Mathematics Via Symmetry
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
What's in a Name? the Matrix As an Introduction to Mathematics
St. John Fisher College Fisher Digital Publications Mathematical and Computing Sciences Faculty/Staff Publications Mathematical and Computing Sciences 9-2008 What's in a Name? The Matrix as an Introduction to Mathematics Kris H. Green St. John Fisher College, [email protected] Follow this and additional works at: https://fisherpub.sjfc.edu/math_facpub Part of the Mathematics Commons How has open access to Fisher Digital Publications benefited ou?y Publication Information Green, Kris H. (2008). "What's in a Name? The Matrix as an Introduction to Mathematics." Math Horizons 16.1, 18-21. Please note that the Publication Information provides general citation information and may not be appropriate for your discipline. To receive help in creating a citation based on your discipline, please visit http://libguides.sjfc.edu/citations. This document is posted at https://fisherpub.sjfc.edu/math_facpub/12 and is brought to you for free and open access by Fisher Digital Publications at St. John Fisher College. For more information, please contact [email protected]. What's in a Name? The Matrix as an Introduction to Mathematics Abstract In lieu of an abstract, here is the article's first paragraph: In my classes on the nature of scientific thought, I have often used the movie The Matrix to illustrate the nature of evidence and how it shapes the reality we perceive (or think we perceive). As a mathematician, I usually field questions elatedr to the movie whenever the subject of linear algebra arises, since this field is the study of matrices and their properties. So it is natural to ask, why does the movie title reference a mathematical object? Disciplines Mathematics Comments Article copyright 2008 by Math Horizons. -
The Matrix As an Introduction to Mathematics
St. John Fisher College Fisher Digital Publications Mathematical and Computing Sciences Faculty/Staff Publications Mathematical and Computing Sciences 2012 What's in a Name? The Matrix as an Introduction to Mathematics Kris H. Green St. John Fisher College, [email protected] Follow this and additional works at: https://fisherpub.sjfc.edu/math_facpub Part of the Mathematics Commons How has open access to Fisher Digital Publications benefited ou?y Publication Information Green, Kris H. (2012). "What's in a Name? The Matrix as an Introduction to Mathematics." Mathematics in Popular Culture: Essays on Appearances in Film, Fiction, Games, Television and Other Media , 44-54. Please note that the Publication Information provides general citation information and may not be appropriate for your discipline. To receive help in creating a citation based on your discipline, please visit http://libguides.sjfc.edu/citations. This document is posted at https://fisherpub.sjfc.edu/math_facpub/18 and is brought to you for free and open access by Fisher Digital Publications at St. John Fisher College. For more information, please contact [email protected]. What's in a Name? The Matrix as an Introduction to Mathematics Abstract In my classes on the nature of scientific thought, I have often used the movie The Matrix (1999) to illustrate how evidence shapes the reality we perceive (or think we perceive). As a mathematician and self-confessed science fiction fan, I usually field questionselated r to the movie whenever the subject of linear algebra arises, since this field is the study of matrices and their properties. So it is natural to ask, why does the movie title reference a mathematical object? Of course, there are many possible explanations for this, each of which probably contributed a little to the naming decision. -
Math Object Identifiers – Towards Research Data in Mathematics
Math Object Identifiers – Towards Research Data in Mathematics Michael Kohlhase Computer Science, FAU Erlangen-N¨urnberg Abstract. We propose to develop a system of “Math Object Identi- fiers” (MOIs: digital object identifiers for mathematical concepts, ob- jects, and models) and a process of registering them. These envisioned MOIs constitute a very lightweight form of semantic annotation that can support many knowledge-based workflows in mathematics, e.g. clas- sification of articles via the objects mentioned or object-based search. In essence MOIs are an enabling technology for Linked Open Data for mathematics and thus makes (parts of) the mathematical literature into mathematical research data. 1 Introduction The last years have seen a surge in interest in scaling computer support in scientific research by preserving, making accessible, and managing research data. For most subjects, research data consist in measurement or simulation data about the objects of study, ranging from subatomic particles via weather systems to galaxy clusters. Mathematics has largely been left untouched by this trend, since the objects of study – mathematical concepts, objects, and models – are by and large ab- stract and their properties and relations apply whole classes of objects. There are some exceptions to this, concrete integer sequences, finite groups, or ℓ-functions and modular form are collected and catalogued in mathematical data bases like the OEIS (Online Encyclopedia of Integer Sequences) [Inc; Slo12], the GAP Group libraries [GAP, Chap. 50], or the LMFDB (ℓ-Functions and Modular Forms Data Base) [LMFDB; Cre16]. Abstract mathematical structures like groups, manifolds, or probability dis- tributions can formalized – usually by definitions – in logical systems, and their relations expressed in form of theorems which can be proved in the logical sys- tems as well. -
About Symmetries in Physics
LYCEN 9754 December 1997 ABOUT SYMMETRIES IN PHYSICS Dedicated to H. Reeh and R. Stora1 Fran¸cois Gieres Institut de Physique Nucl´eaire de Lyon, IN2P3/CNRS, Universit´eClaude Bernard 43, boulevard du 11 novembre 1918, F - 69622 - Villeurbanne CEDEX Abstract. The goal of this introduction to symmetries is to present some general ideas, to outline the fundamental concepts and results of the subject and to situate a bit the following arXiv:hep-th/9712154v1 16 Dec 1997 lectures of this school. [These notes represent the write-up of a lecture presented at the fifth S´eminaire Rhodanien de Physique “Sur les Sym´etries en Physique” held at Dolomieu (France), 17-21 March 1997. Up to the appendix and the graphics, it is to be published in Symmetries in Physics, F. Gieres, M. Kibler, C. Lucchesi and O. Piguet, eds. (Editions Fronti`eres, 1998).] 1I wish to dedicate these notes to my diploma and Ph.D. supervisors H. Reeh and R. Stora who devoted a major part of their scientific work to the understanding, description and explo- ration of symmetries in physics. Contents 1 Introduction ................................................... .......1 2 Symmetries of geometric objects ...................................2 3 Symmetries of the laws of nature ..................................5 1 Geometric (space-time) symmetries .............................6 2 Internal symmetries .............................................10 3 From global to local symmetries ...............................11 4 Combining geometric and internal symmetries ...............14 -
1.3 Matrices and Matrix Operations 1.3.1 De…Nitions and Notation Matrices Are Yet Another Mathematical Object
20 CHAPTER 1. SYSTEMS OF LINEAR EQUATIONS AND MATRICES 1.3 Matrices and Matrix Operations 1.3.1 De…nitions and Notation Matrices are yet another mathematical object. Learning about matrices means learning what they are, how they are represented, the types of operations which can be performed on them, their properties and …nally their applications. De…nition 50 (matrix) 1. A matrix is a rectangular array of numbers. in which not only the value of the number is important but also its position in the array. 2. The numbers in the array are called the entries of the matrix. 3. The size of the matrix is described by the number of its rows and columns (always in this order). An m n matrix is a matrix which has m rows and n columns. 4. The elements (or the entries) of a matrix are generally enclosed in brack- ets, double-subscripting is used to index the elements. The …rst subscript always denote the row position, the second denotes the column position. For example a11 a12 ::: a1n a21 a22 ::: a2n A = 2 ::: ::: ::: ::: 3 (1.5) 6 ::: ::: ::: ::: 7 6 7 6 am1 am2 ::: amn 7 6 7 =4 [aij] , i = 1; 2; :::; m, j =5 1; 2; :::; n (1.6) Enclosing the general element aij in square brackets is another way of representing a matrix A . 5. When m = n , the matrix is said to be a square matrix. 6. The main diagonal in a square matrix contains the elements a11; a22; a33; ::: 7. A matrix is said to be upper triangular if all its entries below the main diagonal are 0. -
1 Sets and Set Notation. Definition 1 (Naive Definition of a Set)
LINEAR ALGEBRA MATH 2700.006 SPRING 2013 (COHEN) LECTURE NOTES 1 Sets and Set Notation. Definition 1 (Naive Definition of a Set). A set is any collection of objects, called the elements of that set. We will most often name sets using capital letters, like A, B, X, Y , etc., while the elements of a set will usually be given lower-case letters, like x, y, z, v, etc. Two sets X and Y are called equal if X and Y consist of exactly the same elements. In this case we write X = Y . Example 1 (Examples of Sets). (1) Let X be the collection of all integers greater than or equal to 5 and strictly less than 10. Then X is a set, and we may write: X = f5; 6; 7; 8; 9g The above notation is an example of a set being described explicitly, i.e. just by listing out all of its elements. The set brackets {· · ·} indicate that we are talking about a set and not a number, sequence, or other mathematical object. (2) Let E be the set of all even natural numbers. We may write: E = f0; 2; 4; 6; 8; :::g This is an example of an explicity described set with infinitely many elements. The ellipsis (:::) in the above notation is used somewhat informally, but in this case its meaning, that we should \continue counting forever," is clear from the context. (3) Let Y be the collection of all real numbers greater than or equal to 5 and strictly less than 10. Recalling notation from previous math courses, we may write: Y = [5; 10) This is an example of using interval notation to describe a set. -
Symmetries in Physics Are [2, 4, 5]
Symmetries in physics ∗ Roelof Bijker ICN-UNAM, AP 70-543, 04510 M´exico, DF, M´exico E-mail: [email protected] August 24, 2005 Abstract The concept of symmetries in physics is briefly reviewed. In the first part of these lecture notes, some of the basic mathematical tools needed for the understanding of symmetries in nature are presented, namely group theory, Lie groups and Lie algebras, and Noether’s theorem. In the sec- ond part, some applications of symmetries in physics are discussed, ranging from isospin and flavor symmetry to more recent developments involving the interacting boson model and its extension to supersymmetries in nuclear physics. 1 Introduction Symmetry and its mathematical framework—group theory—play an increasingly important role in physics. Both classical and quantum systems usually display great complexity, but the analysis of their symmetry properties often gives rise to simplifications and new insights which can lead to a deeper understanding. In addition, symmetries themselves can point the way toward the formulation of a correct physical theory by providing constraints and guidelines in an otherwise intractable situation. It is remarkable that, in spite of the wide variety of systems one may consider, all the way from classical ones to molecules, nuclei, and elementary particles, group theory applies the same basic principles and extracts the same kind of useful information from all of them. This universality in the applicability of symmetry considerations is one of the most attractive features of group theory. Most people have an intuitive understanding of symmetry, particularly in its most obvious manifestation in terms of geometric transformations that leave a body arXiv:nucl-th/0509007v1 2 Sep 2005 or system invariant. -
Vector Spaces
Vector spaces The vector spaces Rn, properties of vectors, and generalizing - introduction Now that you have a grounding in working with vectors in concrete form, we go abstract again. Here’s the plan: (1) The set of all vectors of a given length n has operations of addition and scalar multiplication on it. (2) Vector addition and scalar multiplication have certain properties (which we’ve proven already) (3) We say that the set of vectors of length n with these operations form a vector space Rn (3) So let’s take any mathematical object (m × n matrix, continuous function, discontinuous function, integrable function) and define operations that we’ll call “addition” and “scalar multiplication” on that object. If the set of those objects satisfies all the same properties that vectors do ... we’ll call them ... I know ... we’ll call them vectors, and say that they form a vector space. Functions can be vectors! Matrices can be vectors! (4) Why stop there? You know the dot product? Of two vectors? That had some properties, which were proven for vectors of length n? If we can define a function on our other “vectors” (matrices! continuous functions!) that has the same properties ... we’ll call it a dot product too. Actually, the more general term is inner product. (5) Finally, vector norms (magnitudes). Have properties. Which were proven for vectors of length n.So,ifwecan define functions on our other “vectors” that have the same properties ... those are norms, too. In fact, we can even define other norms on regular vectors in Rn - there is more than one way to measure the length of an vector. -
Characterizing Levels of Reasoning in Graph Theory
EURASIA Journal of Mathematics, Science and Technology Education, 2021, 17(8), em1990 ISSN:1305-8223 (online) OPEN ACCESS Research Paper https://doi.org/10.29333/ejmste/11020 Characterizing Levels of Reasoning in Graph Theory Antonio González 1*, Inés Gallego-Sánchez 1, José María Gavilán-Izquierdo 1, María Luz Puertas 2 1 Department of Didactics of Mathematics, Universidad de Sevilla, SPAIN 2 Department of Mathematics, Universidad de Almería, SPAIN Received 5 February 2021 ▪ Accepted 8 April 2021 Abstract This work provides a characterization of the learning of graph theory through the lens of the van Hiele model. For this purpose, we perform a theoretical analysis structured through the processes of reasoning that students activate when solving graph theory problems: recognition, use and formulation of definitions, classification, and proof. We thus obtain four levels of reasoning: an initial level of visual character in which students perceive graphs as a whole; a second level, analytical in nature in which students distinguish parts and properties of graphs; a pre-formal level in which students can interrelate properties; and a formal level in which graphs are handled as abstract mathematical objects. Our results, which are supported by a review of the literature on the teaching and learning of graph theory, might be very helpful to design efficient data collection instruments for empirical studies aiming to analyze students’ thinking in this field of mathematics. Keywords: levels of reasoning, van Hiele model, processes of reasoning, graph theory disciplines: chemistry (Bruckler & Stilinović, 2008), INTRODUCTION physics (Toscano, Stella, & Milotti, 2015), or computer The community of researchers in mathematics science (Kasyanov, 2001). -
Symmetries in Quantum Field Theory and Quantum Gravity
Symmetries in Quantum Field Theory and Quantum Gravity Daniel Harlowa and Hirosi Oogurib;c aCenter for Theoretical Physics Massachusetts Institute of Technology, Cambridge, MA 02139, USA bWalter Burke Institute for Theoretical Physics California Institute of Technology, Pasadena, CA 91125, USA cKavli Institute for the Physics and Mathematics of the Universe (WPI) University of Tokyo, Kashiwa, 277-8583, Japan E-mail: [email protected], [email protected] Abstract: In this paper we use the AdS/CFT correspondence to refine and then es- tablish a set of old conjectures about symmetries in quantum gravity. We first show that any global symmetry, discrete or continuous, in a bulk quantum gravity theory with a CFT dual would lead to an inconsistency in that CFT, and thus that there are no bulk global symmetries in AdS/CFT. We then argue that any \long-range" bulk gauge symmetry leads to a global symmetry in the boundary CFT, whose consistency requires the existence of bulk dynamical objects which transform in all finite-dimensional irre- ducible representations of the bulk gauge group. We mostly assume that all internal symmetry groups are compact, but we also give a general condition on CFTs, which we expect to be true quite broadly, which implies this. We extend all of these results to the case of higher-form symmetries. Finally we extend a recently proposed new motivation for the weak gravity conjecture to more general gauge groups, reproducing the \convex hull condition" of Cheung and Remmen. An essential point, which we dwell on at length, is precisely defining what we mean by gauge and global symmetries in the bulk and boundary. -
Continuous Symmetries and Lie Algebras
Continuous Symmetries and Lie Algebras Gian Gentinetta Proseminar: Algebra and Topology in Quantum Mechanics and Field Theory Prof. Matthias Gaberdiel Tutor: Dr. Pietro Longhi May 2020 Abstract Continuous symmetries are an important tool in the calculation of eigenstates of the Hamiltonian in quantum mechanics. With the example of the hydrogen atom, we show how Lie groups and Lie algebras are used to represent symmetries in physics and how Lie group and Lie algebra representations are defined and calculated. In addition to the rotational symmetry of the hydrogen atom, the Runge-Lenz vector is also considered to derive an so(4) symmetry. Finally, using this symmetry the energy mk2 2 eigenvalues En = − 2n2 with their their n degeneracy are calculated. 1 Contents 1 Introduction and Motivation 3 1.1 Hydrogen Atom . 3 1.2 Continuous Symmetries and Noether’s Theorem . 3 2 Lie Groups and Lie Algebras 5 2.1 Lie Algebras . 6 2.2 The Exponential Map . 7 3 Representation Theory of sl(2; C) 8 3.1 Lie Algebra of SO(3) .............................. 8 3.2 Isomorphism so(3) ⊗ C ! sl(2; C) ....................... 9 3.3 Simple Lie Algebras . 10 3.4 Irreducible Representations of sl(2; C) ..................... 11 3.5 Representations of SO(3) ............................ 12 4 Runge-Lenz Vector 13 4.1 so(4) Symmetry of the Hydrogen Atom . 14 4.2 Isomorphism so(4) ! so(3) ⊕ so(3) ...................... 15 4.3 Calculating the Energy Eigenvalues . 16 4.4 Degeneracy . 17 5 Conclusion 17 References 18 2 1 Introduction and Motivation In previous talks we have seen that symmetries can be used to simplify the calculation of eigenstates of the Hamiltonian. -
ABSTRACTION in MATHEMATICS and MATHEMATICS LEARNING Michael Mitchelmore Paul White Macquarie University Australian Catholic University
ABSTRACTION IN MATHEMATICS AND MATHEMATICS LEARNING Michael Mitchelmore Paul White Macquarie University Australian Catholic University It is claimed that, since mathematics is essentially a self-contained system, mathematical objects may best be described as abstract-apart. On the other hand, fundamental mathematical ideas are closely related to the real world and their learning involves empirical concepts. These concepts may be called abstract-general because they embody general properties of the real world. A discussion of the relationship between abstract-apart objects and abstract-general concepts leads to the conclusion that a key component in learning about fundamental mathematical objects is the formalisation of empirical concepts. A model of the relationship between mathematics and mathematics learning is presented which also includes more advanced mathematical objects. This paper was largely stimulated by the Research Forum on abstraction held at the 26th international conference of PME. In the following, a notation like [F105] will indicate page 105 of the Forum report (Boero et al., 2002). At the Forum, Gray and Tall; Schwarz, Hershkowitz, and Dreyfus; and Gravemeier presented three theories of abstraction, and Sierpinska and Boero reacted. Our analysis indicates that two different contexts for abstraction were discussed at the Forum: abstraction in mathematics and abstraction in mathematics learning. However, the Forum did not include a further meaning of abstraction which we believe is important in the learning of mathematics: The formation of concepts by empirical abstraction from physical and social experience. We shall argue that fundamental mathematical ideas are formalisations of such concepts. The aim of this paper is to contrast abstraction in mathematics with empirical abstraction in mathematics learning.