Japanese White Paper for INVEST, Bremen

Total Page:16

File Type:pdf, Size:1020Kb

Japanese White Paper for INVEST, Bremen Japanese white paper for INVEST, Bremen Japan Drilling Earth Science Consortium (J-DESC) Ver. Sep. 2009 Contents Executive Summary ............................................................ 1 I. Life and Ecosystem in Deep Biosphere and Subseafloor Aquifers .................................................. 4 1. Introduction ........................................................................................................................ 4 2. Important themes of deep-biosphere research .......................................................... 4 2-1. Extent of Biosphere ....................................................................................................................... 4 2-2. Ecological roles of geo-fluids and thermal energy ................................................................ 5 2-3. Biogeochemical functioning, fluxes and ecological roles ...................................................... 5 2-4. Modern proxies for the past biosphere and ecosystem........................................................ 6 3. Analytical and technological development ................................................................. 6 4. Projects for Deep Biosphere presented in the Japanese workshop........................ 7 II. Earth’s Interior .................................................................................. 10 Abstract ................................................................................................................................... 10 i. Breakthrough the Discontinuities: 21 Century Mohole ....................................... 11 Abstract ................................................................................................................................... 11 1. Introduction ........................................................................................................................ 12 2. Nature of Moho ................................................................................................................ 12 2-1. What is the Moho and how does it look like? ......................................................................... 12 2-2. What operates in the Moho? ...................................................................................................... 12 3. Architecture and compositions of the oceanic crust ................................................... 13 4. Alteration processes and the frontiers of deep biosphere ....................................... 13 5. Criteria for site selection and description of potential sites ..................................... 14 6. Technology and strategy ................................................................................................ 14 ii. Arc crust and mantle evolution: The origin of along- and across-arc heterogeneities ..................................................................................................17 Abstract ................................................................................................................................... 17 1. Origin of 3-dimentional variation in the arc, mantle and crust ............................... 18 1.1. Introduction ..................................................................................................................................... 18 1.2. Key scientific questions ................................................................................................................. 18 1.3. Key observations ........................................................................................................................... 19 1.4. 3-D arc project (AAA variations): Using arc inputs and outputs .......................................... 19 2. Expected new outcomes and capabilities .................................................................... 20 3. Path to achieving the goals ............................................................................................ 20 iii. Paleomagnetic problems to be solved by IODP beyond 2013 .......................... 24 Abstract ................................................................................................................................... 24 1. Introduction ........................................................................................................................ 25 2. Paleomagnetic problems to be solved ......................................................................... 25 2.1. Constraining geodynamo models ............................................................................................... 25 2.2. Possibility for orbital modulation of the geomagnetic field, and a link with paleoclimate .......................................................................................................................................................... 26 2.3. Hotspot motion and true polar wander .................................................................................... 26 3. Implementation strategy ................................................................................................. 26 4. Technology to be developed ......................................................................................... 27 III. Building a Scientific Understanding of Geohazards.................................................................... 29 Abstract ................................................................................................................................... 29 i. Exploration into catastrophic earthquakes #1: Approaches from shallow geological record .................................................................................................................30 Abstract ................................................................................................................................... 30 1. Introduction ........................................................................................................................ 31 2. Geologic signatures of the past earthquakes ............................................................ 31 3. New approaches .............................................................................................................. 32 4. Answers to the 8 questions at INVEST .......................................................................... 33 Appendix ................................................................................................................................ 36 ii. Exploration into catastrophic earthquakes #2: Approaches from integration of drilling, monitoring, and numerical modeling ...........................................................37 Abstract ................................................................................................................................... 37 1. Introduction ........................................................................................................................ 38 2. Ocean drilling for understanding of deformation process in earthquake cycles . 38 3. Ocean drilling for clarifying composition and structure of seismogenic faults ..... 39 4. Integration into comprehensive earthquake faulting model ..................................... 40 5. Implementation.................................................................................................................. 41 Appendix ................................................................................................................................ 45 iii. Ocean Transform Fault Drilling and Water Injection: An Active Experiment to Trigger a Moderate Earthquake .........................................................................46 Abstract ................................................................................................................................... 46 1. Introduction ........................................................................................................................ 47 2. Scientific Motivation ......................................................................................................... 47 3. Possible Location for Experiment ................................................................................... 48 4. Technical Considerations ................................................................................................. 48 5. Related Activities .............................................................................................................. 49 6. Societal Relevance ........................................................................................................... 49 7. Active Experiments ........................................................................................................... 49 iv. Exploration into unprecedented volcanic catastrophes in the ocean: unveiling impact of gigantic caldera-forming eruption ...........................................................51 Abstract ................................................................................................................................... 51 1. Why ‘gigantic caldera-forming eruption in the ocean’? ........................................... 52 2. Understanding sequence and variation of eruptive events ...................................... 53 3. Unveiling recurrence history ........................................................................................... 54 4. Challenge to get a perspective view of ‘large silicic magmatic system’ ............... 55 5. Understanding global Geohazard ..............................................................................
Recommended publications
  • Hikurangi Plateau: Crustal Structure, Rifted Formation, and Gondwana Subduction History
    Article Geochemistry 3 Volume 9, Number 7 Geophysics 3 July 2008 Q07004, doi:10.1029/2007GC001855 GeosystemsG G ISSN: 1525-2027 AN ELECTRONIC JOURNAL OF THE EARTH SCIENCES Published by AGU and the Geochemical Society Click Here for Full Article Hikurangi Plateau: Crustal structure, rifted formation, and Gondwana subduction history Bryan Davy Institute of Geological and Nuclear Sciences, P.O. Box 30368, Lower Hutt, New Zealand ([email protected]) Kaj Hoernle IFM-GEOMAR, Wischhofstraße 1-3, D-24148 Kiel, Germany Reinhard Werner Tethys Geoconsulting GmbH, Wischhofstraße 1-3, D-24148 Kiel, Germany [1] Seismic reflection profiles across the Hikurangi Plateau Large Igneous Province and adjacent margins reveal the faulted volcanic basement and overlying Mesozoic-Cenozoic sedimentary units as well as the structure of the paleoconvergent Gondwana margin at the southern plateau limit. The Hikurangi Plateau crust can be traced 50–100 km southward beneath the Chatham Rise where subduction cessation timing and geometry are interpreted to be variable along the margin. A model fit of the Hikurangi Plateau back against the Manihiki Plateau aligns the Manihiki Scarp with the eastern margin of the Rekohu Embayment. Extensional and rotated block faults which formed during the breakup of the combined Manihiki- Hikurangi plateau are interpreted in seismic sections of the Hikurangi Plateau basement. Guyots and ridge- like seamounts which are widely scattered across the Hikurangi Plateau are interpreted to have formed at 99–89 Ma immediately following Hikurangi Plateau jamming of the Gondwana convergent margin at 100 Ma. Volcanism from this period cannot be separately resolved in the seismic reflection data from basement volcanism; hence seamount formation during Manihiki-Hikurangi Plateau emplacement and breakup (125–120 Ma) cannot be ruled out.
    [Show full text]
  • 19-20 March, 2018 Kobe, Japan Agenda Book Ver.2.0
    #6 CHIKYU IODP BOARD MEETING 19-20 March, 2018 Kobe, Japan Agenda book Ver.2.0 #6 CIB Meeting Agenda Book ver.2 revision summary as of 16 March 2018 Agenda Item Sub Item Action taken Material 2 Revision List of Participants 2 Insertion Wireless LAN connection information 3 Revision Draft Agenda ver.1.5 6 Insertion CIB message to Riser proposal lead proponents 7 e Insertion MEXT Report 9 a Revision Overall Chikyu Operation 11 a Insertion Proposal 866-Full2_Strasser cover sheet 15 Revision Safety Review Committee Update 16 a Revision Main Points of JFY2017 Review Agenda Item 1 Welcome Remarks Agenda Item 2 Introductions and Logistics Welcome and meeting logistics 1)Meeting Logistics 2)List of Participants 3)Emergency Escape Route Chikyu IODP Board #6 Meeting Logistics 19-20 March 2018 Kobe, JAPAN MEETING DATES & TIMES: Monday, 19 March 09:00 - 17:30 Tuesday, 20 March 09:00 - 17:30 MEETING LOCATION: Chikyu IODP Board (CIB) will be held at the Takigawa Memorial Hall, Rokkodai Campus, Kobe University Access: http://www.kobe-u.ac.jp/en/campuslife/campus_guide/campus/rokkodai2.html SOCIAL EVENT: *Details to be announced later. 1) Field Trip: Sunday, 18 March 08:30- : Nojima Fault Preservation Museum 2) Ice breaker: Sunday, 18 March 19:00-21:00: TBD Not an official event 3) Reception: Monday, 19 March 18:30-20:30: ANA CROWNE PLAZA KOBE Lavender (9th floor of the Hotel) http://www.anacrowneplaza-kobe.jp/en/banquet/space/medium/ Free of charge RECOMMENDED HOTEL AND LODGING RESERVATIONS (Important Deadline Information): There is a block of rooms at “ANA CROWNE PLAZA KOBE” at a rate of ¥15,120 per night for 18, 19, 21 March, and ¥23,760 per night for 17, 20 March.
    [Show full text]
  • Subsidence and Growth of Pacific Cretaceous Plateaus
    ELSEVIER Earth and Planetary Science Letters 161 (1998) 85±100 Subsidence and growth of Paci®c Cretaceous plateaus Garrett Ito a,Ł, Peter D. Clift b a School of Ocean and Earth Science and Technology, POST 713, University of Hawaii at Manoa, Honolulu, HI 96822, USA b Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA Received 10 November 1997; revised version received 11 May 1998; accepted 4 June 1998 Abstract The Ontong Java, Manihiki, and Shatsky oceanic plateaus are among the Earth's largest igneous provinces and are commonly believed to have erupted rapidly during the surfacing of giant heads of initiating mantle plumes. We investigate this hypothesis by using sediment descriptions of Deep Sea Drilling Project (DSDP) and Ocean Drilling Program (ODP) drill cores to constrain plateau subsidence histories which re¯ect mantle thermal and crustal accretionary processes. We ®nd that total plateau subsidence is comparable to that expected of normal sea¯oor but less than predictions of thermal models of hotspot-affected lithosphere. If crustal emplacement was rapid, then uncertainties in paleo-water depths allow for the anomalous subsidence predicted for plumes with only moderate temperature anomalies and volumes, comparable to the sources of modern-day hotspots such as Hawaii and Iceland. Rapid emplacement over a plume head of high temperature and volume, however, is dif®cult to reconcile with the subsidence reconstructions. An alternative possibility that reconciles low subsidence over a high-temperature, high-volume plume source is a scenario in which plateau subsidence is the superposition of (1) subsidence due to the cooling of the plume source, and (2) uplift due to prolonged crustal growth in the form of magmatic underplating.
    [Show full text]
  • Long-Term Rotational Effects on the Shape of the Earth and Its Oceans
    LONG-TERM ROTATIONAL EFFECTS ON THE SHAPE OF THE EARTH AND ITS OCEANS Jonathan Edwin Mound A thesis submitted in cooforrnity with the reqnhents for the degree of Doctor of Philosophy Gradiiate Depart ment of P hysics University of Toront O @ Copyright by Jonathan E. Mound 2001 . .. ilbitionsand et 9-Bib iogrephic SeMces -Iiographiques 395 WeIlington Street 395, ni6 Wellington ûttawa ON K1AOW OtEaweON KtAW Canada Canada The author has granted a non- L'auteur a accorde une licence ncm exdusive licence allouing the exclusive permettant à la National Library of Cana& to Bibliotheque natiode du Canada de reproduce, Ioan, distriibute or seli reproduire, prêter, distniuer ou copies of this thesis in microform, vendre des copies de cette thèse sous paper or electronic formats. la forme de microfiche/film, de reprociucbon sur papier ou sur format électronique. The author retains ownership of the L'auteur conserve la propriété du copyright in this thesis. Neither the droit d'auteur qui protège cette thèse. ttiesis nor substantial extracts &om it Ni la thèse ni des extraits substantiels may be printed or otherwise de celle-ci ne doivent être imprimés reproduced without the author's ou autrement reproduits sans son permission. autorisation. LONG-TERM RQTATLONAL E-FFECTS ON THE SHAPE OF THE EARTH AND ITS OCEANS Doctor of Philosophy, 2001. Jonathan E. Mound Department of Physics, University of Toronto Abstract The centrifuga1 potent ial associated with the Eart h's rotation influences the shape of both the solid Earth and the oceaos. Changes in rotation t hus deform both the ocean and solid surfaces.
    [Show full text]
  • Veourstofa Islands Report
    VeOurstofa islands Report BarOi ~orkelsson (editor) The second EU-Japan workshop on seismie risk Destructive earthquakes: Understanding crustal proeesses leading to destructive earthquakes Reykjavik, Iceland, June 23-27, 1999 Vi-G99012..JA04 Reykjavik June 1999 r Vedurstofa Islands Report Baråi ~orkelsson (editor) The second EU-Japan workshop on seismie risk Destructive earthquakes: Understanding crustal proeesses leading to destructive earthquakes Reykjavik, Iceland, June 23-27, 1999 Vf-G99012-JA04 Reykjavik June 1999 THE SECOND EU-JAPAN WORKSHOP ON SEISMIC RISK DESTRUCTIVE EARTHQUAKES: Understanding Crustal Proeesses Leading to Destructive Earthquakes Reykjavfk, Iceland, June 23-27, 1999 Supported by: European Commission OG XII Organized by: Icelandic Meteorological Office Programme Abstracts List of participants Organizing committee: I I~,--------------------- Dr. R. Stefansson (Icelandic Meteorological Office), chairman Mr. B. Porkelsson (Icelandic Meteorological Office) Prof. P. Einarsson (University of Iceland) Scientific and technical advisory committee: Dr. R. Stefansson (Icelandic Meteorological Office) Dr. A. Ghazi (Europan Commission OG XII) Dr. N. Kamaya (Japanese Science and Technology Agency) Mr. R. Burmanjer (European Commission OG XII) Mrs. M. Yeroyanni (European Commission OG XII) Objectives of the workshop I I~,------------------------ The scientific objectives aim to reinforce EU-Japan cooperation in earthquake research. The main contribution of the earth sciences to mitigate seismic risks is to provide better understanding of where, how and when destructive earthquakes will strike. The better the scientists can answer such questions the better will be the basis for mitigating risks. It concerns actions taken by society, engineers, city planners and rescue teams. Multidisciplinary approach is necessary to answer the questions above, involving seismologists, geophysicists and geologists. Multinational approach is necessary for integration of experience and knowhow.
    [Show full text]
  • SO225 MANIHIKI II Weekly Report No
    SO225 MANIHIKI II Weekly Report No. 1 R/V SONNE (19.11. – 25.11.2012) 10°13,6´S / 165°52,0´W The starting point of R/V SONNE expedition SO-225 was the port of Suva on Viti Levu island (Fiji). After 48 hours of travel the first group of scientists, engineers, and technicians from Germany arrived safe but somewhat tiered in Suva in the late evening of Saturday the 19th of November. There, the unloading of nine containers with scientific equipment for SO-225 and the mobilization of the remotely operated vehicle ROV Kiel 6000 kept us busy during the following days. In the evening of November 19th, the remaining scientists arrived in Suva, finally completing the scientific party of the SO-225 expedition. In tropical heat and occasionally heavy rain showers we managed to finish all port related cruise preparations on time thanks to the excellent support from the SONNE crew. Approximately one hour after a test program of the ROV Kiel 6000 was successfully completed, RV SONNE left Suva and headed towards the Manihiki Plateau, located ~1.000 nm to the northeast of Fiji in the area of the northern Cook Islands. Views of Suva/Fiji upon departure of R/V Sonne. RV Sonne cruises SO-224 and SO-225 are part of the cooperative project MANIHIKI II between GEOMAR and the Alfred Wegener Institute for Polar and Marine Research (AWI), funded by the German Ministry of Education and Research (BMBF). This multidisciplinary project continues previous research at the Manihiki Plateau conducted since 2007 (SO-193) on morphological, volcanological, geochemical, and geochronological studies and is now broadened by geophysical and paleoceanographic research foci.
    [Show full text]
  • Cook Islands Seabed Minerals : a Precautionary Approach to Mining / Gerald Mccormack
    Cook Islands Seabed Minerals a precautionary approach to mining Gerald McCormack second edition, with corrections Cook Islands Natural Heritage Trust Rarotonga 2016 1° = primary 2° = secondary dt = dry tonnes M = million Ma = million years (from megaannus) for dates and duration mbsl = metres below sea level Mdt/y = million dry tonnes per year M/y = million per year ppm = parts per million t = tonne = 1,000kg (a.k.a. metric ton with symbol mt) wt = wet tonnes AABW = Antarctic Bottom Water BPA = Biodiversity Preservation Area CBD = Convention on Biological Diversity CISWF = Cook Islands Sovereign Wealth Fund CCD = Carbonate Compensation Depth CCZ = Clarion-Clipperton Zone DSC = Deep Sound Channel EEZ = Exclusive Economic Zone EIA - Environmental Impact Assessment GDP = Gross Domestic Product REY = Rare Earth Elements + Yttrium SBMA = Cook Islands Seabed Minerals Authority SMS = Seabed Massive Sulphides SPB = South Penrhyn Basin ISA = International Seabed Authority, a UN agency WCPFC = Western and Central Pacific Fisheries Commission Front cover An oblique view of the Cook Islands seafloor with the South Penrhyn Basin and its nodule fields in the foreground and the Manihiki Plateau in the background. Cook Islands Seabed Minerals a precautionary approach to mining Gerald McCormack second edition, with corrections Cook Islands Natural Heritage Trust Rarotonga 2016 Text and illustrations are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. This means they are free for non-commercial use provided the author and illustrator are acknowledged. For other uses please contact the Cook Islands Natural Heritage Trust. The author extends his appreciation to the Minister of Natural Heritage, the Hon. Kiriau Turepu and to the Trust Chair, Ian Karika and his Board for their encouragement and support.
    [Show full text]
  • Commission on the Limits of the Continental Shelf in Regard to the Submission Made by the Cook Islands in Respect of the Manihiki Plateau on 16 April 20091
    United Nations Convention on the Law of the Sea ____________________________________________________________ Commission on the Limits of the Continental Shelf SUMMARY OF RECOMMENDATIONS OF THE COMMISSION ON THE LIMITS OF THE CONTINENTAL SHELF IN REGARD TO THE SUBMISSION MADE BY THE COOK ISLANDS IN RESPECT OF THE MANIHIKI PLATEAU 1 ON 16 APRIL 2009 Recommendations prepared by the Subcommission established for the consideration of the Submission made by the Cook Islands Approved by the Subcommission on 31 July 2015 Approved by the Commission, with amendments, on 19 August 2016 1 The aim of this Summary is to provide information which is not of confidential or proprietary nature in order to facilitate the function of the Secretary-General in accordance with Rule 11.3 of annex III to the Rules of Procedure of the Commission (CLCS/40/Rev.1). This Summary is based on excerpts of the Recommendations and may refer to material not necessarily included either in the full Recommendations or this Summary. TABLE OF CONTENTS GLOSSARY OF TERMS ...................................................................................................................... III I. INTRODUCTION ........................................................................................................................... 1 II. CONTENTS OF THE SUBMISSION .............................................................................................. 4 A. Original Submission .................................................................................................................
    [Show full text]
  • Geochemistry and Age of Shatsky, Hess, and Ojin Rise Seamounts: Implications for a Connection Between the Shatsky and Hess Rises
    Accepted Manuscript Geochemistry and Age of Shatsky, Hess, and Ojin Rise seamounts: Implications for a connection between the Shatsky and Hess Rises Maria Luisa G. Tejada, Jörg Geldmacher, Folkmar Hauff, Daniel Heaton, Anthony A.P. Koppers, Dieter Garbe-Schönberg, Kaj Hoernle, Ken Heydolph, William W. Sager PII: S0016-7037(16)30165-X DOI: http://dx.doi.org/10.1016/j.gca.2016.04.006 Reference: GCA 9701 To appear in: Geochimica et Cosmochimica Acta Received Date: 4 September 2015 Accepted Date: 1 April 2016 Please cite this article as: Tejada, M.L.G., Geldmacher, J., Hauff, F., Heaton, D., Koppers, A.A.P., Garbe- Schönberg, D., Hoernle, K., Heydolph, K., Sager, W.W., Geochemistry and Age of Shatsky, Hess, and Ojin Rise seamounts: Implications for a connection between the Shatsky and Hess Rises, Geochimica et Cosmochimica Acta (2016), doi: http://dx.doi.org/10.1016/j.gca.2016.04.006 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. 1 Geochemistry and Age of Shatsky, Hess, and Ojin Rise seamounts: Implications 2 for a connection between the Shatsky and Hess Rises 3 Maria Luisa G. Tejada a,b*, Jörg Geldmacher c, Folkmar Hauff c, Daniel Heaton d, Anthony A.
    [Show full text]
  • Testing the Axial Dipole Hypothesis for the Moon by Modeling the Direction of Crustal Magnetization J
    Testing the axial dipole hypothesis for the Moon by modeling the direction of crustal magnetization J. Oliveira, M. Wieczorek To cite this version: J. Oliveira, M. Wieczorek. Testing the axial dipole hypothesis for the Moon by modeling the direction of crustal magnetization. Journal of Geophysical Research. Planets, Wiley-Blackwell, 2017, 122 (2), pp.383-399. 10.1002/2016JE005199. hal-02105528 HAL Id: hal-02105528 https://hal.archives-ouvertes.fr/hal-02105528 Submitted on 21 Apr 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Journal of Geophysical Research: Planets RESEARCH ARTICLE Testing the axial dipole hypothesis for the Moon by modeling 10.1002/2016JE005199 the direction of crustal magnetization Key Points: • The direction of magnetization within J. S. Oliveira1 and M. A. Wieczorek1,2 the lunar crust was inverted using a unidirectional magnetization model 1Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Université Paris Diderot, CNRS, Paris, France, 2Université Côte • The paleomagnetic poles of several d’Azur, Observatoire de la Côte d’Azur, CNRS, Laboratoire Lagrange, Nice, France isolated anomalies are not randomly distributed, and some have equatorial latitudes • The distribution of paleopoles may Abstract Orbital magnetic field data show that portions of the Moon’s crust are strongly magnetized, be explained by a dipolar magnetic and paleomagnetic data of lunar samples suggest that Earth strength magnetic fields could have existed field that was not aligned with the during the first several hundred million years of lunar history.
    [Show full text]
  • True Polar Wander of Mercury
    Mercury: Current and Future Science 2018 (LPI Contrib. No. 2047) 6098.pdf TRUE POLAR WANDER OF MERCURY. J. T. Keane1 and I. Matsuyama2; 1California Institute of Technology, Pasadena, CA 91125, USA ([email protected]); 2Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721, USA. Introduction: The spin of a planet is not constant to the Sun and subject to stronger tidal and rotational with time. Planetary spins evolve on a variety of time- forces. However, even with this corrected dynamical scales due to a variety of internal and external forces. oblateness, the required orbital configuration appears One process for changing the spin of a planet is true po- unreasonable−requiring semimajor axes <0.1 AU [5]. lar wander (TPW). TPW is the reorientation of the bulk An alternative explanation may be that a large fraction planet with respect to inertial space due to the redistri- of Mercury’s figure is a “thermal” figure, set Mercury’s bution of mass on or within the planet. The redistribu- close proximity to the Sun and its unique spin-orbit res- tion of mass alters the planet’s moments of inertia onance [7-8] (which are related to the planet’s spherical harmonic de- True Polar Wander of Mercury: While Mercury’s gree/order-2 gravity field). This process has been meas- impact basins and volcanic provinces cannot explain ured on the Earth, and inferred for a variety of solar sys- Mercury’s anomalous figure, they still have an im- tem bodies [1]. TPW can have significant consequences portant effect on planet’s moments of inertia and orien- for the climate, tectonics, and geophysics of a planet.
    [Show full text]
  • True Polar Wander: Linking Deep and Shallow Geodynamics to Hydro- and Bio-Spheric Hypotheses T
    True Polar Wander: linking Deep and Shallow Geodynamics to Hydro- and Bio-Spheric Hypotheses T. D. Raub, Yale University, New Haven, CT, USA J. L. Kirschvink, California Institute of Technology, Pasadena, CA, USA D. A. D. Evans, Yale University, New Haven, CT, USA © 2007 Elsevier SV. All rights reserved. 5.14.1 Planetary Moment of Inertia and the Spin-Axis 565 5.14.2 Apparent Polar Wander (APW) = Plate motion +TPW 566 5.14.2.1 Different Information in Different Reference Frames 566 5.14.2.2 Type 0' TPW: Mass Redistribution at Clock to Millenial Timescales, of Inconsistent Sense 567 5.14.2.3 Type I TPW: Slow/Prolonged TPW 567 5.14.2.4 Type II TPW: Fast/Multiple/Oscillatory TPW: A Distinct Flavor of Inertial Interchange 569 5.14.2.5 Hypothesized Rapid or Prolonged TPW: Late Paleozoic-Mesozoic 569 5.14.2.6 Hypothesized Rapid or Prolonged TPW: 'Cryogenian'-Ediacaran-Cambrian-Early Paleozoic 571 5.14.2.7 Hypothesized Rapid or Prolonged TPW: Archean to Mesoproterozoic 572 5.14.3 Geodynamic and Geologic Effects and Inferences 572 5.14.3.1 Precision of TPW Magnitude and Rate Estimation 572 5.14.3.2 Physical Oceanographic Effects: Sea Level and Circulation 574 5.14.3.3 Chemical Oceanographic Effects: Carbon Oxidation and Burial 576 5..14.4 Critical Testing of Cryogenian-Cambrian TPW 579 5.14A1 Ediacaran-Cambrian TPW: 'Spinner Diagrams' in the TPW Reference Frame 579 5.14.4.2 Proof of Concept: Independent Reconstruction of Gondwanaland Using Spinner Diagrams 581 5.14.5 Summary: Major Unresolved Issues and Future Work 585 References 586 5.14.1 Planetary Moment of Inertia location ofEarth's daily rotation axis and/or by fluc­ and the Spin-Axis tuations in the spin rate ('length of day' anomalies).
    [Show full text]