Flffin,Ltrearer

Total Page:16

File Type:pdf, Size:1020Kb

Flffin,Ltrearer #flffin,ltrearer ?Ee"_w+ Rhizoctonia stem canker and black scurf of potato Phillip Whartonl, William Kirkl, Devan Berry1 and Sieglinde Snapp2 lDepartment of Plant Pathology, 2Department of Crop & Soil Sciences, Michigan State University Rhizoctonia stenn canker and black scurf economically significant damage only in cool, wet Rhizoctonia solani Kuhn soils. ln the more southern temperate areas of (Deuteromycetes, Mycelia Sterilia) Michigan, losses f rom Rhizoctonia are sporadic and occur only when the weather is cold and wet in the Introduction weeks following planting. In northern areas, where Rhizoctonia diseases of potato are caused by the growers often must plant in cold soils, Rhizoctonia fungus Rhizoctonia solani Kuhn (teleomorph Thana- is a more consistent problem. Poor stands, stunted plants, number and size, and mis- tephorus cucumeris [A. B. Frank] Donk) and can be reduced tuber found on all underground parts of the plant at various shapen tubers are symptoms of R. solaniinfection. times during the growing seas on. Rhizoctonia solani has many synonyms and is divided into subgroups Symptonns called anastomosis groups (AGs), in which isolates The symptoms of the disease are found on both are categorized according to the ability of their above- and belowground portions of the plant. hyphae to anastomose (fuse) with one another. Three Black scurf (Fig. 1) is the most conspicuous sign of AGs of R. solaniare prevalent in Michigan. AG2-2, Rhizoctonia disease. ln this phase of the disease, AG-3 and AG-4. AG-3 is the causal agent of disease the fungus forms dark brown to black, hard masses in potato; AG2-2 and AG-4 cause sugar beet crown on the surface of the tuber. These are called sclerotia and root rot and seedling damping-off, respectively. and are resting bodies of the fungus (Fig. 1). Sclerotia Rhizoctonia solani AG-3 is relatively specific to are superficial and irregularly shaped, ranging from potato, and sclerotia on tubers belong almost exclu- sively to AG-3. Other AGs of R. solani, such as AG2- 2 and AG-4, may be pathogenic to potato at some temperatures, but they generally cause little damage. ln Michigan, R. solanicauses black scurf on tubers (Fig. 1) and stem and stolon canker on underground stems and stolons (Fig . 2), and it occurs wherever potatoes are grown. However, R. solanicauses $ t1 "v Figure 1. Rhizoctonia solanisclerotia on the surface of Figure 2. Brown, sunken lesions on underground tubers. stems and stolons are caused by R, solani. fi$urltltnl,i.'l'.i,*,'.,',.,'..,;.'.ij''.''i'lil-..i Figure 3. Germinating sprouts may be killed by R. solani Figure 4. Small aerial tubers may form aboveground if before they emerge from the soil. stolons and underground stems are severely infected. small, flat, barely visible blotches to large, raised Stolons and roots can also be infected by R. solani. lumps. Although these structures adhere tightly to Early in disease development, stolons, roots and the tuber skin, they do not penetrate or damage the stems have reddish brown to brown lesions. As red tuber, even in storage. However, they will perpetuate to brown lesions mature, they become cankers that the disease, and if infected tubers are used as seed, are rough and brown and can have craters, cracks or inhibit the establishment of potato plants. both. Damage varies and can be limited to a superf i- cial brown area that has no discernible effect on plant Although black scurf is the most noticeable sign growth to severe lesions that are large, sunken and of Rhizoctonia, stem canker (Fig. 2) is the most necrotic. lf cankers are severe, they may girdle the damaging component of the disease. lt occurs under- stem, interfering with the normal movement of water ground and often goes unnoticed. Early in the season, and carbohydrates throughout the plant. the fungus attacks germinating sprouts underground before they emerge from the soil (Fig. 3). Sprouts Late-season damage to plants is a direct result of may be killed outright if lesions form near the growing cankers on stolons and stems causing problems tip (Fig. 3). Damage at this stage results in delayed with starch translocation. Stolon cankers also affect emergence and is expressed as poor and uneven the shape, size and numbers of tubers produced. stands with weakened plants. Reduction in crop vigor lf stolons and underground stems are severely results from expenditure of seed energy used to infected, the flow of starch from the leaves to the produce secondary or tertiary sprouts to compensate developing tubers is interrupted. This results in for damage to primary sprouts. Occasionally, heavily small, green tubers, called aerial tubers, forming on infested potato seed tubers are unable to produce the stem above the soil (Fig. 4). Formation of aerial stems. lnstead, the tubers will produce stolons with tubers may indicate that the plant has no tubers several small tubers. This symptom, referred to as of marketable quality belowground. lnterruptions "no top", can be confused with the same symptom in carbohydrate flow may also result in a stunting caused by physiologically old seed that has been or rosetting of the plant. A leaf curl, which can be desprouted. confused with symptoms of the potato leaf roll virus, has also been reported in severely infected plants. Poor stands may also be mistaken for seed tuber decay caused by Fusarium or soft rot bacteria unless Disease cycle plants are dug up and examined. Rhizoctonia does Rhizoctonia diseases are initiated by seed-borne or not cause seed decay, damaging only sprouts and soil-borne inoculum. The pathogen overwinters as stolons. Poor stands and stunted plants can also be sclerotia and mycelium on infected tubers, in plant caused by blackleg, a bacterial disease that origi- residue or in infested soils (Fig. 5). When infected nates from seed tubers and progresses up stems, seed tubers are planted in the spring, the fungus causing a wet, sometimes slimy rot. ln contrast, grows from the seed surface to the developing Bhizoctonra lesions are always dry and usually sunken. Early in season, SUMMER white mycelium often develops on plant parts in close contact with soil. This is the sexual stage of the fungus. Its role in the disease is not well known. LATE SUMMER/ When oberved, stem -> lesions are often FALL severe. Late-season damage may Roots and stolons may be resull in formation of attacked anytime during aerial tubers. the growing season. Mycelia and sclerotia on infected tubers infect Rhizoctonia solani developing sprout, root Disease Cycle and stolon primordia, " often nipping off growing tips. SPRING Sclerotia start to form on tubers when still attached to mother plant, and this continues into storage. q FALL lnfected seed and volunteer potatoes. Pathogen overwinters as sclerotia and mycelia on infected tubers, in plant residue or in infested soil. WINTER Figure 5. The disease cycle of the stem canker and black scurf pathogen, Rhizoctonia solani. sprout, and infection of root primordia, stolon primordia tively correlated with the temperature that is most and leaf primordia can occur. Seed-borne inoculum favorable for pathogen growth. The temperature is particularly effective in causing disease because of range for the growth of F. solaniAG-3 is 41' to its close proximity to developing sprouts and stolons. 77"F, so plants will be most susceptible to infection when the soil temperatures are within this critical Mycelia and sclerotia of R. solaniare endemic to range. Cool temperatures, high soil moisture, fertility Michigan soils, living on organic debris, and can and a neutral to acid soil (pH 7 or less) are thought cause disease independently of or in conjunction with to favor development of Rhizoctonia diseases of seed-borne inoculum. Soil-borne inoculum is poten- potato. Damage is most severe at cool temperatures tially as damaging as seed-borne inoculum, but it can because of reduced rates of emergence and because cause infection only when the plant organs develop growth of stems and stolons is slow relative to the in proximity to the inoculum. Roots and stolons may growth of the fungus. Wet soils warm up more slowly be attacked anytime during the growing season, than dry soils. This exacerbates damage because although most infections probably occur in the early excessive soil moisture slows plant development and part of the plant growth cycle. The plant's resistance favors fungal growth. lt has been shown that high soil to stolon infection increases after emergence, even- temperatures, especially during the early stages of tually limiting expansion of lesions. plant development, tend to minimize the impacts of R. solani, even when inoculum is abundant. Previous research has shown that soil temperature is a critical factor in the initiation of Rhizoctonia Sclerotia begin to form late in the season, principally disease in potato, with disease severity being posi- after vine death. The mechanisms involved in scle- rotial development on daughter tubers are different sclerotia are visible on one side of washed tubers, from those acting in the infection of the mother plant. consider using a different seed source. Tuber The mechanisms that trigger sclerotial formation are inoculum is more important than soil inoculum as the not well understood, but they may involve products primary cause of disease. Seed growers should plant related to plant senescence. However, daughter only sclerotia-free seed. tubers produced from infected mother plants do not always become infested with sclerotia. Following practices that do not delay emergence in the spring minimizes damage to shoots and stolons Monitoring and control and lessens the chance for infection. Planting seed Currently, it is not possible to completely control tubers in warm soil (above 46'F) and covering them Rhizoctonia diseases, but following a combination with as little soil as possible speeds sprout and stem of cultural and crop protection strategies may limit development and emergence, and reduces the risk their severity.
Recommended publications
  • AFLP Fingerprinting for Identification of Infra-Species Groups of Rhizoctonia Solani and Waitea Circinata Bimal S
    atholog P y & nt a M l i P c r Journal of f o o b l i a o Amaradasa et al., J Plant Pathol Microb 2015, 6:3 l n o r g u y DOI: 10.4172/2157-7471.1000262 o J Plant Pathology & Microbiology ISSN: 2157-7471 Research Article Open Access AFLP Fingerprinting for Identification of Infra-Species Groups of Rhizoctonia solani and Waitea circinata Bimal S. Amaradasa1*, Dilip Lakshman2 and Keenan Amundsen3 1Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA 2Floral and Nursery Plants Research Unit and the Sustainable Agricultural Systems Lab, Beltsville Agricultural Research Center-West, Beltsville, MD 20705, USA 3Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583 USA Abstract Patch diseases caused by Thanatephorus cucumeris (Frank) Donk and Waitea circinata Warcup and Talbot varieties (anamorphs: Rhizoctonia species) pose a serious threat to successful maintenance of several important turfgrass species. Reliance on field symptoms to identify Rhizoctonia causal agents can be difficult and misleading. Different Rhizoctonia species and Anastomosis Groups (AGs) vary in sensitivity to commonly applied fungicides and they also have different temperature ranges conducive for causing disease. Thus correct identification of the causal pathogen is important to predict disease progression and make future disease management decisions. Grouping Rhizoctonia species by anastomosis reactions is difficult and time consuming. Identification of Rhizoctonia isolates by sequencing Internal Transcribed Spacer (ITS) region can be cost prohibitive. Some Rhizoctonia isolates are difficult to sequence due to polymorphism of the ITS region. Amplified Fragment Length Polymorphism (AFLP) is a reliable and cost effective fingerprinting method for investigating genetic diversity of many organisms.
    [Show full text]
  • Proteo-Metabolomic Investigation of Transgenic Rice Unravels Metabolic
    www.nature.com/scientificreports OPEN Proteo-metabolomic investigation of transgenic rice unravels metabolic alterations and Received: 27 November 2018 Accepted: 24 June 2019 accumulation of novel proteins Published: xx xx xxxx potentially involved in defence against Rhizoctonia solani Subhasis Karmakar1, Karabi Datta1, Kutubuddin Ali Molla2,3, Dipak Gayen4, Kaushik Das1, Sailendra Nath Sarkar1 & Swapan K. Datta1 The generation of sheath blight (ShB)-resistant transgenic rice plants through the expression of Arabidopsis NPR1 gene is a signifcant development for research in the feld of biotic stress. However, to our knowledge, regulation of the proteomic and metabolic networks in the ShB-resistant transgenic rice plants has not been studied. In the present investigation, the relative proteome and metabolome profles of the non–transformed wild-type and the AtNPR1-transgenic rice lines prior to and subsequent to the R. solani infection were investigated. Total proteins from wild type and transgenic plants were investigated using two-dimensional gel electrophoresis (2-DE) followed by mass spectrometry (MS). The metabolomics study indicated an increased abundance of various metabolites, which draws parallels with the proteomic analysis. Furthermore, the proteome data was cross-examined using network analysis which identifed modules that were rich in known as well as novel immunity-related prognostic proteins, particularly the mitogen-activated protein kinase 6, probable protein phosphatase 2C1, probable trehalose-phosphate phosphatase 2 and heat shock protein. A novel protein, 14–3– 3GF14f was observed to be upregulated in the leaves of the transgenic rice plants after ShB infection, and the possible mechanistic role of this protein in ShB resistance may be investigated further.
    [Show full text]
  • Biological Control of Rhizoctonia Solani by Indigenous Trichoderma Spp
    Hebron University Research Journal. H.U.R.J. is available online at Vol.(3), No.(1), pp.(1 – 15), 2007 http://www.hebron.edu/journal Biological Control of Rhizoctonia solani by Indigenous Trichoderma spp. Isolates from Palestine 1 1 *Radwan M. Barakat , Fadel Al-Mahareeq , 2 1 Mohammed S. Ali -Shtayeh , and Mohammad I. AL- Masri 1Faculty of Agriculture, Hebron University, Hebron- Palestine 2Faculty of Science, An-Najah National University, Nablus- Palestine Abstract: The effect of indigenous Trichoderma isolates against the soil-borne phytopathogen Rhizoctonia solani was investigated in dual culture and bioassay on bean plants. Ap- plication of the bioagent isolates as a conidial suspension (3*107) greatly reduced the disease index of bean plants caused by R. solani in different rates and the most effective Trichoderma harzianum isolate (Jn14) reduced the disease by 65%. In dual culture, the T. harzianum (Jn14) overgrew the pathogen R. solani in an average of 16.75 mm/day at 30 °C. In addition, the results showed that T. harzianum (Jn14) and T. hamatum (T36) were the most effective isolates at 25°C and inhibited R. solani mycelial growth by 42% and 78% respectively, due to fungitoxic metabolites production. The Effect of Trichoderma on bean seedlings growth was obvious; height was nearly doubled (160% - 200%), while fresh and dry weights increased by 133% and 217%, respectively. Ger- mination of bean seeds in treated soil with Trichoderma isolates occurred about four days earlier than those in untreated soils. The results revealed however some variation between isolates which was due to genetic variation, mycelium-coiling rate, sporulation rate, fungitoxic metabolites, induced growth response and temperature effect.
    [Show full text]
  • Phylogenetic Relationships of Rhizoctonia Fungi Within the Cantharellales
    fungal biology 120 (2016) 603e619 journal homepage: www.elsevier.com/locate/funbio Phylogenetic relationships of Rhizoctonia fungi within the Cantharellales Dolores GONZALEZa,*, Marianela RODRIGUEZ-CARRESb, Teun BOEKHOUTc, Joost STALPERSc, Eiko E. KURAMAEd, Andreia K. NAKATANIe, Rytas VILGALYSf, Marc A. CUBETAb aInstituto de Ecologıa, A.C., Red de Biodiversidad y Sistematica, Carretera Antigua a Coatepec No. 351, El Haya, 91070 Xalapa, Veracruz, Mexico bDepartment of Plant Pathology, North Carolina State University, Center for Integrated Fungal Research, Campus Box 7251, Raleigh, NC 27695, USA cCBS Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands dDepartment of Microbial Ecology, Netherlands Institute of Ecology (NIOO/KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands eUNESP, Faculdade de Ci^encias Agronomicas,^ CP 237, 18603-970 Botucatu, SP, Brazil fDepartment of Biology, Duke University, Durham, NC 27708, USA article info abstract Article history: Phylogenetic relationships of Rhizoctonia fungi within the order Cantharellales were studied Received 2 January 2015 using sequence data from portions of the ribosomal DNA cluster regions ITS-LSU, rpb2, tef1, Received in revised form and atp6 for 50 taxa, and public sequence data from the rpb2 locus for 165 taxa. Data sets 1 January 2016 were analysed individually and combined using Maximum Parsimony, Maximum Likeli- Accepted 19 January 2016 hood, and Bayesian Phylogenetic Inference methods. All analyses supported the mono- Available online 29 January 2016 phyly of the family Ceratobasidiaceae, which comprises the genera Ceratobasidium and Corresponding Editor: Thanatephorus. Multi-locus analysis revealed 10 well-supported monophyletic groups that Joseph W. Spatafora were consistent with previous separation into anastomosis groups based on hyphal fusion criteria.
    [Show full text]
  • Protective and Curative Effects of Trichoderma Asperelloides Ta41 on Tomato Root Rot Caused by Rhizoctonia Solani Rs33
    agronomy Article Protective and Curative Effects of Trichoderma asperelloides Ta41 on Tomato Root Rot Caused by Rhizoctonia solani Rs33 Ahmed A. Heflish 1, Ahmed Abdelkhalek 2 , Abdulaziz A. Al-Askar 3,* and Said I. Behiry 1 1 Agricultural Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt; ahmed_hefl[email protected] (A.A.H.); [email protected] (S.I.B.) 2 Plant Protection and Biomolecular Diagnosis Department, ALCRI, City of Scientific Research and Technological Applications, New Borg El Arab City, Alexandria 21934, Egypt; [email protected] 3 Botany and Microbiology Department, Faculty of Science, King Saud University, Riyadh 11451, Saudi Arabia * Correspondence: [email protected]; Tel.: +96-65-0346-1390 Abstract: Two molecularly identified tomato isolates, Trichoderma asperelloides Ta41 and Rhizoctonia solani Rs33, were characterized and antagonistically evaluated. The dual culture technique showed that Ta41 had a high antagonistic activity of 83.33%, while a light microscope bioassay demonstrated that the Ta41 isolate over-parasitized the pathogen completely. Under greenhouse conditions, the application of Ta41 was able to promote tomato plant growth and had a significant increase in plant height, root length, and shoot fresh, shoot dry, root fresh, and root dry weight. It also improved chlorophyll content and total phenol content significantly, both in protective and in curative treat- ments. The protective treatment assay exhibited the lowest disease index (16.00%), while the curative treatment showed a disease index of 33.33%. At 20 days post-inoculation, significant increases in the relative expression levels of four defense-related genes (PR-1, PR-2, PR-3, and CHS) were observed in all Ta41-treated plants when compared with the non-treated plants.
    [Show full text]
  • Occurrence and Anastomosis Grouping of Rhizoctonia Spp
    Journal of Fungi Article Occurrence and Anastomosis Grouping of Rhizoctonia spp. Inducing Black Scurf and Greyish-White Felt-Like Mycelium on Carrot in Sweden Shirley Marcou 1,†, Mariann Wikström 2,†, Sara Ragnarsson 3, Lars Persson 4 and Monica Höfte 1,* 1 Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; [email protected] 2 Agro Plantarum AB, Kärrarpsvägen 410, S-265 90 Åstorp, Sweden; [email protected] 3 Swedish Board of Agriculture, Elevenborgsvägen 4, S-234 56 Alnarp, Sweden; [email protected] 4 Brandsberga Gård AB/Agri Science Sweden AB, Brandsberga Gård 210, S-264 53 Ljungbyhed, Sweden; [email protected] * Correspondence: [email protected]; Tel.: +32-9264-6017 † Shared first authors. These authors contributed equally to the manuscript. Abstract: Carrots with different Rhizoctonia-like symptoms were found in the main Swedish carrot production areas from 2001–2020. The most commonly observed symptoms were a greyish-white felt-like mycelium and black scurf, the latter often associated with Rhizoctonia solani anastomosis group (AG) 3-PT on potato. An overall increase in disease incidence in all studied fields over time was observed for both symptoms. The majority of Rhizoctonia isolates sampled from carrot in the period 2015–2020 were identified as AG 3 (45%) and AG 5 (24%), followed by AG 1-IB (13%), AG Citation: Marcou, S.; Wikström, M.; 11 (5%), AG-E (5%), AG BI (3%), AG-K (3%) and AG 4-HGII (2%). To our knowledge, this is the Ragnarsson, S.; Persson, L.; Höfte, M. first report describing AG 5 in Sweden as well as AG 3, AG 11 and AG-E inducing Rhizoctonia-like Occurrence and Anastomosis symptoms on carrot.
    [Show full text]
  • Understanding and Managing Rhizoctonia Solani In
    UNDERSTANDING AND MANAGING RHIZOCTONIA SOLANI IN SUGARBEET A Thesis Submitted to the Graduate Faculty Of the North Dakota State University of Agriculture and Applied Science By Afsana Noor In Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE Major Department: Plant Pathology May 2013 Fargo, North Dakota North Dakota State University Graduate School Title UNDERSTANDING AND MANAGING RHIZOCTONIA SOLANI IN SUGARBEET By Afsana Noor The Supervisory Committee certifies that this disquisition complies with North Dakota State University’s regulations and meets the accepted standards for the degree of MASTER OF SCIENCE SUPERVISORY COMMITTEE: Dr. Mohamed Khan Chair Dr. Luis del Rio Dr. Marisol Berti Dr. Melvin Bolton Approved: Dr. Jack B. Rasmussen 10/04/13 Date Department Chair ABSTRACT Rhizoctonia crown and root rot of sugarbeet (Beta vulgaris L.) caused by Rhizoctonia solani Kühn is one of the most important production problems in Minnesota and North Dakota. Greenhouse studies were conducted to determine the efficacy of azoxystrobin to control R. solani at seed, cotyledonary, 2-leaf and 4-leaf stages of sugarbeet; compatibility, safety, and efficacy of mixing azoxystrobin with starter fertilizers to control R. solani; and the effect of placement of azoxystrobin in control of R. solani. Results demonstrated that azoxystrobin provided effective control applied in-furrow or band applications before infection at all sugarbeet growth stages evaluated; mixtures of azoxystrobin and starter fertilizers were compatible, safe, and provided control of R. solani; and azoxystrobin provided effective control against R. solani when placed in contact over the sugarbeet root or into soil close to the roots.
    [Show full text]
  • <I>Rhizoctonia Solani</I>
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Theses, Dissertations, and Student Research in Agronomy and Horticulture Department Agronomy and Horticulture Spring 5-20-2016 Identification of QTLs for Resistance Against Rhizoctonia solani and Phoma glycinicola in Soybeans (Glycine max L. Merr) Herbert Sserunkuma University of Nebraska-Lincoln Follow this and additional works at: http://digitalcommons.unl.edu/agronhortdiss Part of the Genetics Commons, Molecular Genetics Commons, and the Other Genetics and Genomics Commons Sserunkuma, Herbert, "Identification of QTLs for Resistance Against Rhizoctonia solani and Phoma glycinicola in Soybeans (Glycine max L. Merr)" (2016). Theses, Dissertations, and Student Research in Agronomy and Horticulture. 103. http://digitalcommons.unl.edu/agronhortdiss/103 This Article is brought to you for free and open access by the Agronomy and Horticulture Department at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Theses, Dissertations, and Student Research in Agronomy and Horticulture by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. IDENTIFICATION OF QTLS FOR RESISTANCE AGAINST RHIZOCTONIA SOLANI AND PHOMA GLYCINICOLA IN SOYBEANS (GLYCINE MAX L. MERR) By Herbert Sserunkuma A THESIS Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Master of Science Major: Agronomy Under the Supervision of Professor George L. Graef Lincoln, Nebraska May, 2016 IDENTIFICATION OF QTLS FOR RESISTANCE AGAINST RHIZOCTONIA SOLANI AND PHOMA GLYCINICOLA IN SOYBEANS (GLYCINE MAX L. MERR) Herbert Sserunkuma, M.S. University of Nebraska, 2016 Advisor: George L. Graef A QTL (Quantitative trait locus) is a chromosome location of a gene controlling a specific phenotypic trait.
    [Show full text]
  • Measurement and Inheritance of Resistance to Sheath Blight Caused by Rhizoctonia Solani Kuhn in Rice
    Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1998 Measurement and Inheritance of Resistance to Sheath Blight Caused by Rhizoctonia Solani Kuhn in Rice. Xueyan Sha Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Sha, Xueyan, "Measurement and Inheritance of Resistance to Sheath Blight Caused by Rhizoctonia Solani Kuhn in Rice." (1998). LSU Historical Dissertations and Theses. 6790. https://digitalcommons.lsu.edu/gradschool_disstheses/6790 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps.
    [Show full text]
  • Rhizoctonia Solani As a Potato Pathogen
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Helsingin yliopiston digitaalinen arkisto RHIZOCTONIA SOLANI AS A POTATO PATHOGEN - VARIATION OF ISOLATES IN FINLAND AND HOST RESPONSE MARI J LEHTONEN Department of Applied Biology Faculty of Agriculture and Forestry Viikki Graduate School in Molecular Biosciences University of Helsinki Finland ACADEMIC DISSERTATION IN PLANT PATHOLOGY To be presented, with permission of the Faculty of Agriculture and Forestry of the University of Helsinki, for public criticism in Viikki, Auditorium B5 (Forest Sciences building, Latokartanonkaari 9), on May 12th 2009, at 12 o'clock noon. Supervisor: Academy Professor Jari PT Valkonen Department of Applied Biology Plant Pathology Laboratory University of Helsinki Finland Reviewers: Professor (Emer.) Marjatta Raudaskoski Laboratory of Plant Physiology and Molecular Biology University of Turku Finland Senior Scientist, PhD Annemarie Fejer Justesen Department of Integrated Pest Management Research Centre Flakkebjerg Slagelse Denmark Opponent: Associate Professor, Associate Dean Suha Jabaji Faculty of Agricultural & Environmental Sciences Plant Science McGill University Montreal, Quebec Canada Custos: Professor Minna Pirhonen Department of Applied Biology Plant Pathology Laboratory University of Helsinki Finland ISSN 1795-7079, 16/2009 ISBN 978-952-10-5474-7 (paperback) ISBN 978-952-10-5475-4 (PDF) http://ethesis.helsinki.fi Yliopistopaino Helsinki 2009 Lehtonen MJ, 2009 2 CONTENT LIST OF ORIGINAL PUBLICATIONS ........................................................................................
    [Show full text]
  • Foliar Resistance to Rhizoctonia Solani in Arabidopsis Is Compromised by Simultaneous Loss of Ethylene, Jasmonate and PEN2 Mediated Defense Pathways Brendan N
    www.nature.com/scientificreports OPEN Foliar resistance to Rhizoctonia solani in Arabidopsis is compromised by simultaneous loss of ethylene, jasmonate and PEN2 mediated defense pathways Brendan N. Kidd1,2, Rhonda Foley1, Karam B. Singh1,3,4 & Jonathan P. Anderson1,4* Rhizoctonia solani causes damaging yield losses on most major food crops. R. solani isolates belonging to anastomosis group 8 (AG8) are soil-borne, root-infecting pathogens with a broad host range. AG8 isolates can cause disease on wheat, canola and legumes, however Arabidopsis thaliana is heretofore thought to possess non-host resistance as A. thaliana ecotypes, including the reference strain Col-0, are resistant to AG8 infection. Using a mitochondria-targeted redox sensor (mt-roGFP2) and cell death staining, we demonstrate that both AG8 and a host isolate (AG2-1) of R. solani are able to infect A. thaliana roots. Above ground tissue of A. thaliana was found to be resistant to AG8 but not AG2. Genetic analysis revealed that ethylene, jasmonate and PENETRATION2-mediated defense pathways work together to provide resistance to AG8 in the leaves which subsequently enable tolerance of root infections. Overall, we demonstrate a signifcant diference in defense capabilities of above and below ground tissue in providing resistance to R. solani AG8 in Arabidopsis. Plants have evolved complex detection and response systems to protect against abiotic and biotic stresses. Infec- tion by fungal pathogens leads to the activation of rapid basal defense responses at the cell wall, known as pre- invasion defenses, followed by activation of a defense response that is tuned specifcally towards the invading pathogen, known as post-invasion defenses 1,2.
    [Show full text]
  • Aerial Blight of Soybean
    Aerial Blight of Soybean Travis Faske and Terry Kirkpatrick Plant Pathologist Aerial blight, also called aerial web blight or Rhizoctonia foliar blight is a common disease on soybean in the rice growing regions of the U.S. and along the gulf coast. When the disease occurs in rice it is referred to as sheath blight. This disease can cause significant yield loss in both soybean and rice. Extensive yield losses (40-50%) have been reported in soybean when conditions favor disease development. Foliar symptoms often occur during late vegetative growth stages on the lower portion of the plant following canopy closure. Initially leaf symptoms appear as water-soaked, grayish green lesions that turn tan to brown at maturity (Fig. 1). The pathogen may infect leaves, pods, and stems in the lower canopy. Reddish-brown lesions can form on infected petioles, stems, pods and petiole scars. Long strands of web-like hyphae can spread along affected tissue (Fig. 2) and small (1/16 to 3/16 in. in diameter), dark brown sclerotia form on diseased tissue (Fig. 3). Figure 1. Water-soaked, greenish lesions caused by aerial blight on soybean leaves. (M. Emerson) Figure 2. Web-like hyphae of Rhizoctonia solani spreading along the stem of soybean. (M. Emerson) Figure 3. Mature sclerotia of Rhizoctonia solani on soybean petiole. (M. Emerson) Aerial blight is caused by a fungus, Rhizoctonia solani AG1-1A, which overwinters as sclerotia in soil or plant debris from the preceding crop. During warm, wet weather mycelium spreads extensively on the surface of plants, forming localized mats of “webbed” foliage.
    [Show full text]