Geometric Analysis: Partial Differential Equations and Surfaces

Total Page:16

File Type:pdf, Size:1020Kb

Geometric Analysis: Partial Differential Equations and Surfaces 570 Geometric Analysis: Partial Differential Equations and Surfaces UIMP-RSME Lluis Santaló Summer School 2010: Geometric Analysis June 28–July 2, 2010 University of Granada, Spain Joaquín Pérez José A. Gálvez Editors American Mathematical Society Real Sociedad Matemática Española American Mathematical Society Geometric Analysis: Partial Differential Equations and Surfaces UIMP-RSME Lluis Santaló Summer School 2010: Geometric Analysis June 28–July 2, 2010 University of Granada, Spain Joaquín Pérez José A. Gálvez Editors 570 Geometric Analysis: Partial Differential Equations and Surfaces UIMP-RSME Lluis Santaló Summer School 2010: Geometric Analysis June 28–July 2, 2010 University of Granada, Spain Joaquín Pérez José A. Gálvez Editors American Mathematical Society Real Sociedad Matemática Española American Mathematical Society Providence, Rhode Island EDITORIAL COMMITTEE Dennis DeTurck, Managing Editor George Andrews Abel Klein Martin J. Strauss Editorial Committee of the Real Sociedad Matem´atica Espa˜nola Pedro J. Pa´ul, Director Luis Al´ıas Emilio Carrizosa Bernardo Cascales Javier Duoandikoetxea Alberto Elduque Rosa Maria Mir´o Pablo Pedregal Juan Soler 2010 Mathematics Subject Classification. Primary 53A10; Secondary 35B33, 35B40, 35J20, 35J25, 35J60, 35J96, 49Q05, 53C42, 53C45. Library of Congress Cataloging-in-Publication Data UIMP-RSME Santal´o Summer School (2010 : University of Granada) Geometric analysis : partial differential equations and surfaces : UIMP-RSME Santal´o Summer School geometric analysis, June 28–July 2, 2010, University of Granada, Granada, Spain / Joaqu´ın P´erez, Jos´eA.G´alvez, editors p. cm. — (Contemporary Mathematics ; v. 570) Includes bibliographical references. ISBN 978-0-8218-4992-7 (alk. paper) 1. Minimal surfaces–Congresses. 2. Geometry, Differential–Congresses. 3. Differential equations, Partial–Asymptotic theory–Congresses. I. P´erez, Joaqu´ın, 1966– II. G´alvez, Jos´e A., 1972– III. Title. QA644.U36 2010 516.362–dc23 2012004897 Copying and reprinting. Material in this book may be reproduced by any means for edu- cational and scientific purposes without fee or permission with the exception of reproduction by services that collect fees for delivery of documents and provided that the customary acknowledg- ment of the source is given. This consent does not extend to other kinds of copying for general distribution, for advertising or promotional purposes, or for resale. Requests for permission for commercial use of material should be addressed to the Acquisitions Department, American Math- ematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294, USA. Requests can also be made by e-mail to [email protected]. Excluded from these provisions is material in articles for which the author holds copyright. In such cases, requests for permission to use or reprint should be addressed directly to the author(s). (Copyright ownership is indicated in the notice in the lower right-hand corner of the first page of each article.) c 2012 by the American Mathematical Society. All rights reserved. The American Mathematical Society retains all rights except those granted to the United States Government. Copyright of individual articles may revert to the public domain 28 years after publication. Contact the AMS for copyright status of individual articles. Printed in the United States of America. ∞ The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability. Visit the AMS home page at http://www.ams.org/ 10987654321 171615141312 Contents Preface vii Geometric PDEs in the presence of isolated singularities JoseA.G´ alvez´ and Pablo Mira 1 Constant mean curvature surfaces in metric Lie groups William H. Meeks III and Joaqu´ın Perez´ 25 Stochastic methods for minimal surfaces Robert W. Neel 111 The role of minimal surfaces in the study of the Allen-Cahn equation Frank Pacard 137 On curvature estimates for constant mean curvature surfaces Giuseppe Tinaglia 165 v Preface Llu´ıs Antoni Santal´o Sors (1911–2001) was a Spanish mathematician that stud- ied at Hamburg under the differential geometer Wilhelm Blaschke. In 1936, Pro- fessor Blaschke initiated two young students, Santal´o and S.S. Chern, to integral geometry. Unlike Chern, who spent long periods of his career in different places as France, China and USA, Santal´o moved definitely to Argentina after a short pe- riod in Spain, because of the Spanish Civil War; nevertheless he become recognized worldwide by his studies in Integral Geometry, Stereology, Geometric Probability and Projective Geometry (see the recent volume Luis Antonio Santal´oSelected Works edited by A. Naveira and A. Revent´os under Springer Verlag, for a selection of Santal´o’s best papers and bibliography). In his honor, the Royal Mathematical Society of Spain (RSME) organizes since 2002 a yearly advanced summer School about various aspects in Mathematics. Except for the 2010 occasion, the RSME Santal´o School had been developed within the framework of the Summer Courses of the International University Men´endez y Pelayo in Santander, Spain. The 2010 event was held at the Uni- versity of Granada, and the chosen topic was that of Geometric Analysis. This is a rather vague term to refer to a part of mathematics whose width has been in- creasing in the last decades, and whose frontiers have trespassed areas that a priori, were not assumed to be reachable. In a very simplified manner, we can describe Geometric Analysis as the interface between Differential Geometry and Differential Equations. The primary example of this interaction could be that of the calculus of variations, where the object of study is the perturbation of a functional acting on geometric objects. The critical points of the functional are often characterized as solutions of a differential equation (the associated Euler-Lagrange equation). These critical points are tools for understanding the geometry of the manifold over which the functional is defined. Different problems coming from areas apparently far, have been solved by application of tools in Geometric Analysis: among others, we can mention the solution by R. Schoen and S. T. Yau of the positive mass conjecture, and the more recent positive answer by G. Perelman to the Poincar´e conjecture. The main objective of the 2010 Santal´o School was to carry out mini-courses and talks in which distinguished researchers in Geometric Analysis would explain from the basics to the some of the most up-to-date aspects of this area. The School was mainly intended for researchers in Mathematics and degree or PhD students, although everyone with mathematical interest, an inquisitive mind and strong geometrical intuition was invited to join it. This set of lecture notes was originated from the series of lectures given at the 2010 Santal´o School on Geometric Analysis, held at the University of Granada from June 28 to July 2, 2010. The organization of this volume is as follows. The vii viii PREFACE proceedings are opened by the article Geometric PDEs in the presence of isolated singularities, by Jos´eA.G´alvez and Pablo Mira, where they describe the conical singularities of geometric PDEs of Monge-Amp`ere type. Next we include a self- contained version of the mini-course Constant mean curvature surfaces in metric Lie groups, taught at the School by William H. Meeks III, about several aspects of minimal and constant mean curvature surfaces in homogeneous three-manifolds, with special emphasis in the almost unexplored theory of such surfaces in met- ric Lie groups (i.e., three-dimensional Lie groups equipped with a left invariant metric). Except for this longer article, the volume consists of survey articles with an expository character. The remaining articles in the proceedings are Stochastic Methods for Minimal Surfaces, by Robert W. Neel, where stochastic methods as Brownian motion and its relation to conformal structure are applied to obtain re- sults for minimal surfaces in Euclidean three-space; The role of minimal surfaces in the study of the Allen-Cahn equation, by Frank Pacard, where he explains the role of minimal and constant mean curvature surfaces in the construction of entire solutions of the Allen-Cahn equation in Rn and in the study of extremal domains for the first eigenvalue of the Laplacian; and On curvature estimates for constant mean curvature surfaces, by Giuseppe Tinaglia, where the significance of curvature estimates for constant mean curvature surfaces is discussed. Besides the above topics, the 2010 Santal´o School scheduled two other mini- courses, namely On a fully nonlinear version of the Yamabe problem, by YanYan Li, where he revisited the classical Yamabe problem and its solution in order to apply these techniques to a fully nonlinear version of the Yamabe problem; and Introduction to the work of Colding-Minicozzi on minimal surfaces in R3, by Harold Rosenberg, where we could learn about various aspects of the recent theory by Colding and Minicozzi to study limits of simply connected minimal surfaces in R3. We want to thank all of them for their talks and courses, without which the School would not have been possible. All papers in this volume went through a blind-refereed process. We also want to thank all those who provided manuscripts for publication in these proceedings, as well as to give a special thanks to the reviewers, whose effort and hard work reflected their commitment and dedication. This book is published in cooperation with the Royal Mathematical Society of Spain (RSME). Granada, January 2012. Joaqu´ın P´erez and Jos´eA.G´alvez Contemporary Mathematics Volume 570, 2012 http://dx.doi.org/10.1090/conm/570/11303 Geometric PDEs in the presence of isolated singularities Jos´eA.G´alvez and Pablo Mira Abstract. This is a short course on the behavior of solutions to some geo- metric elliptic PDEs of Monge-Amp`ere type in two variables, in the presence of non-removable isolated singularities. We will describe local classification theorems around such an isolated singularity, as well as global classification theorems for the case of finitely many isolated singularities.
Recommended publications
  • Entropy Generation in Gaussian Quantum Transformations: Applying the Replica Method to Continuous-Variable Quantum Information Theory
    www.nature.com/npjqi All rights reserved 2056-6387/15 ARTICLE OPEN Entropy generation in Gaussian quantum transformations: applying the replica method to continuous-variable quantum information theory Christos N Gagatsos1, Alexandros I Karanikas2, Georgios Kordas2 and Nicolas J Cerf1 In spite of their simple description in terms of rotations or symplectic transformations in phase space, quadratic Hamiltonians such as those modelling the most common Gaussian operations on bosonic modes remain poorly understood in terms of entropy production. For instance, determining the quantum entropy generated by a Bogoliubov transformation is notably a hard problem, with generally no known analytical solution, while it is vital to the characterisation of quantum communication via bosonic channels. Here we overcome this difficulty by adapting the replica method, a tool borrowed from statistical physics and quantum field theory. We exhibit a first application of this method to continuous-variable quantum information theory, where it enables accessing entropies in an optical parametric amplifier. As an illustration, we determine the entropy generated by amplifying a binary superposition of the vacuum and a Fock state, which yields a surprisingly simple, yet unknown analytical expression. npj Quantum Information (2015) 2, 15008; doi:10.1038/npjqi.2015.8; published online 16 February 2016 INTRODUCTION Gaussian states (e.g., the vacuum state, resulting after amplifica- Gaussian transformations are ubiquitous in quantum physics, tion in a thermal state of well-known
    [Show full text]
  • TEC Forecasting Based on Manifold Trajectories
    Article TEC forecasting based on manifold trajectories Enrique Monte Moreno 1,* ID , Alberto García Rigo 2,3 ID , Manuel Hernández-Pajares 2,3 ID and Heng Yang 1 ID 1 Department of Signal Theory and Communications, TALP research center, Technical University of Catalonia, Barcelona, Spain 2 UPC-IonSAT, Technical University of Catalonia, Barcelona, Spain 3 IEEC-CTE-CRAE, Institut d’Estudis Espacials de Catalunya, Barcelona, Spain * Correspondence: [email protected]; Tel.: +34-934016435 Academic Editor: name Version June 8, 2018 submitted to Remote Sens. 1 Abstract: In this paper, we present a method for forecasting the ionospheric Total Electron Content 2 (TEC) distribution from the International GNSS Service’s Global Ionospheric Maps. The forecasting 3 system gives an estimation of the value of the TEC distribution based on linear combination of 4 previous TEC maps (i.e. a set of 2D arrays indexed by time), and the computation of a tangent 5 subspace in a manifold associated to each map. The use of the tangent space to each map is justified 6 because it allows to model the possible distortions from one observation to the next as a trajectory on 7 the tangent manifold of the map. The coefficients of the linear combination of the last observations 8 along with the tangent space are estimated at each time stamp in order to minimize the mean square 9 forecasting error with a regularization term. The the estimation is made at each time stamp to adapt 10 the forecast to short-term variations in solar activity.. 11 Keywords: Total Electron Content; Ionosphere; Forecasting; Tangent Distance; GNSS 12 1.
    [Show full text]
  • MATRICES Part 2 3. Linear Equations
    MATRICES part 2 (modified content from Wikipedia articles on matrices http://en.wikipedia.org/wiki/Matrix_(mathematics)) 3. Linear equations Matrices can be used to compactly write and work with systems of linear equations. For example, if A is an m-by-n matrix, x designates a column vector (i.e., n×1-matrix) of n variables x1, x2, ..., xn, and b is an m×1-column vector, then the matrix equation Ax = b is equivalent to the system of linear equations a1,1x1 + a1,2x2 + ... + a1,nxn = b1 ... am,1x1 + am,2x2 + ... + am,nxn = bm . For example, 3x1 + 2x2 – x3 = 1 2x1 – 2x2 + 4x3 = – 2 – x1 + 1/2x2 – x3 = 0 is a system of three equations in the three variables x1, x2, and x3. This can be written in the matrix form Ax = b where 3 2 1 1 1 A = 2 2 4 , x = 2 , b = 2 1 1/2 −1 푥3 0 � − � �푥 � �− � A solution to− a linear system− is an assignment푥 of numbers to the variables such that all the equations are simultaneously satisfied. A solution to the system above is given by x1 = 1 x2 = – 2 x3 = – 2 since it makes all three equations valid. A linear system may behave in any one of three possible ways: 1. The system has infinitely many solutions. 2. The system has a single unique solution. 3. The system has no solution. 3.1. Solving linear equations There are several algorithms for solving a system of linear equations. Elimination of variables The simplest method for solving a system of linear equations is to repeatedly eliminate variables.
    [Show full text]
  • TEC Forecasting Based on Manifold Trajectories
    remote sensing Article TEC Forecasting Based on Manifold Trajectories Enrique Monte Moreno 1,* ID , Alberto García Rigo 2,3 ID , Manuel Hernández-Pajares 2,3 ID and Heng Yang 1 ID 1 TALP Research Center, Department of Signal Theory and Communications, Polytechnical University of Catalonia, 08034 Barcelona, Spain; [email protected] 2 UPC-IonSAT, Polytechnical University of Catalonia, 08034 Barcelona, Spain; [email protected] (A.G.R.); [email protected] (M.H.-P.) 3 IEEC-CTE-CRAE, Institut d’Estudis Espacials de Catalunya, 08034 Barcelona, Spain * Correspondence: [email protected]; Tel.: +34-934016435 Received: 18 May 2018; Accepted: 13 June 2018; Published: 21 June 2018 Abstract: In this paper, we present a method for forecasting the ionospheric Total Electron Content (TEC) distribution from the International GNSS Service’s Global Ionospheric Maps. The forecasting system gives an estimation of the value of the TEC distribution based on linear combination of previous TEC maps (i.e., a set of 2D arrays indexed by time), and the computation of a tangent subspace in a manifold associated to each map. The use of the tangent space to each map is justified because it allows modeling the possible distortions from one observation to the next as a trajectory on the tangent manifold of the map. The coefficients of the linear combination of the last observations along with the tangent space are estimated at each time stamp to minimize the mean square forecasting error with a regularization term. The estimation is made at each time stamp to adapt the forecast to short-term variations in solar activity.
    [Show full text]
  • Generalized Multiple Correlation Coefficient As a Similarity
    Generalized Multiple Correlation Coefficient as a Similarity Measurement between Trajectories Julen Urain1 Jan Peters1;2 Abstract— Similarity distance measure between two trajecto- ries is an essential tool to understand patterns in motion, for example, in Human-Robot Interaction or Imitation Learning. The problem has been faced in many fields, from Signal Pro- cessing, Probabilistic Theory field, Topology field or Statistics field. Anyway, up to now, none of the trajectory similarity measurements metrics are invariant to all possible linear trans- formation of the trajectories (rotation, scaling, reflection, shear mapping or squeeze mapping). Also not all of them are robust in front of noisy signals or fast enough for real-time trajectory classification. To overcome this limitation this paper proposes a similarity distance metric that will remain invariant in front of any possible linear transformation. Based on Pearson’s Correlation Coefficient and the Coefficient of Determination, our similarity metric, the Generalized Multiple Correlation Fig. 1: GMCC applied for clustering taught trajectories in Coefficient (GMCC) is presented like the natural extension of Imitation Learning the Multiple Correlation Coefficient. The motivation of this paper is two-fold: First, to introduce a new correlation metric that presents the best properties to compute similarities between trajectories invariant to linear transformations and compare human-robot table tennis match. In [11], HMM were used it with some state of the art similarity distances. Second, to to recognize human gestures. The recognition was invariant present a natural way of integrating the similarity metric in an to the starting position of the gestures. The sequences of Imitation Learning scenario for clustering robot trajectories.
    [Show full text]
  • Group Quantization of Quadratic Hamiltonians in Finance
    Date: February 2 2021 Version 1.0 Group Quantization of Quadratic Hamiltonians in Finance Santiago Garc´ıa1 Abstract The Group Quantization formalism is a scheme for constructing a functional space that is an irreducible infinite dimensional representation of the Lie algebra belonging to a dynamical symmetry group. We apply this formalism to the construction of functional space and operators for quadratic potentials- gaussian pricing kernels in finance. We describe the Black-Scholes theory, the Ho-Lee interest rate model and the Euclidean repulsive and attractive oscillators. The symmetry group used in this work has the structure of a principal bundle with base (dynamical) group a + semi-direct extension of the Heisenberg-Weyl group by SL(2;R), and structure group (fiber) R . + By using a R central extension, we obtain the appropriate commutator between the momentum and coordinate operators [pˆ;xˆ] = 1 from the beginning, rather than the quantum-mechanical [pˆ;xˆ] = −i}. The integral transforma- tion between momentum and coordinate representations is the bilateral Laplace transform, an integral transform associated to the symmetry group. Keywords Black-Scholes – Lie Groups – Quadratic Hamiltonians – Central Extensions – Oscillator – Linear Canonical Transformations – Mellin Transform – Laplace Transform [email protected] Contents Introduction 1 Galilean Transformations as Numeraire Change3 The Group Quantization formalism ([1], [2], [3], [6]) is a 2 The Group Quantization Formalism3 scheme for constructing a functional space that is an irre- ducible infinite dimensional representation of the Lie algebra 3 The WSp(2;R) Group6 belonging to a dynamical symmetry group. 4 Black-Scholes9 This formalism utilizes Cartan geometries in a framework 5 Linear Potential.
    [Show full text]
  • {PDF} Matrices and Linear Transformations Ebook Free Download
    MATRICES AND LINEAR TRANSFORMATIONS PDF, EPUB, EBOOK Charles G. Cullen | 336 pages | 07 Jan 1991 | Dover Publications Inc. | 9780486663289 | English | New York, United States Matrices and Linear Transformations PDF Book Parallel projections are also linear transformations and can be represented simply by a matrix. Further information: Orthogonal projection. Preimage and kernel example Opens a modal. Linear transformation examples. Matrix vector products as linear transformations Opens a modal. Rotation in R3 around the x-axis Opens a modal. So what is a1 plus b? That's my first condition for this to be a linear transformation. Let me define my transformation. This means that applying the transformation T to a vector is the same as multiplying by this matrix. Distributive property of matrix products Opens a modal. Sorry, what is vector a plus vector b? The distinction between active and passive transformations is important. Name optional. Now, we just showed you that if I take the transformations separately of each of the vectors and then add them up, I get the exact same thing as if I took the vectors and added them up first and then took the transformation. Example of finding matrix inverse Opens a modal. We can view it as factoring out the c. We already had linear combinations so we might as well have a linear transformation. Part of my definition I'm going to tell you, it maps from r2 to r2. In some practical applications, inversion can be computed using general inversion algorithms or by performing inverse operations that have obvious geometric interpretation, like rotating in opposite direction and then composing them in reverse order.
    [Show full text]
  • Affine Shape Descriptor Algorithm for Image Matching and Object Recognition in a Digital Image
    Revista Iberoamericana de las Ciencias Computacionales e Informática ISSN: 2007-9915 Affine Shape Descriptor Algorithm for Image Matching and Object Recognition in a Digital Image Algoritmo para clasificación de formas invariante a transformaciones afines para objetos rígidos en una imagen digital Algoritmo de classificação para as formas invariantes afins para objetos rígidos em uma imagem digital DOI: http://dx.doi.org/10.23913/reci.v6i11.57 Jacob Morales G. Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, México [email protected] Nancy Arana D. Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, México [email protected] Alberto A. Gallegos Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, México [email protected] Resumen El uso de la forma como criterio discriminante entre clases de objetos extraídos de una imagen digital, es uno de los roles más importantes en la visión por computadora. El uso de la forma ha sido estudiado extensivamente en décadas recientes, porque el borde de los objetos guarda suficiente información para su correcta clasificación, adicionalmente, la cantidad de memoria utilizada para guardar un borde, es mucho menor en comparación a la cantidad de información contenida en la región que delimita. En este artículo, se propone un nuevo descriptor de forma. Se demuestra que el descriptor es invariante a la perspectiva, es estable en la presencia de ruido, y puede diferenciar entre diferentes clases de objetos. Un análisis comparativo es incluido para mostrar el rendimiento de nuestra propuesta con respecto a los algoritmos del estado del arte. Vol. 6, Núm. 11 Enero - Junio 2017 RECI Revista Iberoamericana de las Ciencias Computacionales e Informática ISSN: 2007-9915 Palabras Clave: Reconocimiento de Patrones, Visión por Computadora, Descriptor de Forma, Transformación por Afinidad.
    [Show full text]
  • 3D Oriented Projective Geometry Through Versors of R3,3
    Adv. Appl. Clifford Algebras c The Author(s) This article is published with open access at Springerlink.com 2015 Advances in DOI 10.1007/s00006-015-0625-y Applied Clifford Algebras 3D Oriented Projective Geometry Through Versors of R3,3 Leo Dorst* Abstract. It is possible to set up a correspondence between 3D space and R3,3, interpretable as the space of oriented lines (and screws), such that special projective collineations of the 3D space become represented as rotors in the geometric algebra of R3,3. We show explicitly how various primitive projective transformations (translations, rotations, scalings, perspectivities, Lorentz transformations) are represented, in geomet- rically meaningful parameterizations of the rotors by their bivectors. Odd versors of this representation represent projective correlations, so (oriented) reflections can only be represented in a non-versor manner. Specifically, we show how a new and useful ‘oriented reflection’ can be defined directly on lines. We compare the resulting framework to the unoriented R3,3 approach of Klawitter (Adv Appl Clifford Algebra, 24:713–736, 2014), and the R4,4 rotor-based approach by Goldman et al. (Adv Appl Clifford Algebra, 25(1):113–149, 2015) in terms of expres- siveness and efficiency. Mathematics Subject Classification. 15A33, 51M35. Keywords. Projective geometry, Oriented projective geometry, Geometric algebra, Homogeneous coordinates, Pl¨ucker coordinates, Oriented lines, Projective collineation, Versor, Rotor, Bivector generator, Oriented reflection. 1. Introduction 1.1. Towards a Geometric Algebra of Projective Geometry Projective transformations in 3D and 2D are extensively used in computer vision and computer graphics. In those fields, it is common practice to con- struct a desired projective transformation from certain geometrically mean- ingful primitive operations (rotations at the origin, translations, scalings, skews, etc.), or to analyze a given transformation in terms of such primi- tive operations.
    [Show full text]
  • MATRICES Part 2 3. Linear Equations
    MATRICES part 2 (modified content from Wikipedia articles on matrices http://en.wikipedia.org/wiki/Matrix_(mathematics)) 3. Linear equations Matrices can be used to compactly write and work with systems of linear equations. For example, if A is an m-by-n matrix, x designates a column vector (i.e., n×1-matrix) of n variables x1, x2, ..., xn, and b is an m×1-column vector, then the matrix equation Ax = b is equivalent to the system of linear equations a1,1x1 + a1,2x2 + ... + a1,nxn = b1 ... am,1x1 + am,2x2 + ... + am,nxn = bm . For example, 3x1 + 2x2 – x3 = 1 2x1 – 2x2 + 4x3 = – 2 – x1 + 1/2x2 – x3 = 0 is a system of three equations in the three variables x1, x2, and x3. This can be written in the matrix form Ax = b where 3 2 1 1 1 A = 2 2 4 , x = 2 , b = 2 1 1/2 −1 푥3 0 � − � �푥 � �− � A solution to− a linear system− is an assignment푥 of numbers to the variables such that all the equations are simultaneously satisfied. A solution to the system above is given by x1 = 1 x2 = – 2 x3 = – 2 since it makes all three equations valid. A linear system may behave in any one of three possible ways: 1. The system has infinitely many solutions. 2. The system has a single unique solution. 3. The system has no solution. 3.1. Solving linear equations There are several algorithms for solving a system of linear equations. Elimination of variables The simplest method for solving a system of linear equations is to repeatedly eliminate variables.
    [Show full text]
  • Mathematical Tables and Algorithms
    Appendix A Mathematical Tables and Algorithms This appendix provides lists with some definitions, integrals, trigonometric relations and the like. It is not exhaustive, presenting only that information used throughout the book and a few more just for complementation purposes. The reader can find extensive tables available in the literature. We recommend the works by Abramowitz and Stegun [1], Bronshtein, Semendyayev, Musiol and Muehlig [2], Gradshteyn and Ryzhik [3], Polyanin and Manzhirov [4] and Zwillinger [7]. We also recommend the book by Poularikas [5], though its major application is in the signal processing area. Nevertheless, it complements the tables of the other recommended books. In terms of online resources, the Digital Library of Mathematical Functions (DLMF) is intended to be a reference data for special functions and their applications [6]. It is also intended to be an update of [1]. A.1 Trigonometric Relations ∞ x3 x5 x7 (−1)n x2n+1 sin x = x − + − +···= (A.1) 3! 5! 7! (2n + 1)! n=0 ∞ x2 x4 x6 (−1)n x2n cos x = 1 − + − +···= (A.2) 2! 4! 6! (2n)! n=0 1 sin2 θ = (1 − cos 2θ)(A.3) 2 1 cos2 θ = (1 + cos 2θ)(A.4) 2 1 sin2 θ cos2 θ = (1 − cos 4θ)(A.5) 8 1 cos θ cos ϕ = [cos(θ − ϕ) + cos(θ + ϕ)] (A.6) 2 1 sin θ sin ϕ = [cos(θ − ϕ) − cos(θ + ϕ)] (A.7) 2 D.A. Guimaraes,˜ Digital Transmission, Signals and Communication Technology, 841 DOI 10.1007/978-3-642-01359-1, C Springer-Verlag Berlin Heidelberg 2009 842 A Mathematical Tables and Algorithms 1 sin θ cos ϕ = [sin(θ + ϕ) + sin(θ − ϕ)] (A.8) 2 sin(θ ± ϕ) = sin θ cos ϕ ± cos θ sin ϕ (A.9) cos(θ ± ϕ) = cos θ cos ϕ ∓ sin θ sin ϕ (A.10) tan θ ± tan ϕ tan(θ ± ϕ) = (A.11) 1 ∓ tan θ tan ϕ sin 2θ = 2sinθ cos θ (A.12) cos 2θ = cos2 θ − sin2 θ (A.13) 1 sin θ = (eiθ − e−iθ ) (A.14) 2i 1 cos θ = (eiθ + e−iθ ).
    [Show full text]
  • Generalizing Convolutional Neural Networks for Equivariance to Lie Groups on Arbitrary Continuous Data
    Generalizing Convolutional Neural Networks for Equivariance to Lie Groups on Arbitrary Continuous Data Marc Finzi 1 Samuel Stanton 1 Pavel Izmailov 1 Andrew Gordon Wilson 1 Abstract The translation equivariance of convolutional lay- ers enables convolutional neural networks to gen- eralize well on image problems. While translation equivariance provides a powerful inductive bias for images, we often additionally desire equivari- ance to other transformations, such as rotations, especially for non-image data. We propose a gen- eral method to construct a convolutional layer that is equivariant to transformations from any Figure 1. Many modalities of spatial data do not lie on a grid, but specified Lie group with a surjective exponential still possess important symmetries. We propose a single model map. Incorporating equivariance to a new group to learn from continuous spatial data that can be specialized to requires implementing only the group exponential respect a given continuous symmetry group. and logarithm maps, enabling rapid prototyping. Showcasing the simplicity and generality of our method, we apply the same model architecture to the translation equivariance of convolutional layers in neu- images, ball-and-stick molecular data, and Hamil- ral networks (LeCun et al., 1995): when an input (e.g. an tonian dynamical systems. For Hamiltonian sys- image) is translated, the output of a convolutional layer is tems, the equivariance of our models is especially translated in the same way. impactful, leading to exact conservation of linear Group theory provides a mechanism to reason about symme- and angular momentum. try and equivariance. Convolutional layers are equivariant to translations, and are a special case of group convolu- tion.
    [Show full text]