partial differential equations and surfaces : UIMP-RSME Santal´o Summer School geometric analysis, June 28–July 2, 2010, University of Granada, Granada, Spain / Joaqu´ın P´erez, Jos´eA.G´alvez, editors p. cm. — (Contemporary Mathematics ; v. 570) Includes bibliographical references. ISBN 978-0-8218-4992-7 (alk. paper) 1. Minimal surfaces–Congresses. 2. Geometry, Differential–Congresses. 3. Differential equations, Partial–Asymptotic theory–Congresses. -
Noether's Theorem and Symmetry
Noether’s Theorem and Symmetry Edited by P.G.L. Leach and Andronikos Paliathanasis Printed Edition of the Special Issue Published in Symmetry www.mdpi.com/journal/symmetry Noether’s Theorem and Symmetry Noether’s Theorem and Symmetry Special Issue Editors P.G.L. Leach Andronikos Paliathanasis MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade Special Issue Editors P.G.L. Leach Andronikos Paliathanasis University of Kwazulu Natal & Durban University of Technology Durban University of Technology Republic of South Arica Cyprus Editorial Office MDPI St. Alban-Anlage 66 4052 Basel, Switzerland This is a reprint of articles from the Special Issue published online in the open access journal Symmetry (ISSN 2073-8994) from 2018 to 2019 (available at: https://www.mdpi.com/journal/symmetry/ special issues/Noethers Theorem Symmetry). For citation purposes, cite each article independently as indicated on the article page online and as indicated below: LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Article Number, Page Range. ISBN 978-3-03928-234-0 (Pbk) ISBN 978-3-03928-235-7 (PDF) Cover image courtesy of Andronikos Paliathanasis. c 2020 by the authors. Articles in this book are Open Access and distributed under the Creative Commons Attribution (CC BY) license, which allows users to download, copy and build upon published articles, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons license CC BY-NC-ND. -
Generalized Multiple Correlation Coefficient As a Similarity
Generalized Multiple Correlation Coefficient as a Similarity Measurement between Trajectories Julen Urain1 Jan Peters1;2 Abstract— Similarity distance measure between two trajecto- ries is an essential tool to understand patterns in motion, for example, in Human-Robot Interaction or Imitation Learning. The problem has been faced in many fields, from Signal Pro- cessing, Probabilistic Theory field, Topology field or Statistics field. Anyway, up to now, none of the trajectory similarity measurements metrics are invariant to all possible linear trans- formation of the trajectories (rotation, scaling, reflection, shear mapping or squeeze mapping). Also not all of them are robust in front of noisy signals or fast enough for real-time trajectory classification. To overcome this limitation this paper proposes a similarity distance metric that will remain invariant in front of any possible linear transformation. Based on Pearson’s Correlation Coefficient and the Coefficient of Determination, our similarity metric, the Generalized Multiple Correlation Fig. 1: GMCC applied for clustering taught trajectories in Coefficient (GMCC) is presented like the natural extension of Imitation Learning the Multiple Correlation Coefficient. The motivation of this paper is two-fold: First, to introduce a new correlation metric that presents the best properties to compute similarities between trajectories invariant to linear transformations and compare human-robot table tennis match. In [11], HMM were used it with some state of the art similarity distances. Second, to to recognize human gestures. The recognition was invariant present a natural way of integrating the similarity metric in an to the starting position of the gestures. The sequences of Imitation Learning scenario for clustering robot trajectories. -
Group Quantization of Quadratic Hamiltonians in Finance
Date: February 2 2021 Version 1.0 Group Quantization of Quadratic Hamiltonians in Finance Santiago Garc´ıa1 Abstract The Group Quantization formalism is a scheme for constructing a functional space that is an irreducible infinite dimensional representation of the Lie algebra belonging to a dynamical symmetry group. We apply this formalism to the construction of functional space and operators for quadratic potentials- gaussian pricing kernels in finance. We describe the Black-Scholes theory, the Ho-Lee interest rate model and the Euclidean repulsive and attractive oscillators. The symmetry group used in this work has the structure of a principal bundle with base (dynamical) group a + semi-direct extension of the Heisenberg-Weyl group by SL(2;R), and structure group (fiber) R . + By using a R central extension, we obtain the appropriate commutator between the momentum and coordinate operators [pˆ;xˆ] = 1 from the beginning, rather than the quantum-mechanical [pˆ;xˆ] = −i}. The integral transforma- tion between momentum and coordinate representations is the bilateral Laplace transform, an integral transform associated to the symmetry group. Keywords Black-Scholes – Lie Groups – Quadratic Hamiltonians – Central Extensions – Oscillator – Linear Canonical Transformations – Mellin Transform – Laplace Transform [email protected] Contents Introduction 1 Galilean Transformations as Numeraire Change3 The Group Quantization formalism ([1], [2], [3], [6]) is a 2 The Group Quantization Formalism3 scheme for constructing a functional space that is an irre- ducible infinite dimensional representation of the Lie algebra 3 The WSp(2;R) Group6 belonging to a dynamical symmetry group. 4 Black-Scholes9 This formalism utilizes Cartan geometries in a framework 5 Linear Potential.