The Mallard Is Thought to Be the Most Abundant and Wide- Legs and Webbed Feet Make Them Excellent Swimmers, and Ranging Duck on Earth

Total Page:16

File Type:pdf, Size:1020Kb

The Mallard Is Thought to Be the Most Abundant and Wide- Legs and Webbed Feet Make Them Excellent Swimmers, and Ranging Duck on Earth Anas platyrhynchos Susan L. Shafer The by Eileen Stegemann and Bryan Swift Art by Jean Gawalt Visit any park with a pond and you’ll likely be greeted by The ubiquitous mallard owes much of its wide distri- a familiar sight—a group of mallards jockeying for position bution to its tremendous adaptability to various habitat as they beg for food. Some are so tame and bold that they types and nest sites. It can be found in almost any water will waddle right up to you demanding a handout. Others body, including wetlands, lakes, ponds, rivers, and even are content to hang back, hoping for a scrap. flooded fields. In addition, mallards occur in most urban Mallards are the first duck seen allardby many. They are a park ponds, as well as in brackish and saltwater. favorite of children, and are popular with bird watchers and Like all waterfowl, mallards are well adapted to their waterfowlM hunters alike. Mallards are found throughout lives on the water. Their broad, flattened bills allow them North America and all across Europe and Asia. In fact, to feed on aquatic plants and invertebrates. Their wide-set the mallard is thought to be the most abundant and wide- legs and webbed feet make them excellent swimmers, and ranging duck on Earth. In New York, it is an extremely their waterproof plumage and thick layers of down feathers common year-round resident, with the greatest number keep them warm in cold weather. occurring in the Coastal Lowland, St. Lawrence Valley and Ma le (dra ke) ma lla rds a re ea sily recognized—t heir tradema rk Great Lakes Plain. metallic green heads, white neck ring, chestnut-colored chest, New York State Conservationist, October 2008 15 Conservationist October 2008.indd 19 9/4/2008 4:18:25 PM Conservationist October 2008.indd 20 9/4/2008 4:18:33 PM Conservationist October 2008.indd 21 9/4/2008 4:18:41 PM The ubiquitous mallard owes its wide distribution, in part, to its tremendous adaptability to various habitat types and nest sites. Mallards breed throughout the Mallards are perhaps the most pro- United States and Canada, nesting lific breeder in the waterfowl world, in a wide variety of habitats. In New and are believed to be the ancestor of York, they nest in marshes, wetlands, nearly all domestic duck breeds, except fields, grasslands close to water, beaver the Muscovy. Mallards frequently inter- flows, remote bogs, tidal marshes, sub- breed with domestic stock, producing an urban gardens, and urban park ponds. amazing variety of patterns and colors. Nests are usually constructed in dense Many of the domestic breeds look like vegetation, and consist of a depression wild birds, but are usually larger. In the scraped in the ground (or built in a pro- wild, mallards often interbreed with its tected location, such as a tree cavity) close relative, the American black duck. and lined with down from the female's Unlike many hybrids, mallard and black breast, and vegetation. duck offspring are usually fertile. Susan L Shafer L Susan Although breeding occurs in the Adult mallards are highly gregarious spring, mallards begin courting in the outside of the breeding season, and may fall, and by midwinter pairs have formed. form large flocks on the water. However, After mating, hens lay between one and when flying, mallards usually remain in yellow bill tipped with black, and white 13 cream to greenish buff-colored eggs. small flocks. tail with two black, curled tail feathers The hens incubate the eggs for 23 to 30 make them hard to confuse with other days. Drakes stay with the hens until duck species. In contrast, females (hens) incubation is well underway, then they are mottled brown in color and have an Mallard Facts: leave to join a flock of other males. • A large dabbling duck orange bill, usually speckled with black Newly hatched chicks are covered • Size: 20 -26 inches spots. Both sexes have a distinct violet in down. They leave the nest 13 to 16 • Wingspan: 32 -37 inches metallic speculum (wing patch) bor- hours after hatching, and can swim and • Weight:3 2- pounds dered with white on each wing. During feed on insects immediately. Until they • Drakes make a low “kwek ” or their annual molt, when they shed their become independent at 52 to 70 days of “”yeeb sound; hens make the well known loud quack feathers in summer and early fall, drakes age, they will stay near the female for • Swims with tail held above the lack their bright breeding plumage protection. Mallards have a number of water enabling it to spring directly and resemble the more dull-colored natural enemies, including snapping out of the water and into the air females. However, drakes are still dis- turtles, raccoons, skunk, mink, foxes, • The most common wild duck in New tinguishable by their yellow bills and coyotes and raptors. York and the world reddish breasts. A type of puddle (or dabbling) duck, mallards generally feed on or just below the surface of the water by tipping-up or dabbling with their rumps in the air. They eat a variety of items, including aquatic invertebrates, aquatic vege- tation, insects and larvae. Unlike diving ducks which have their legs positioned far back on their bodies, making it dif- ficult to walk on land, puddle ducks like t he mallard have legs positioned near the middle of their bodies, allowing them to Shafer L Susan walk well on land. As a result, they can also be seen feeding on land, grazing on seeds, acorns, grains and plants. 18 New York State Conservationist, October 2008 Conservationist October 2008.indd 22 9/4/2008 4:18:46 PM.
Recommended publications
  • Transcript for Tracks in the Snow by Wong Herbert Yee (Square Fish, an Imprint of Macmillan)
    Transcript for Tracks in the Snow by Wong Herbert Yee (Square Fish, an Imprint of Macmillan) Introduction (approximately 0:00 – 5:16) Hi everyone! It's Colleen from the KU Natural History Museum, and I am so excited for today's Story Book Science. I'm so excited to read the Book Tracks in the Snow. But while we wait, Because I want to give some opportunity for folks to join us, I want to ask you a question that's related to the Book. Now, when we look at the Book cover, we see the word tracks is in the title. So what are tracks? Well, tracks are markings or impressions that animals, including humans, can leave Behind. And they leave them Behind in suBstances like snow or dirt. Alright? So, these tracks can tell us about what animals are in an area. And we can use them to identify the animals. Okay? Now, what animals do you think we can identify By their tracks? We can definitely identify animals like cottontail rabBits and mallard ducks. So I have the tracks of a cottontail rabBit and a mallard duck. So I'm going to grab those. And this is the track of a cottontail rabBit. You can see it's very oval – oops – very oval in shape. And it's very long. So this is how we can identify a cottontail rabBit, looking for this really long oval shape. So I'm going to put this down. And now, we're going to look at the track of a mallard duck.
    [Show full text]
  • Haldane's Rule and American Black Duck × Mallard Hybridization
    1827 NOTE / NOTE Haldane’s rule and American black duck × mallard hybridization Ronald E. Kirby, Glen A. Sargeant, and Dave Shutler Abstract: Species ratios and rangewide distributions of American black ducks (Anas rubripes Brewster, 1902) and mal- lards (Anas platyrhynchos L., 1758) have undergone recent changes. Mechanisms behind these changes are not known with certainty, but recent investigations have focused on the possibility of competitive exclusion and the consequences of hybridization. Consequences of hybridization have been difficult to assess because of the difficulty in identifying hy- brids beyond the F1 generation and lack of means to quantify introgression in wild populations. We documented a postmating isolating mechanism between the two species that follows Haldane’s rule in controlled, interspecific matings in captive populations. Hybridization reduces the proportion of F1 females available to return to the breeding grounds in the subsequent year. This effect, although likely small in overall population consequences in any year, may be of lo- cal significance and may contribute to recent reports of range shifts in both American black ducks and mallards. Résumé : L’importance relative des canards noirs (Anas rubripes Brewster, 1902) et des canards colverts (Anas platyr- hynchos L., 1758) et leur répartitiol’échelle de leur aire totale ont encouru des modifications récentes. Les mécanismes responsables de ces changements ne sont pas connus avec précision, mais des études récentes ont examiné l’exclusion par compétition et les conséquences de l’hybridation. Les conséquences de l’hybridation sont difficiles à évaluer car il n’est pas facile d’identifier les hybrides au-delà de la génération F1 et il n’y a pas de moyen pour quantifier l’introgression chez les populations sauvages.
    [Show full text]
  • Ducks Nesting in Enclosed Areas and Ducks in the Pool
    U.S. Fish and Wildlife Service Ducks Nesting In Enclosed Areas and Ducks in the Pool After about 25 days of incubation, the chicks will hatch. Duck migration: The mother will lead her chicks to the water within 24 Mallards often migrate unless there is sufficient food hours after hatching. Keep children and pets away and water available throughout the year. Many from the family. migrating individuals spend their winters in the Gulf Coast and fly to the Northern U.S. and Canada in the Ducks in enclosed areas and in the pool: spring. For migrating Mallards, spring migration Your yard may be providing ducks with the ideal place begins in March. In many western states, Mallards are to build a nest. You may have vegetation and water present year-round. that provides them with resources to live and build a nest in hopes they will succeed in raising a brood. Male Mallard Tim Ludwick/USFWS Female Mallard Tim Ludwick/USFWS Territory and Breeding: Breeding season varies among individuals, locations, Here, we provide you with some suggestions when and weather. Mallards begin to defend a territory ducks have decided to make your yard a temporary about 200 yards from where the nesting takes place. home. They often defend the territory to isolate the female from other males around February-mid May. Mallards What to do to discourage nesting and swimming in build their nests between March-June and breed pools: through the beginning of August. These birds can be secretive during the breeding seasons and may nest in • When you see a pair of ducks, or a female quacking places that are not easily accessible.
    [Show full text]
  • 4-H-993-W, Wildlife Habitat Evaluation Food Flash Cards
    Purdue extension 4-H-993-W Wildlife Habitat Evaluation Food Flash Cards Authors: Natalie Carroll, Professor, Youth Development right, it goes in the “fast” pile. If it takes a little and Agricultural Education longer, put the card in the “medium” pile. And if Brian Miller, Director, Illinois–Indiana Sea Grant College the learner does not know, put the card in the “no” Program Photos by the authors, unless otherwise noted. pile. Concentrate follow-up study efforts on the “medium” and “no” piles. These flash cards can help youth learn about the foods that wildlife eat. This will help them assign THE CONTEST individual food items to the appropriate food When youth attend the WHEP Career Development categories and identify which wildlife species Event (CDE), actual food specimens—not eat those foods during the Foods Activity of the pictures—will be displayed on a table (see Wildlife Habitat Evaluation Program (WHEP) Figure 1). Participants need to identify which contest. While there may be some disagreement food category is represented by the specimen. about which wildlife eat foods from the category Participants will write this food category on the top represented by the picture, the authors feel that the of the score sheet (Scantron sheet, see Figure 2) and species listed give a good representation. then mark the appropriate boxes that represent the wildlife species which eat this category of food. The Use the following pages to make flash cards by same species are listed on the flash cards, making it cutting along the dotted lines, then fold the papers much easier for the students to learn this material.
    [Show full text]
  • Dissertation
    DISSERTATION THE ROLE OF DOMESTIC DUCKS IN THE MAINTENANCE AND SPREAD OF AVIAN INFLUENZA VIRUSES IN INDONESIA Submitted by Kristy L. Pabilonia Department of Microbiology, Immunology and Pathology In partial fulfillment of the requirements For the Degree of Doctor of Philosophy Colorado State University Fort Collins, Colorado Summer 2012 Doctoral Committee: Advisor: Richard Bowen Tawfik Aboellail Doreene Hyatt Anthony Knight ABSTRACT THE ROLE OF DOMESTIC DUCKS IN THE MAINTENANCE AND SPREAD OF AVIAN INFLUENZA VIRUSES IN INDONESIA Wild waterfowl and aquatic birds serve as the natural reservoir host for influenza A viruses. As the reservoir, wild waterfowl play an important role in the persistence and transmission of influenza viruses among bird populations and to other mammalian species. In many Asian countries, domestic ducks are raised for meat and egg production. Some of these domestic ducks are ranged on rice paddies or post-harvest rice fields. The ducks provide service to the rice fields by fertilizing the field with feces and aerating the field by swimming and walking through the ground cover. Additionally, the ducks serve as a form of insect control through their natural grazing behaviors. The role that domestic ducks play in the ecology of influenza viruses is poorly understood. Highly pathogenic avian influenza H5N1 virus (HPAI H5N1) originated in Guangdong Province, China in 1996, which was followed by global dissemination of the virus that began in 2003. This virus is unprecedented in geographical spread, economic consequences and public health significance. At the present time, HPAI H5N1 virus is endemic six countries, including Indonesia. Indonesia has experienced the highest incidence of human infections with HPAI H5N1 virus and one of the highest case fatality rates.
    [Show full text]
  • Bobcats/Town Forest
    artford onservation ommission H C C The Hartford Conservation Commission (HCC) invites you to The HCC became custodians of the Hartford Town Forest enjoy a hidden jewel, the Hartford Town Forest. What makes it (HTF) in 1997. We strive to balance three forestry so special? It is one of the largest parcels of undeveloped land objectives: in Hartford and is home to numerous animals from secretive amphibians to large mammals; even wide-ranging bear and • Forest Products: to sustainably grow and harvest moose pass through the forest. trees while respecting the natural communities • WildliFe: to provide and enhance diverse habitats for The Hartford Town Forest is a 423-acre parcel that abuts the native wildlife C 142-acre Hurricane Forest Wildlife Refuge (HFWR). Both • recreation: to promote recreation that will a) parcels are almost entirely forested and collectively contain ensure all users’ safety, and b) ‘tread lightly’ on the three old reservoirs, several miles of recreational trails, seasonal forest and its wildlife and permanent streams, varied topography, and diverse wildlife This newsletter focuses on the HTF. We’ll review what the O habitats. The Parks and Recreation Commission oversees the HFWR, with its recreation and wildlife protection focus. The HCC is doing to manage the HTF and what we can all do to HCC manages the more remote Hartford Town Forest. be good stewards of this special place. N 2010 HCC EvEnts CalEndar April 17, Saturday Vernal Pool Walk, 10:00 a.m. — noon, Hartford Town Forest* April 22, Thursday Earth Day, Kim Royar (VT Fish and Wildlife) Lecture on Bobcats and the Linking Lands Alliance S presents its Wildlife Habitat Map, 7 p.m., Vermont Institute of Natural Science (VINS), Quechee April 24–May 1 Green-Up Hartford Days, green-up bags available at Municipal Office* May 1, Saturday Green-Up Day/Arbor Day Celebration, 9:00 a.m.
    [Show full text]
  • Using Predator Exclosures to Protect Ground Nests from Red Fox
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Wildlife Damage Management, Internet Center Human–Wildlife Interactions for 2007 Using predator exclosures to protect ground nests from red fox Ben C. West Utah State University Terry A. Messmer Utah State University Dominic C. Bachman Utah State University Follow this and additional works at: https://digitalcommons.unl.edu/hwi Part of the Environmental Health and Protection Commons West, Ben C.; Messmer, Terry A.; and Bachman, Dominic C., "Using predator exclosures to protect ground nests from red fox" (2007). Human–Wildlife Interactions. 136. https://digitalcommons.unl.edu/hwi/136 This Article is brought to you for free and open access by the Wildlife Damage Management, Internet Center for at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Human–Wildlife Interactions by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Human–Wildlife Confl icts 1(1):24–26, Spring 2007 Using predator exclosures to protect ground nests from red fox BEN C. WEST, Jack H. Berryman Institute, Department of Wildland Resources, Utah State University, Logan, UT 84322-5230, USA1 [email protected] TERRY A. MESSMER, Jack H. Berryman Institute, Department of Wildland Resources, Utah State University, Logan, UT 84322-5230, USA DOMINIC C. BACHMAN, Jack H. Berryman Institute, Department of Wildland Resources, Utah State University, Logan, UT 84322-5230, USA ABSTRACT: Nest predation often is cited as a primary cause for low recruitment and subsequent population decline of many ground-nesting bird species. In response, managers and researchers have developed a myriad of techniques to reduce rates of predation on ground nests.
    [Show full text]
  • Tribal Wildlife Grant Final Report Makah Cougar and Bobcat Research Grant: F12AP00260
    Tribal Wildlife Grant Final Report Makah Cougar and Bobcat Research Grant: F12AP00260 Prepared by: Shannon Murphie and Rob McCoy 1 INTRODUCTION Mountain lions or cougars (Puma concolor) and bobcats (Lynx rufus) are both native mammals of the family Felidae. Mountain lions are large solitary cats with the greatest range of any large wild terrestrial mammal in the Western Hemisphere (Iriarte et al. 1990). Bobcats are also solitary cats that range from southern Canada to northern Mexico, including most of the continental United States. Both species are predators and as such play a prominent role in Native American mythology and culture due to their perceived attributes such as grace, strength, eyesight, and hunting ability. Similar to other Native American Tribes, predators have played a key role in the culture and ceremonies of the Makah people. Gray wolves (Canis lupus), black bear (Ursus americanus), cougars, and bobcats all are important components of Makah culture both historically and in contemporary times. For example, black bears and gray wolves both represented important clans in Makah history. Gray wolves exhibited cooperative behavior that provided guidelines for human behavior and “Klukwalle,” or wolf ritual, was a secret society that required a 6 day initiation period (G. Arnold, personal communication). Wolf hides were also used in dance and costume regalia. Bear hides were worn by men of status (Chapman 1994) and as regalia during whale hunts (G. Ray, personal communication). Cougars and bobcats play a smaller, but still important role in Makah history and contemporary culture. During naming ceremonies a Makah name is given which best reflects an individual, often an animal such as the mountain lion is used as it represents intelligence and power.
    [Show full text]
  • 2019 Waterfowl Population Status Survey
    U.S. Fish & Wildlife Service Waterfowl Population Status, 2019 Waterfowl Population Status, 2019 August 19, 2019 In the United States the process of establishing hunting regulations for waterfowl is conducted annually. This process involves a number of scheduled meetings in which information regarding the status of waterfowl is presented to individuals within the agencies responsible for setting hunting regulations. In addition, the proposed regulations are published in the Federal Register to allow public comment. This report includes the most current breeding population and production information available for waterfowl in North America and is a result of cooperative eforts by the U.S. Fish and Wildlife Service (USFWS), the Canadian Wildlife Service (CWS), various state and provincial conservation agencies, and private conservation organizations. In addition to providing current information on the status of populations, this report is intended to aid the development of waterfowl harvest regulations in the United States for the 2020–2021 hunting season. i Acknowledgments Waterfowl Population and Habitat Information: The information contained in this report is the result of the eforts of numerous individuals and organizations. Principal contributors include the Canadian Wildlife Service, U.S. Fish and Wildlife Service, state wildlife conservation agencies, provincial conservation agencies from Canada, and Direcci´on General de Conservaci´on Ecol´ogica de los Recursos Naturales, Mexico. In addition, several conservation organizations, other state and federal agencies, universities, and private individuals provided information or cooperated in survey activities. Appendix A.1 provides a list of individuals responsible for the collection and compilation of data for the “Status of Ducks” section of this report.
    [Show full text]
  • Alpha Codes for 2168 Bird Species (And 113 Non-Species Taxa) in Accordance with the 62Nd AOU Supplement (2021), Sorted Taxonomically
    Four-letter (English Name) and Six-letter (Scientific Name) Alpha Codes for 2168 Bird Species (and 113 Non-Species Taxa) in accordance with the 62nd AOU Supplement (2021), sorted taxonomically Prepared by Peter Pyle and David F. DeSante The Institute for Bird Populations www.birdpop.org ENGLISH NAME 4-LETTER CODE SCIENTIFIC NAME 6-LETTER CODE Highland Tinamou HITI Nothocercus bonapartei NOTBON Great Tinamou GRTI Tinamus major TINMAJ Little Tinamou LITI Crypturellus soui CRYSOU Thicket Tinamou THTI Crypturellus cinnamomeus CRYCIN Slaty-breasted Tinamou SBTI Crypturellus boucardi CRYBOU Choco Tinamou CHTI Crypturellus kerriae CRYKER White-faced Whistling-Duck WFWD Dendrocygna viduata DENVID Black-bellied Whistling-Duck BBWD Dendrocygna autumnalis DENAUT West Indian Whistling-Duck WIWD Dendrocygna arborea DENARB Fulvous Whistling-Duck FUWD Dendrocygna bicolor DENBIC Emperor Goose EMGO Anser canagicus ANSCAN Snow Goose SNGO Anser caerulescens ANSCAE + Lesser Snow Goose White-morph LSGW Anser caerulescens caerulescens ANSCCA + Lesser Snow Goose Intermediate-morph LSGI Anser caerulescens caerulescens ANSCCA + Lesser Snow Goose Blue-morph LSGB Anser caerulescens caerulescens ANSCCA + Greater Snow Goose White-morph GSGW Anser caerulescens atlantica ANSCAT + Greater Snow Goose Intermediate-morph GSGI Anser caerulescens atlantica ANSCAT + Greater Snow Goose Blue-morph GSGB Anser caerulescens atlantica ANSCAT + Snow X Ross's Goose Hybrid SRGH Anser caerulescens x rossii ANSCAR + Snow/Ross's Goose SRGO Anser caerulescens/rossii ANSCRO Ross's Goose
    [Show full text]
  • Proteomic Analysis of 1-D Sarcoplasmic Protein Profiles of Pekin Duck Embryos’ Pectoralis Muscle As Influenced by Incubation Temperature
    Proteomic analysis of 1-D Sarcoplasmic Protein Profiles of Pekin Duck Embryos’ Pectoralis Muscle as Influenced by Incubation Temperature THESIS Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in the Graduate School of the Ohio State University By Yang Cheng Graduate Program in Animal Sciences The Ohio State University 2014 Master's Examination Committee: Dr. Michael Lilburn, Advisor Dr. MacDonald Wick Dr. William Pope Copyrighted by Yang Cheng 2014 Abstract The objective of this study was to identify sarcoplasmic proteins responsive to incubation temperature in Pekin duck embryos. Previous studies reported that a 1-degree Celsius increase in incubation temperature during the first 10 days can accelerate embryonic development and this study was designed to identify the effects of early incubation temperature on embryonic myogenesis. Pekin duck eggs were incubated at 37.5 ͦC or 38.5 ͦC for the first ten days and subsequently transferred to 37.5 ͦC for the rest of incubation (ED 11-28). The embryonic pectoralis muscle (PM) was collected at ED12, 18, 25 and hatch and sarcoplasmic proteins were subjected to 10% SDS-PAGE. Gels were digitized into TotalLabTM to acquire the mean band percentage (MBP) of bands. The body weight (BW) of embryos and pectoralis muscle weight (PMW) of the Pekin duck embryos were analyzed in SAS 9.3. An acceleration in BW at ED12 in the 38.5 ͦC treatment was observed but not at later ages. MIXED model is performed to determine bands responding significantly to incubation temperature. Three proteins/bands are determined to significantly respond to temperature.
    [Show full text]
  • The Regions of Maine MAINE the Maine Beaches Long Sand Beaches and the Most Forested State in America Amusements
    the Regions of Maine MAINE The Maine Beaches Long sand beaches and The most forested state in America amusements. Notable birds: Piping Plover, Least Tern, also has one of the longest Harlequin Duck, and Upland coastlines and hundreds of Sandpiper. Aroostook County lakes and mountains. Greater Portland The birds like the variety. and Casco Bay Home of Maine’s largest city So will you. and Scarborough Marsh. Notable birds: Roseate Tern and Sharp-tailed Sparrow. Midcoast Region Extraordinary state parks, islands, and sailing. Notable birds: Atlantic Puffin and Roseate Tern. Downeast and Acadia Land of Acadia National Park, national wildlife refuges and state parks. Notable birds: Atlantic Puffin, Razorbill, and The Maine Highlands Spruce Grouse. Maine Lakes and Mountains Ski country, waterfalls, scenic nature and solitude. Notable birds: Common Loon, Kennebec & Philadelphia Vireo, and Moose River Downeast Boreal Chickadee. Valleys and Acadia Maine Lakes Kennebec & and Mountains Moose River Valleys Great hiking, white-water rafting and the Old Canada Road scenic byway. Notable birds: Warbler, Gray Jay, Crossbill, and Bicknell’s Thrush. The Maine Highlands Site of Moosehead Lake and Midcoast Mt. Katahdin in Baxter State Region Park. Notable birds: Spruce Grouse, and Black-backed Woodpecker. Greater Portland and Casco Bay w. e. Aroostook County Rich Acadian culture, expansive agriculture and A rich landscape and s. rivers. Notable birds: Three- cultural heritage forged The Maine Beaches toed Woodpecker, Pine by the forces of nature. Grossbeak, and Crossbill. 0 5 10 15 20 25 30 Scale of Miles Contents maine Woodpecker, Yellow-bellied Flycatcher, Philadelphia Vireo, Gray Jay, Boreal Chickadee, Bicknell’s Thrush, and a variety of warblers.
    [Show full text]