Comparative Efficacy of Residual Insecticides Against the Turkestan Cockroach, Blatta Lateralis

Total Page:16

File Type:pdf, Size:1020Kb

Comparative Efficacy of Residual Insecticides Against the Turkestan Cockroach, Blatta Lateralis insects Article Comparative Efficacy of Residual Insecticides against the Turkestan Cockroach, Blatta lateralis, (Blattodea: Blattidae) on Different Substrates Sudip Gaire 1 and Alvaro Romero 2,* 1 Department of Entomology, University of Kentucky, Lexington, KY 40546, USA; [email protected] 2 Department of Entomology, Plant Pathology and Weed Science, New Mexico State University, Las Cruces, NM 88003, USA * Correspondence: [email protected]; Tel.: +1-575-646-5550 Received: 19 June 2020; Accepted: 24 July 2020; Published: 28 July 2020 Abstract: The Turkestan cockroach, Blatta lateralis (Walker) is an invasive urban pest prevalent throughout the Southwestern United States. Despite the presence of this cockroach in peridomestic areas, there is limited information on strategies that can be utilized by pest management professionals (PMPs) to effectively manage populations of this pest. We evaluated the efficacy of dry residues of liquid insecticides commonly used for household and structural insect pest control: Tandem (0.10% thiamethoxam, 0.03% lambda-cyhalothrin), Transport GHP (0.05% acetamiprid, 0.06% bifenthrin), Temprid SC (0.10% imidacloprid, 0.05% beta-cyfluthrin), Demand CS (0.06% lambda-cyhalothrin), Talstar P (0.06% bifenthrin), and Phantom (0.5% chlorfenapyr) on three different substrates against Turkestan cockroach nymphs. Except for Phantom and Talstar P, all insecticide formulations killed 100% of the cockroaches on concrete, 89–100% on tile, and 77–100% on wood within 4 days. The rate of cockroach mortality varied according to the substrates to which they were exposed. Temprid SC and Transport GHP killed cockroaches faster on tile than wood. Tandem provided a faster mortality rate than Transport GHP and Temprid SC on concrete. Demand CS and Tandem killed cockroaches at similar rates on the three substrates. This study provides information to guide PMPs in their selection of insecticide formulations for the management of Turkestan cockroach infestations. Keywords: peridomestic cockroach; invasive urban pest; insecticide efficacy; dry residues; substrate type 1. Introduction The Turkestan cockroach, Blatta lateralis (Walker) (Blattodea: Blattidae) is a peridomestic cockroach that inhabits arid and semi-arid areas of the world. It is native to Saudi Arabia, Afghanistan, Uzbekistan, Southern Russia, and some parts of Africa [1–3]. In the last few decades, this cockroach species has expanded from their native range to other Asiatic countries and other continents [4]. In the United States, Turkestan cockroaches were first detected in 1978 at a military base in Lathrop, California, and it is believed that initial infestation occurred when military equipment was brought back from Middle East and Asian military bases [5]. Since then, infestations of this cockroach have established in desert regions of most other southern states, such as Arizona [6], New Mexico [7], Texas [8], and Georgia [9]. Anecdotal accounts by extension entomologists and pest management professionals (PMPs) indicate that Turkestan cockroaches are the most common outdoor cockroach species in many urban areas in the Southwestern United States. In Southern California, the Turkestan cockroach is a prevalent outdoor nuisance pest occupying similar habitats to that of the Oriental cockroach (Blatta orientalis, L.) [10]. Recent studies suggested that Oriental cockroaches are being displaced as major outdoor pests Insects 2020, 11, 477; doi:10.3390/insects11080477 www.mdpi.com/journal/insects Insects 2020, 11, x 2 of 10 prevalentInsects 2020, 11outdoor, 477 nuisance pest occupying similar habitats to that of the Oriental cockroach (Blatta2 of 9 orientalis, L.) [10]. Recent studies suggested that Oriental cockroaches are being displaced as major outdoor pests in this area due to the faster development and reproduction of Turkestan cockroaches [11].in this A arearising due concern to the is faster the expansion development of Turkestan and reproduction cockroaches of Turkestan to areas cockroachesoutside the southwestern [11]. A rising Unitedconcern States is the through expansion pet of stores Turkestan selling cockroaches them as a feeder to areas species outside [11]. the The southwestern spread of the United Turkestan States cockroachthrough pet may stores also selling facilitate them the as co a feeder‐introduction species [of11 the]. The invasive spread Herpomyces of the Turkestan fungi cockroach that naturally may alsolive onfacilitate the cockroaches the co-introduction and cause of plant the invasivediseases [12].Herpomyces fungi that naturally live on the cockroaches andTurkestan cause plant cockroaches diseases [12 ].live in outdoor areas that offer shelter (e.g., most crevices around structures,Turkestan sewer cockroaches system, livemanholes, in outdoor crawlspaces, areas that oetc.),ffer shelter moisture (e.g., most(e.g., creviceswater meter around boxes structures, and irrigationsewer system, boxes), manholes, and food crawlspaces, (e.g., leaf litter etc.), and moisture garbage) (e.g., (Figure water 1) [7]. meter This boxes cockroach and irrigation is also found boxes), in areasand food around (e.g., animal leaf litter barns and where garbage) there is (Figure organic1)[ matter7]. This and cockroach animal feed is also (Figure found 1). This in areas species around has theanimal potential barns whereto mechanically there is organic vector matter bacteria and such animal as feedSalmonella (Figure spp.,1). This a known species human has the and potential animal to pathogenmechanically [13,14]. vector They bacteria frequently such asestablishSalmonella harboragesspp., a knownin basements human and and crawlspaces animal pathogen and become [13,14]. occasionalThey frequently intruders establish when harborages they disperse in basements from these and harborages crawlspaces into and private become homes, occasional schools, intruders and apartmentwhen they buildings disperse from [7]. these harborages into private homes, schools, and apartment buildings [7]. Figure 1. 1. TurkestanTurkestan cockroaches cockroaches in in outdoor outdoor and and indoor indoor areas. areas. (A) ( WaterA) Water meter meter box, box, (B) manhole, (B) manhole, (C) sheep(C) sheep feed feed trough, trough, (D) (feedD) feed mill, mill, (E) sticky (E) sticky trap trap in dorms, in dorms, and and (F) kitchen (F) kitchen sink. sink. An effective effective and environmentally sustainable strategy for the management of peridomestic cockroachescockroaches isis based based on theon combinationthe combination of tactics of thattactics include that structural include exclusion,structural habitat exclusion, modification, habitat modification,and a rational and use ofa rational insecticides use throughof insecticides the application through ofthe baits application and liquid of spraysbaits and outdoors liquid directlysprays outdoorsin or near directly cockroach in harboragesor near cockroach [15–17]. Aharborages program that[15–17]. included A program different that management included strategiesdifferent managementagainst the smokybrown strategies against cockroach, the smokybrownPeriplaneta cockroach, fuliginosa (Serville), Periplaneta provided fuliginosa greater (Serville), control provided than greatertraditional control insecticidal than traditional perimeter spraysinsecticidal [15,16 ].perimeter Integrated sprays management [15,16]. programs Integrated that management incorporate programstargeted application that incorporate of insecticides targeted can application reduce human of insecticideinsecticides exposure, can reduce the deleterious human insecticide effects on exposure,non-target the organisms deleterious [18], effects and the on development non‐target organisms of insecticide [18], resistance and the indevelopment pest populations of insecticide [19]. resistanceCurrently, in pest information populations on [19]. integrated pest management (IPM) strategies for controlling Turkestan cockroachesCurrently, is justinformation beginning on to emergeintegrated [10 ,pest20]. Laboratorymanagement and (IPM) field strategies evaluations for conducted controlling by Turkestanthe University cockroaches of California is just [10 ]beginning showed that to bait-basedemerge [10,20]. programs Laboratory can be anand eff ectivefield evaluations tool for the conductedmanagement by ofthe Turkestan University cockroaches of California in [10] environmental showed that sensitive bait‐based areas. programs Similarly, can Alkan be an eteffective al. [20] toolshowed for the that management diatomaceous of Turkestan earth (DE) cockroaches is very eff ectivein environmental when used sensitive against Turkestan areas. Similarly, cockroaches. Alkan etCurrently,there al. [20] showed is no that information diatomaceous available earth on the (DE) residual is very effect effective of insecticides when onused Turkestancockroaches. against Turkestan cockroaches.Since insecticide Currently, efficacy there can varyis no depending information on available the substrate on the [21 residual], we evaluated effect of in insecticides this study theon Turkestanmortality of cockroaches. Turkestan cockroaches Since insecticide exposed efficacy to various can insecticide vary depending formulations on the on commonsubstrate harborage [21], we evaluatedmaterials. Thein this results study from the this mortality laboratory of studyTurkestan might cockroaches help PMPs select exposed insecticide to various formulations insecticide for formulationstargeted application on common when harborage managing Turkestanmaterials. cockroachThe results
Recommended publications
  • Ancient Roaches Further Exemplify 'No Land Return' in Aquatic Insects
    Gondwana Research 68 (2019) 22–33 Contents lists available at ScienceDirect Gondwana Research journal homepage: www.elsevier.com/locate/gr Ancient roaches further exemplify ‘no land return’ in aquatic insects Peter Vršanský a,b,c,d,1, Hemen Sendi e,⁎,1, Danil Aristov d,f,1, Günter Bechly g,PatrickMüllerh, Sieghard Ellenberger i, Dany Azar j,k, Kyoichiro Ueda l, Peter Barna c,ThierryGarciam a Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06 Bratislava, Slovakia b Slovak Academy of Sciences, Institute of Physics, Research Center for Quantum Information, Dúbravská cesta 9, Bratislava 84511, Slovakia c Earth Science Institute, Slovak Academy of Sciences, Dúbravská cesta 9, P.O. BOX 106, 840 05 Bratislava, Slovakia d Paleontological Institute, Russian Academy of Sciences, Profsoyuznaya 123, 117868 Moscow, Russia e Faculty of Natural Sciences, Comenius University, Ilkovičova 6, Bratislava 84215, Slovakia f Cherepovets State University, Cherepovets 162600, Russia g Staatliches Museum für Naturkunde Stuttgart, Rosenstein 1, D-70191 Stuttgart, Germany h Friedhofstraße 9, 66894 Käshofen, Germany i Bodelschwinghstraße 13, 34119 Kassel, Germany j State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, PR China k Lebanese University, Faculty of Science II, Fanar, Natural Sciences Department, PO Box 26110217, Fanar - Matn, Lebanon l Kitakyushu Museum, Japan m River Bigal Conservation Project, Avenida Rafael Andrade y clotario Vargas, 220450 Loreto, Orellana, Ecuador article info abstract Article history: Among insects, 236 families in 18 of 44 orders independently invaded water. We report living amphibiotic cock- Received 13 July 2018 roaches from tropical streams of UNESCO BR Sumaco, Ecuador.
    [Show full text]
  • Effects of House and Landscape Characteristics on the Abundance and Diversity of Perimeter Pests Principal Investigators: Arthur G
    Project Final Report presented to: The Pest Management Foundation Board of Trustees Project Title: Effects of house and landscape characteristics on the abundance and diversity of perimeter pests Principal Investigators: Arthur G. Appel and Xing Ping Hu, Department of Entomology and Plant Pathology, Auburn University Date: June 17, 2019 Executive Summary: The overall goal of this project was to expand and refine our statistical model that estimates Smokybrown cockroach abundance from house and landscape characteristics to include additional species of cockroaches, several species of ants as well as subterranean termites. The model will correlate pest abundance and diversity with house and landscape characteristics. These results could ultimately be used to better treat and prevent perimeter pest infestations. Since the beginning of the period of performance (August 1, 2017), we have hired two new Master’s students, Patrick Thompson and Gökhan Benk, to assist with the project. Both students will obtain degrees in entomology with a specialization in urban entomology with anticipated graduation dates of summer-fall 2019. We have developed and tested several traps designs for rapidly collecting sweet and protein feeding ants, purchased and modified traps for use during a year of trapping, and have identified species of ants, cockroaches, and termites found around homes in Auburn Alabama. House and landscape characteristics have been measured at 62 single-family homes or independent duplexes. These homes range in age from 7 to 61 years and include the most common different types of siding (brick, metal, stone, vinyl, wood), different numbers/types of yard objects (none to >15, including outbuildings, retaining walls, large ornamental rocks, old trees, compost piles, etc.), and different colors.
    [Show full text]
  • Cockroach Marion Copeland
    Cockroach Marion Copeland Animal series Cockroach Animal Series editor: Jonathan Burt Already published Crow Boria Sax Tortoise Peter Young Ant Charlotte Sleigh Forthcoming Wolf Falcon Garry Marvin Helen Macdonald Bear Parrot Robert E. Bieder Paul Carter Horse Whale Sarah Wintle Joseph Roman Spider Rat Leslie Dick Jonathan Burt Dog Hare Susan McHugh Simon Carnell Snake Bee Drake Stutesman Claire Preston Oyster Rebecca Stott Cockroach Marion Copeland reaktion books Published by reaktion books ltd 79 Farringdon Road London ec1m 3ju, uk www.reaktionbooks.co.uk First published 2003 Copyright © Marion Copeland All rights reserved No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise without the prior permission of the publishers. Printed and bound in Hong Kong British Library Cataloguing in Publication Data Copeland, Marion Cockroach. – (Animal) 1. Cockroaches 2. Animals and civilization I. Title 595.7’28 isbn 1 86189 192 x Contents Introduction 7 1 A Living Fossil 15 2 What’s in a Name? 44 3 Fellow Traveller 60 4 In the Mind of Man: Myth, Folklore and the Arts 79 5 Tales from the Underside 107 6 Robo-roach 130 7 The Golden Cockroach 148 Timeline 170 Appendix: ‘La Cucaracha’ 172 References 174 Bibliography 186 Associations 189 Websites 190 Acknowledgements 191 Photo Acknowledgements 193 Index 196 Two types of cockroach, from the first major work of American natural history, published in 1747. Introduction The cockroach could not have scuttled along, almost unchanged, for over three hundred million years – some two hundred and ninety-nine million before man evolved – unless it was doing something right.
    [Show full text]
  • The Control of Turkestan Cockroach Blatta Lateralis (Dictyoptera: Blattidae)
    Türk Tarım ve Doğa Bilimleri Dergisi 7(2): 375-380, 2020 https://doi.org/10.30910/turkjans.725807 TÜRK TURKISH TARIM ve DOĞA BİLİMLERİ JOURNAL of AGRICULTURAL DERGİSİ and NATURAL SCIENCES www.dergipark.gov.tr/turkjans Research Article The Control of Turkestan Cockroach Blatta lateralis (Dictyoptera: Blattidae) by The Entomopathogenic nematode Heterorhabditis bacteriophora HBH (Rhabditida: Heterorhabditidae) Using Hydrophilic Fabric Trap Yavuz Selim ŞAHİN, İsmail Alper SUSURLUK* Bursa Uludağ University, Faculty of Agriculture, Department of Plant Protection, 16059, Nilüfer, Bursa, Turkey *Corresponding author: [email protected] Receieved: 09.09.2019 Revised in Received: 18.02.2020 Accepted: 19.02.2020 Abstract Chemical insecticides used against cockroaches, which are an important urban pest and considered public health, are harmful to human health and cause insects to gain resistance. The entomopathogenic nematode (EPN), Heterorhabditis bacteriophora HBH, were used in place of chemical insecticides within the scope of biological control against the Turkestan cockroaches Blatta lateralis in this study. The hydrophilic fabric traps were set to provide the moist environment needed by the EPNs on aboveground. The fabrics inoculated with the nematodes at 50, 100 and 150 IJs/cm2 were used throughout the 37-day experiment. The first treatment was performed by adding 10 adult cockroaches immediately after the establishment of the traps. In the same way, the second treatment was applied after 15 days and the third treatment after 30 days. The mortality rates of cockroaches after 4 and 7 days of exposure to EPNs were determined for all treatments. Although Turkestan cockroaches were exposed to HBH 30 days after the setting of the traps, infection occurred.
    [Show full text]
  • Guidelines for Importing Exotic and Non-Florida U.S. Arthropods
    Guidelines for importing arthropods and other invertebrates into Florida This list gives guidance for the pet trade, exhibits, field release, and similar uses. The four categories reflect the permit holder’s ability to contain the organisms. Organisms for scientific research inside quarantine laboratories (e.g. exotic pests and disease vectors) are not listed below; they also require permits and are considered case by case. The examples given below are not exhaustive because hundreds of species are traded. These guidelines are advice about what to expect for most permit applications reviewed by FDACS-DPI, but the Permit Conditions may differ as circumstances warrant. No permits are needed for most species that are native to or widely established in Florida if they are collected within Florida or obtained from in-state sources. Permits are required for all regulated organisms brought into Florida from outside of the state. Permits are also required for certain Pests of Limited Distribution as deemed by the DPI and for native endangered or threatened species. Applicants should first inquire whether a USDA-APHIS permit is required; if APHIS does not regulate it, a FDACS 08208 permit is then required. Species that are not identified by scientific names on the application will be automatically prohibited. The permittee must submit voucher specimens if the organisms are imported in quantity. The purpose is to independently verify the identification. Photographs are acceptable if the organisms are easy to identify by photos and if the individuals are few in number (e.g., personal pets not for resale). I. Regular: The permit application usually will be approved without conditions.
    [Show full text]
  • US EPA, Pesticide Product Label, PYRIPROXYFEN 10% EC,06/24
    UNITED STATES ENVIRONMENTAL PROTECTION AGENCY WASHINGTON, DC 20460 OFFICE OF CHEMICAL SAFETY AND POLLUTION PREVENTION June 24, 2021 Lisa Adamson Regulatory Manager Control Solutions, Inc. 5903 Genoa-Red Bluff Pasadena, TX 77507-1041 Subject: Registration Review Label Mitigation for Pyriproxyfen Product Name: Pyriproxyfen 10% EC EPA Registration Number: 53883-280 Application Date: 02/21/2020 Decision Number: 560323 Dear Ms. Adamson: The Agency, in accordance with the Federal Insecticide, Fungicide and Rodenticide Act (FIFRA), as amended, has completed reviewing all the information submitted with your application to support the Registration Review of the above referenced product in connection with the Pyriproxyfen Interim Decision, and has concluded that your submission is acceptable. The label referred to above, submitted in connection with registration under FIFRA, as amended, is acceptable. Should you wish to add/retain a reference to the company’s website on your label, then please be aware that the website becomes labeling under the Federal Insecticide Fungicide and Rodenticide Act and is subject to review by the Agency. If the website is false or misleading, the product would be misbranded and unlawful to sell or distribute under FIFRA section 12(a)(1)(E). 40 CFR 156.10(a)(5) list examples of statements EPA may consider false or misleading. In addition, regardless of whether a website is referenced on your product’s label, claims made on the website may not substantially differ from those claims approved through the registration process. Therefore, should the Agency find or if it is brought to our attention that a website contains false or misleading statements or claims substantially differing from the EPA approved registration, the website will be referred to the EPA’s Office of Enforcement and Compliance.
    [Show full text]
  • RESEARCH ARTICLE a New Species of Cockroach, Periplaneta
    Tropical Biomedicine 38(2): 48-52 (2021) https://doi.org/10.47665/tb.38.2.036 RESEARCH ARTICLE A new species of cockroach, Periplaneta gajajimana sp. nov., collected in Gajajima, Kagoshima Prefecture, Japan Komatsu, N.1, Iio, H.2, Ooi, H.K.3* 1Civil International Corporation, 10–14 Kitaueno 1, Taito–ku, Tokyo, 110–0014, Japan 2Foundation for the Protection of Deer in Nara, 160-1 Kasugano-cho, Nara-City, Nara, 630-8212, Japan 3Laboratory of Parasitology, School of Veterinary Medicine, Azabu University, 1-17-710 Fuchinobe, Sagamihara, Kanagawa 252-5201 Japan *Corresponding author: [email protected] ARTICLE HISTORY ABSTRACT Received: 25 January 2021 We described a new species of cockroach, Periplaneta gajajimana sp. nov., which was collected Revised: 2 February 2021 in Gajajima, Kagoshima-gun Toshimamura, Kagoshima Prefecture, Japan, on November 2012. Accepted: 2 February 2021 The new species is characterized by its reddish brown to blackish brown body, smooth Published: 30 April 2021 surface pronotum, well developed compound eyes, dark brown head apex, dark reddish brown front face and small white ocelli connected to the antennal sockets. In male, the tegmen tip reach the abdomen end or are slightly shorter, while in the female, it does not reach the abdominal end and exposes the abdomen beyond the 7th abdominal plate. We confirmed the validity of this new species by breeding the specimens in our laboratory to demonstrate that the features of the progeny were maintained for several generations. For comparison and easy identification of this new species, the key to species identification of the genus Periplaneta that had been reported in Japan to date are also presented.
    [Show full text]
  • The Phylogeny of Termites
    Molecular Phylogenetics and Evolution 48 (2008) 615–627 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev The phylogeny of termites (Dictyoptera: Isoptera) based on mitochondrial and nuclear markers: Implications for the evolution of the worker and pseudergate castes, and foraging behaviors Frédéric Legendre a,*, Michael F. Whiting b, Christian Bordereau c, Eliana M. Cancello d, Theodore A. Evans e, Philippe Grandcolas a a Muséum national d’Histoire naturelle, Département Systématique et Évolution, UMR 5202, CNRS, CP 50 (Entomologie), 45 rue Buffon, 75005 Paris, France b Department of Integrative Biology, 693 Widtsoe Building, Brigham Young University, Provo, UT 84602, USA c UMR 5548, Développement—Communication chimique, Université de Bourgogne, 6, Bd Gabriel 21000 Dijon, France d Muzeu de Zoologia da Universidade de São Paulo, Avenida Nazaré 481, 04263-000 São Paulo, SP, Brazil e CSIRO Entomology, Ecosystem Management: Functional Biodiversity, Canberra, Australia article info abstract Article history: A phylogenetic hypothesis of termite relationships was inferred from DNA sequence data. Seven gene Received 31 October 2007 fragments (12S rDNA, 16S rDNA, 18S rDNA, 28S rDNA, cytochrome oxidase I, cytochrome oxidase II Revised 25 March 2008 and cytochrome b) were sequenced for 40 termite exemplars, representing all termite families and 14 Accepted 9 April 2008 outgroups. Termites were found to be monophyletic with Mastotermes darwiniensis (Mastotermitidae) Available online 27 May 2008 as sister group to the remainder of the termites. In this remainder, the family Kalotermitidae was sister group to other families. The families Kalotermitidae, Hodotermitidae and Termitidae were retrieved as Keywords: monophyletic whereas the Termopsidae and Rhinotermitidae appeared paraphyletic.
    [Show full text]
  • Development of Synanthropic Beetle Faunas Over the Last 9000 Years in the British Isles Smith, David; Hill, Geoff; Kenward, Harry; Allison, Enid
    University of Birmingham Development of synanthropic beetle faunas over the last 9000 years in the British Isles Smith, David; Hill, Geoff; Kenward, Harry; Allison, Enid DOI: 10.1016/j.jas.2020.105075 License: Other (please provide link to licence statement Document Version Publisher's PDF, also known as Version of record Citation for published version (Harvard): Smith, D, Hill, G, Kenward, H & Allison, E 2020, 'Development of synanthropic beetle faunas over the last 9000 years in the British Isles', Journal of Archaeological Science, vol. 115, 105075. https://doi.org/10.1016/j.jas.2020.105075 Link to publication on Research at Birmingham portal Publisher Rights Statement: Contains public sector information licensed under the Open Government Licence v3.0. http://www.nationalarchives.gov.uk/doc/open- government-licence/version/3/ General rights Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law. •Users may freely distribute the URL that is used to identify this publication. •Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research. •User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?) •Users may not further distribute the material nor use it for the purposes of commercial gain.
    [Show full text]
  • A Parasitological Evaluation of Edible Insects and Their Role in the Transmission of Parasitic Diseases to Humans and Animals
    RESEARCH ARTICLE A parasitological evaluation of edible insects and their role in the transmission of parasitic diseases to humans and animals 1 2 Remigiusz GaøęckiID *, Rajmund Soko ø 1 Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury, Olsztyn, Poland, 2 Department of Parasitology and Invasive Diseases, Faculty of Veterinary Medicine, University of Warmia and Mazury, Olsztyn, Poland a1111111111 a1111111111 * [email protected] a1111111111 a1111111111 a1111111111 Abstract From 1 January 2018 came into force Regulation (EU) 2015/2238 of the European Parlia- ment and of the Council of 25 November 2015, introducing the concept of ªnovel foodsº, including insects and their parts. One of the most commonly used species of insects are: OPEN ACCESS mealworms (Tenebrio molitor), house crickets (Acheta domesticus), cockroaches (Blatto- Citation: Gaøęcki R, SokoÂø R (2019) A dea) and migratory locusts (Locusta migrans). In this context, the unfathomable issue is the parasitological evaluation of edible insects and their role in the transmission of parasitic diseases to role of edible insects in transmitting parasitic diseases that can cause significant losses in humans and animals. PLoS ONE 14(7): e0219303. their breeding and may pose a threat to humans and animals. The aim of this study was to https://doi.org/10.1371/journal.pone.0219303 identify and evaluate the developmental forms of parasites colonizing edible insects in Editor: Pedro L. Oliveira, Universidade Federal do household farms and pet stores in Central Europe and to determine the potential risk of par- Rio de Janeiro, BRAZIL asitic infections for humans and animals.
    [Show full text]
  • A Dichotomous Key for the Identification of the Cockroach Fauna (Insecta: Blattaria) of Florida
    Species Identification - Cockroaches of Florida 1 A Dichotomous Key for the Identification of the Cockroach fauna (Insecta: Blattaria) of Florida Insect Classification Exercise Department of Entomology and Nematology University of Florida, Gainesville 32611 Abstract: Students used available literature and specimens to produce a dichotomous key to species of cockroaches recorded from Florida. This exercise introduced students to techniques used in studying a group of insects, in this case Blattaria, to produce a regional species key. Producing a guide to a group of insects as a class exercise has proven useful both as a teaching tool and as a method to generate information for the public. Key Words: Blattaria, Florida, Blatta, Eurycotis, Periplaneta, Arenivaga, Compsodes, Holocompsa, Myrmecoblatta, Blatella, Cariblatta, Chorisoneura, Euthlastoblatta, Ischnoptera,Latiblatta, Neoblatella, Parcoblatta, Plectoptera, Supella, Symploce,Blaberus, Epilampra, Hemiblabera, Nauphoeta, Panchlora, Phoetalia, Pycnoscelis, Rhyparobia, distributions, systematics, education, teaching, techniques. Identification of cockroaches is limited here to adults. A major source of confusion is the recogni- tion of adults from nymphs (Figs. 1, 2). There are subjective differences, as well as morphological differences. Immature cockroaches are known as nymphs. Nymphs closely resemble adults except nymphs are generally smaller and lack wings and genital openings or copulatory appendages at the tip of their abdomen. Many species, however, have wingless adult females. Nymphs of these may be recognized by their shorter, relatively broad cerci and lack of external genitalia. Male cockroaches possess styli in addition to paired cerci. Styli arise from the subgenital plate and are generally con- spicuous, but may also be reduced in some species. Styli are absent in adult females and nymphs.
    [Show full text]
  • C Cockroach Biology and Management
    E-359 5/12 Cockroach Biology and Management Wizzie Brown, Michael Merchant, and Roger E. Gold* ockroaches are among the most common American, oriental, and smokybrown cockroaches insect pests in homes, schools, and busi- live mostly outdoors but may move indoors in C nesses. They like to eat many of the same search of food or water. Cockroaches also infest foods we do and are especially troublesome wher- homes when brought in with groceries or boxes, ever food is prepared or served. They also may and, once established, can readily move within transfer disease-causing organisms. structures such as from apartment to apartment. Fortunately, cockroaches can be controlled American cockroaches, also known as water- with a little knowledge about their biology and bugs or palmetto bugs, are more common in com- behavior, attention to sanitation, and effective use mercial buildings and are one of the most common of commercially available insecticides. cockroaches in sewer systems. The largest cock- roach in Texas, it can grow 1½ to 2 inches long. Identifying cockroaches Both the adult male and the female can fly. Adults are reddish brown (Fig. 1a), with tan to Cockroaches have flattened bodies and heads light-yellow bands outlining the pronotum. Young that, when viewed from above, are concealed by a nymphs are grayish brown, but after the first few plate-like structure called a pronotum. They move molts, they become more reddish brown (Fig. 1b). surprisingly fast with their elongated, spiny legs. Their long, thin antennae help them find food and feel their way in the dark (which is when they are a b most active).
    [Show full text]