Interferon-Alpha Immunotherapy of Melanoma: Signal Transduction, Gene Transcription, and the Role of Suppressor of Cytokine Signaling Proteins in Immune Cells

Total Page:16

File Type:pdf, Size:1020Kb

Interferon-Alpha Immunotherapy of Melanoma: Signal Transduction, Gene Transcription, and the Role of Suppressor of Cytokine Signaling Proteins in Immune Cells INTERFERON-ALPHA IMMUNOTHERAPY OF MELANOMA: SIGNAL TRANSDUCTION, GENE TRANSCRIPTION, AND THE ROLE OF SUPPRESSOR OF CYTOKINE SIGNALING PROTEINS IN IMMUNE CELLS DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Jason M. Zimmerer, B.S. ***** The Ohio State University 2007 Dissertation Committee: Approved by William E. Carson, III, M.D., Advisor Virginia Sanders, Ph.D. _________________________________ Anne VanBuskirk, Ph.D. Advisor Integrated Biomedical Sciences Mathew Ringel, M.D. Graduate Program i ABSTRACT High dose interferon-alpha-2b (IFN-α-2b) is employed as an adjuvant therapy in melanoma patients who have undergone surgical resection of high-risk lesions. The precise molecular targets of IFN-α therapy are unknown, but likely involve signal transducer and activator of transcription 1 (STAT1) signal transduction within host immune effector cells. We hypothesized that STAT1-mediated signaling induces molecular targets important for mediating the anti-tumor effect of exogenously administered IFN-α. To identify the STAT1-dependent genes, microarray technology was utilized to characterize the gene expression profile of splenocytes from wild type (WT) and STAT1-/- mice stimulated with IFN-α. Analysis showed that 25 genes required STAT1 signal transduction for optimal expression in response to IFN-α (i.e. Gzmb, Isg20, Ly6c; p < 0.001). Interestingly, human immune cells are also capable of inducing the homologues of these genes in response to IFN-α. Human PBMCs, CD3+ T cells, CD56+ natural killer (NK) cells, and CD14+ monocytes each exhibited a distinct and reproducible transcriptional profile following stimulation with IFN-α by microarray analysis. Analysis of gene expression within PBMCs from melanoma patients (n = 7) receiving high-dose IFN-α-2b (20 MU/m2 i.v.) also revealed significant upregulation of 23 genes (including IRF7, TAP1, TNFRSF6, USP18; p < 0.001). A comparison of the gene expression profile of in vitro IFN-α-stimulated PBMCs from normal donor cells ii with that of PBMCs obtained from melanoma patients receiving intravenous IFN-α revealed little overlap. However, within individual patients, the gene expression profile of in vitro IFN-α-stimulated PBMCs was largely predictive of the expression profile of gene expression following IFN-α administration. This indicated that an individual patient response to IFN-α immunotherapy could be predicted prior to treatment. The phosphorylation of STAT1 (P-STAT1) within effector cells is highly variable among melanoma patients following IFN-α immunotherapy and at high doses of IFN-α P-STAT1 is down-regulated. We hypothesized that high doses of IFN-α administration would yield suboptimal levels of signal transduction and gene transcription and the induction of inhibitors by IFN-α may be the cause. PBMCs collected from metastatic melanoma receiving escalating doses of IFN-α-2b (5 MU/m2 and then 10 MU/m2) exhibited statistically equivalent levels of P-STAT1, P-STAT2 and the induction of interferon stimulated gene (ISG) transcripts. In addition, suppressors of cytokine signaling (SOCS) protein 1 and SOCS3 were induced to a greater degree with the higher dose of IFN-α. This suggests that a negative feedback loop is activated, thus inhibiting the effect of the higher dose. In fact, SOCS1 and SOCS3 are involved in the negative regulation of IFN-α activity including STAT1 activation and ISG transcription in vitro. The loss of function of SOCS1 and SOCS3 reveals that the anti-tumor effects of IFN-α can be enhanced in the mouse model of malignant melanoma. Impressively, IFN-α treatment eliminated lethal inoculums of melanoma in 70% of SOCS1-deficient mice, whereas all IFN-treated SOCS1-competent mice died. The anti-tumor effects of IFN-α in iii tumor-bearing SOCS1-deficient mice were markedly inhibited following depletion of CD8+ T cells. These results indicate that the anti-tumor response of immune effector cells to exogenous IFN-α is regulated by SOCS proteins. Additionally, we show that SOCS1 was an important regulator of immunosurveillance of developing cancer as SOCS1-deficient mice were protected from tumor formation. These reports are the first to characterize the dependence of STAT1 in mediating the transcriptional response of immune cells to IFN-α. In addition, the studies remain the first to define the transcriptional response of immune subsets to IFN-α and to characterize the transcriptional profiles of PBMCs from melanoma patients undergoing IFN-α immunotherapy. We also determined that microarray analysis of patient PBMCs following in vitro stimulation with IFN-α may be a useful predictor of the individual response to IFN-α immunotherapy. Finally, the optimization of the dose of IFN-α administration and the modulation of SOCS activity may allow for a greater efficacy of IFN-α immunotherapy. iv Dedicated to the women of my life, both past and present: Jennifer, Christine, and Patricia. You are my life, my guide, and my motivation. v ACKNOWLEDGMENTS This work would not have been possible were it not for the support of numerous individuals. First, I would like to thank my mentor William Carson. Dr. Carson has been a tremendous motivator these last four years and I feel privileged to have worked in his laboratory. He has been not only a caring physician and a diligent investigator, but a dedicated teacher to young researchers. I would also like to thank the members of Carson lab and collaborators for their support and friendship. Specifically, I would like to recognize Dr. Gregory Lesinski, Sri Vidya Kondadasula, Volodymyr Karpa, Dr. Brian Becknell, Amy Lehman, Amy Ruppert, Dr. Michael Radmacher, Dr. James Ihle, Dr. Sushella Tridandapani, Dr. Michael Caligiuri, Dr. Thomas Olencki, Dr. Kari Kendra, Dr. Michael Walker, and the CCC Core laboratories. Additionally, I would like to offer my genuine appreciation to the members of my graduate dissertation committee, namely Virginia Sanders, Anne Vanbuskirk, and Mathew Ringel for their time and advice. Finally, I would like to recognize my family for their love and encouragement. I would like to thank my parents, Chris and Michael, for their dedication to my upbringing and their continuous stress of academics. I only hope that I will raise my children with the same values. Most of all I want to recognize my wife, Jennifer. She has supported me with love, understanding, and patience during the long hours spent apart due to my time in the laboratory. She is my center, my heart, my home. vi VITA November 2, 1979. Born – Dayton, Ohio. 2002. Bachelors of Science- Biochemistry Ohio Northern University, Ada, OH. 2002 – present. Ph.D. Candidate, Integrated Biomedical Sciences Graduate Program, The Ohio State University PUBLICATIONS Research Publications 1. Lesinski, G.B., M. Anghelina, J. Zimmerer, T. Bakalakos, B. Badgwell, R. Parihar, Y. Hu, G. Abood, C. Magro, J. Durbin and W.E. Carson. The anti-tumor effects of interferon-alpha are abrogated in a STAT1-deficient mouse. Journal of Clinical Investigation 112(2): 170-180, 2003. 2. Lesinski, G.B., B. Badgwell, J. Zimmerer, T. Crespin, Y. Hu, G. Abood and W.E. Carson. Interleukin-12 pre-treatments enhance interferon-alpha-induced Jak-STAT signaling and potentiate the anti-tumor effects of interferon-alpha in a murine model of malignant melanoma. Journal of Immunology 172(12):7368-76, 2004. FIELDS OF STUDY Major Field: Integrated Biomedical Sciences Graduate Program vii TABLE OF CONTENTS P a g e Abstract. ii Dedication. v Acknowledgments . .vi Vita . vii List of Tables. x List of Figures . .xi List of Abbreviations . .xiii Chapters: 1. Introduction...…………………………………………...…………………............1 1.1 Interferon-alpha……….....……………………………………...1 1.2 Melanoma…….....……….……………………..……….............3 1.3 Treatment of melanoma................................................................5 1.4 Potential anti-tumor mechanisms of IFN-α…….……….....…....8 1.5 Suppressors of cytokine signaling proteins…….………………10 1.6 Hypothesis………..……………...….………….………………11 2. The role of STAT1 in mediating the transcription of interferon stimulated genes in murine immune cells……………………………………………………………..............13 2.1 Introduction……………………………..……………………..13 2.2 Materials and Methods………………………………………...15 2.3 Results……………………………………..…………………..18 2.4 Discussion………………………………..……………………19 2.5 Tables and Figures…...…………………..……………………22 3. Gene expression profiling of the immune response to interferon-alpha…............28 viii 3.1 Introduction……………………….……………………...…...28 3.2 Materials and Methods……………………...………………...30 3.3 Results.………………………………………………………..34 3.4 Discussion.……………………………………………………39 3.5 Tables and Figures…..…………………..……………………44 4. Interferon-alpha-2b induced signal transduction and gene regulation in patient PBMCs is not enhanced by a dose increase from 5 MU/m2 10 MU/m2……………..…..58 4.1 Introduction………………………………………………......58 4.2 Materials and Methods……….….…………………………...60 4.3 Results………………………………………………………..63 4.4 Discussion……………………………………………………67 4.5 Tables and Figures….…………………..……………………71 5. IFN-alpha-induced signal transduction, gene expression, and anti-tumor activity of immune effector cells are negatively regulated by suppressor of cytokine signaling proteins…………………………………………………………………………………...86 5.1 Introduction………………………..…….………………......86 5.2 Materials and Methods………………………….…………...89 5.3 Results……………………….…….……………….………..95 5.4 Discussion………………….…….……………..….………104 5.5 Tables and Figures……………………….………..….……109 6. Conclusion……………………………………..…………...…………………...142
Recommended publications
  • Imm Catalog.Pdf
    $ Gene Symbol A B 3 C 4 D 9 E 10 F 11 G 12 H 13 I 14 J. K 17 L 18 M 19 N 20 O. P 22 R 26 S 27 T 30 U 32 V. W. X. Y. Z 33 A ® ® Gene Symbol Gene ID Antibody Monoclonal Antibody Polyclonal MaxPab Full-length Protein Partial-length Protein Antibody Pair KIt siRNA/Chimera Gene Symbol Gene ID Antibody Monoclonal Antibody Polyclonal MaxPab Full-length Protein Partial-length Protein Antibody Pair KIt siRNA/Chimera A1CF 29974 ● ● ADAMTS13 11093 ● ● ● ● ● A2M 2 ● ● ● ● ● ● ADAMTS20 80070 ● AACS 65985 ● ● ● ADAMTS5 11096 ● ● ● AANAT 15 ● ● ADAMTS8 11095 ● ● ● ● AATF 26574 ● ● ● ● ● ADAMTSL2 9719 ● AATK 9625 ● ● ● ● ADAMTSL4 54507 ● ● ABCA1 19 ● ● ● ● ● ADAR 103 ● ● ABCA5 23461 ● ● ADARB1 104 ● ● ● ● ABCA7 10347 ● ADARB2 105 ● ABCB9 23457 ● ● ● ● ● ADAT1 23536 ● ● ABCC4 10257 ● ● ● ● ADAT2 134637 ● ● ABCC5 10057 ● ● ● ● ● ADAT3 113179 ● ● ● ABCC8 6833 ● ● ● ● ADCY10 55811 ● ● ABCD2 225 ● ADD1 118 ● ● ● ● ● ● ABCD4 5826 ● ● ● ADD3 120 ● ● ● ABCG1 9619 ● ● ● ● ● ADH5 128 ● ● ● ● ● ● ABL1 25 ● ● ADIPOQ 9370 ● ● ● ● ● ABL2 27 ● ● ● ● ● ADK 132 ● ● ● ● ● ABO 28 ● ● ADM 133 ● ● ● ABP1 26 ● ● ● ● ● ADNP 23394 ● ● ● ● ABR 29 ● ● ● ● ● ADORA1 134 ● ● ACAA2 10449 ● ● ● ● ADORA2A 135 ● ● ● ● ● ● ● ACAN 176 ● ● ● ● ● ● ADORA2B 136 ● ● ACE 1636 ● ● ● ● ADRA1A 148 ● ● ● ● ACE2 59272 ● ● ADRA1B 147 ● ● ACER2 340485 ● ADRA2A 150 ● ● ACHE 43 ● ● ● ● ● ● ADRB1 153 ● ● ACIN1 22985 ● ● ● ADRB2 154 ● ● ● ● ● ACOX1 51 ● ● ● ● ● ADRB3 155 ● ● ● ● ACP5 54 ● ● ● ● ● ● ● ADRBK1 156 ● ● ● ● ACSF2 80221 ● ● ADRM1 11047 ● ● ● ● ACSF3 197322 ● ● AEBP1 165 ● ● ● ● ACSL4 2182 ●
    [Show full text]
  • An Essential Role for Maternal Control of Nodal Signaling
    RESEARCH ARTICLE elife.elifesciences.org An essential role for maternal control of Nodal signaling Pooja Kumari1,2†, Patrick C Gilligan1†, Shimin Lim1,3, Long Duc Tran4, Sylke Winkler5, Robin Philp6‡, Karuna Sampath1,2,3* 1Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore; 2Department of Biological Sciences, National University of Singapore, Singapore, Singapore; 3School of Biological Sciences, Nanyang Technological University, Singapore, Singapore; 4Mechanobiology Institute, National University of Singapore, Singapore, Singapore; 5Department of Cell Biology and Genetics, Max Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany; 6Bioprocessing Technology Institute, A*STAR, Singapore, Singapore Abstract Growth factor signaling is essential for pattern formation, growth, differentiation, and maintenance of stem cell pluripotency. Nodal-related signaling factors are required for axis formation and germ layer specification from sea urchins to mammals. Maternal transcripts of the zebrafish Nodal factor, Squint (Sqt), are localized to future embryonic dorsal. The mechanisms by which maternal sqt/nodal RNA is localized and regulated have been unclear. Here, we show that maternal control of Nodal signaling via the conserved Y box-binding protein 1 (Ybx1) is essential. We identified Ybx1 via a proteomic screen. Ybx1 recognizes the 3’ untranslated region (UTR) of *For correspondence: karuna@ sqt RNA and prevents premature translation and Sqt/Nodal signaling. Maternal-effect mutations in tll.org.sg zebrafish ybx1 lead to deregulated Nodal signaling, gastrulation failure, and embryonic lethality. Implanted Nodal-coated beads phenocopy ybx1 mutant defects. Thus, Ybx1 prevents ectopic † These authors contributed Nodal activity, revealing a new paradigm in the regulation of Nodal signaling, which is likely to equally to this work be conserved.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • The Zinc-Finger Antiviral Protein Recruits the RNA Processing Exosome to Degrade the Target Mrna
    The zinc-finger antiviral protein recruits the RNA processing exosome to degrade the target mRNA Xuemin Guo, Jing Ma, Jing Sun, and Guangxia Gao* Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China Edited by John M. Coffin, Tufts University School of Medicine, Boston, MA, and approved November 3, 2006 (received for review August 14, 2006) Zinc-finger antiviral protein (ZAP) is a host antiviral factor that putative RNA helicase (Kiaa0052), and a protein that is specifically specifically inhibits the replication of Moloney murine leukemia phosphorylated in the M phase of the cell cycle (Mpp6) (36, 38). virus (MLV) and Sindbis virus (SIN) by preventing accumulation of The RNase-PH domain subunits and the S1/KH RNA-binding the viral mRNA in the cytoplasm. In previous studies, we demon- domain subunits are considered to be the core components of the strated that ZAP directly binds to its specific target mRNAs. In this exosome, whereas Kiaa0052 and Mpp6 are considered to be article, we provide evidence indicating that ZAP recruits the RNA accessory factors (36, 38). Yeast PM/Scl-100 is found only in the processing exosome to degrade the target RNA. ZAP comigrated nuclear exosome (36, 46). with the exosome in sucrose or glycerol velocity gradient centrif- The structure of the exosome is not yet determined. Based on the ugation. Immunoprecipitation of ZAP coprecipitated the exosome results of mammalian-two-hybrid and yeast-two-hybrid experi- components. In vitro pull-down assays indicated that ZAP directly ments (38, 56–59), the six RNase-PH domain-containing subunits interacted with the exosome component hRrp46p and that the are thought to assemble into a doughnut-shaped ring.
    [Show full text]
  • To Study Mutant P53 Gain of Function, Various Tumor-Derived P53 Mutants
    Differential effects of mutant TAp63γ on transactivation of p53 and/or p63 responsive genes and their effects on global gene expression. A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science By Shama K Khokhar M.Sc., Bilaspur University, 2004 B.Sc., Bhopal University, 2002 2007 1 COPYRIGHT SHAMA K KHOKHAR 2007 2 WRIGHT STATE UNIVERSITY SCHOOL OF GRADUATE STUDIES Date of Defense: 12-03-07 I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPERVISION BY SHAMA KHAN KHOKHAR ENTITLED Differential effects of mutant TAp63γ on transactivation of p53 and/or p63 responsive genes and their effects on global gene expression BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Master of Science Madhavi P. Kadakia, Ph.D. Thesis Director Daniel Organisciak , Ph.D. Department Chair Committee on Final Examination Madhavi P. Kadakia, Ph.D. Steven J. Berberich, Ph.D. Michael Leffak, Ph.D. Joseph F. Thomas, Jr., Ph.D. Dean, School of Graduate Studies 3 Abstract Khokhar, Shama K. M.S., Department of Biochemistry and Molecular Biology, Wright State University, 2007 Differential effect of TAp63γ mutants on transactivation of p53 and/or p63 responsive genes and their effects on global gene expression. p63, a member of the p53 gene family, known to play a role in development, has more recently also been implicated in cancer progression. Mice lacking p63 exhibit severe developmental defects such as limb truncations, abnormal skin, and absence of hair follicles, teeth, and mammary glands. Germline missense mutations of p63 have been shown to be responsible for several human developmental syndromes including SHFM, EEC and ADULT syndromes and are associated with anomalies in the development of organs of epithelial origin.
    [Show full text]
  • Inhibition of CCL7 Derived from Mo-Mdscs Prevents Metastatic
    Ren et al. Cell Death and Disease (2021) 12:484 https://doi.org/10.1038/s41419-021-03698-5 Cell Death & Disease ARTICLE Open Access Inhibition of CCL7 derived from Mo-MDSCs prevents metastatic progression from latency in colorectal cancer Xiaoli Ren1,2, Jianbiao Xiao1,3, Wanning Zhang1,3,FeifeiWang1,3, Yongrong Yan1,3,XuehuiWu 1,3, Zhicheng Zeng1,3, Yumei He4,WeiYang1,3, Wangjun Liao5,YanqingDing1,3 and Li Liang 1,3 Abstract In colorectal cancer (CRC), overt metastases often appear after years of latency. But the signals that cause micro- metastatic cells to remain indolent, thereby enabling them to survive for extended periods of time, are unclear. Immunofluorescence and co-immunoprecipitation assays were used to explore the co-localization of CCL7 and CCR2. Immunohistochemical (IHC) assays were employed to detect the characters of metastatic HT29 cells in mice liver. Flow cytometry assays were performed to detect the immune cells. Bruberin vivo MS FX Pro Imager was used to observe the liver metastasis of CRC in mice. Quantitative real-time PCR (qRT-PCR) and western blot were employed to detect the expressions of related proteins. Trace RNA sequencing was employed to identify differentially expressed genes in MDSCs from liver micro-M and macro-M of CRC in mice. Here, we firstly constructed the vitro dormant cell models and metastatic dormant animal models of colorectal cancer. Then we found that myeloid-derived suppressor cells (MDSCs) were increased significantly from liver micro-metastases to macro-metastases of CRC in mice. Moreover, monocytic MDSCs (Mo-MDSC) significantly promoted the dormant activation of micro-metastatic cells compared to 1234567890():,; 1234567890():,; 1234567890():,; 1234567890():,; polymorphonuclear MDSCs (PMN-MDSC).
    [Show full text]
  • BD Biosciences New RUO Reagents - November 2020
    BD Biosciences New RUO reagents - November 2020 Reactivity Description Format Clone Size Cat. number Hu CD133 FITC W6B3C1 100µg 567029 Hu CD133 FITC W6B3C1 25µg 567033 Hu CD39 PE A1/CD39 100Tst 567156 Hu CD39 PE A1/CD39 25Tst 567157 Hu KIR2DL1/S1/S3/S5 PE HP-MA4 100Tst 567158 Hu KIR2DL1/S1/S3/S5 PE HP-MA4 25Tst 567159 Hu IL-22 Alexa Fluor® 647 MH22B2 100µg 567160 Hu IL-22 Alexa Fluor® 647 MH22B2 25µg 567161 Hu CD99 R718 TU12 50µg 751651 Hu CD161 R718 DX12 50µg 751652 Hu CD116 R718 HGMCSFR-M1 50µg 751653 Hu HLA-G R718 87G 50µg 751670 Hu CD27 R718 O323 50µg 751686 Hu CD80 (B7-1) R718 2D10.4 50µg 751737 Hu Integrin αvβ5 R718 ALULA 50µg 751738 Hu CD266 (Tweak-R) R718 ITEM-4 50µg 751739 Hu ErbB3 (HER-3) R718 SGP1 50µg 751799 Hu TCR Vβ5.1 R718 LC4 50µg 751816 Hu CD123 (IL-3Ra) R718 6H6 50µg 751844 Hu CD1a R718 SK9 50µg 751847 Hu CD20 R718 L27 50µg 751849 Hu Disial GD2 R718 14.G2A 50µg 751851 Reactivity Description Format Clone Size Cat. number Hu CD71 R718 L01.1 50µg 751853 Hu CD278 (ICOS) R718 DX29 50µg 751854 Hu B7-H4 R718 MIH43 50µg 751857 Hu CD53 R718 HI29 50µg 751858 Hu CD197 (CCR7) R718 2-L1-A 50µg 751859 Hu CD197 (CCR7) R718 3D12 50µg 751861 Hu CD31 R718 L133.1 50µg 751863 Hu EGF Receptor R718 EMAB-134 50µg 751864 Hu CD8b R718 2ST8.5H7 50µg 751867 Hu CD31 R718 MBC 78.2 50µg 751869 Hu CD162 R718 KPL-1 50µg 751873 Hu CD24 R718 ML5 50µg 751874 Hu CD159C (NKG2C) R718 134591 50µg 751876 Hu CD169 (Siglec-1) R718 7-239 50µg 751877 Hu CD16b R718 CLB-GRAN11.5 50µg 751880 Hu IgM R718 UCH-B1 50µg 751881 Hu CD275 R718 2D3/B7-H2 50µg 751883 Hu CD307e
    [Show full text]
  • Supplemental Materials ZNF281 Enhances Cardiac Reprogramming
    Supplemental Materials ZNF281 enhances cardiac reprogramming by modulating cardiac and inflammatory gene expression Huanyu Zhou, Maria Gabriela Morales, Hisayuki Hashimoto, Matthew E. Dickson, Kunhua Song, Wenduo Ye, Min S. Kim, Hanspeter Niederstrasser, Zhaoning Wang, Beibei Chen, Bruce A. Posner, Rhonda Bassel-Duby and Eric N. Olson Supplemental Table 1; related to Figure 1. Supplemental Table 2; related to Figure 1. Supplemental Table 3; related to the “quantitative mRNA measurement” in Materials and Methods section. Supplemental Table 4; related to the “ChIP-seq, gene ontology and pathway analysis” and “RNA-seq” and gene ontology analysis” in Materials and Methods section. Supplemental Figure S1; related to Figure 1. Supplemental Figure S2; related to Figure 2. Supplemental Figure S3; related to Figure 3. Supplemental Figure S4; related to Figure 4. Supplemental Figure S5; related to Figure 6. Supplemental Table S1. Genes included in human retroviral ORF cDNA library. Gene Gene Gene Gene Gene Gene Gene Gene Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol AATF BMP8A CEBPE CTNNB1 ESR2 GDF3 HOXA5 IL17D ADIPOQ BRPF1 CEBPG CUX1 ESRRA GDF6 HOXA6 IL17F ADNP BRPF3 CERS1 CX3CL1 ETS1 GIN1 HOXA7 IL18 AEBP1 BUD31 CERS2 CXCL10 ETS2 GLIS3 HOXB1 IL19 AFF4 C17ORF77 CERS4 CXCL11 ETV3 GMEB1 HOXB13 IL1A AHR C1QTNF4 CFL2 CXCL12 ETV7 GPBP1 HOXB5 IL1B AIMP1 C21ORF66 CHIA CXCL13 FAM3B GPER HOXB6 IL1F3 ALS2CR8 CBFA2T2 CIR1 CXCL14 FAM3D GPI HOXB7 IL1F5 ALX1 CBFA2T3 CITED1 CXCL16 FASLG GREM1 HOXB9 IL1F6 ARGFX CBFB CITED2 CXCL3 FBLN1 GREM2 HOXC4 IL1F7
    [Show full text]
  • Transcriptional Repression of IFN Regulatory Factor 7 by MYC Is Critical for Type I IFN Production in Human Plasmacytoid Dendrit
    Transcriptional Repression of IFN Regulatory Factor 7 by MYC Is Critical for Type I IFN Production in Human Plasmacytoid Dendritic Cells This information is current as of September 28, 2021. Tae Whan Kim, Seunghee Hong, Yin Lin, Elise Murat, HyeMee Joo, Taeil Kim, Virginia Pascual and Yong-Jun Liu J Immunol 2016; 197:3348-3359; Prepublished online 14 September 2016; doi: 10.4049/jimmunol.1502385 Downloaded from http://www.jimmunol.org/content/197/8/3348 Supplementary http://www.jimmunol.org/content/suppl/2016/09/14/jimmunol.150238 http://www.jimmunol.org/ Material 5.DCSupplemental References This article cites 74 articles, 25 of which you can access for free at: http://www.jimmunol.org/content/197/8/3348.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision by guest on September 28, 2021 • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2016 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Transcriptional Repression of IFN Regulatory Factor 7 by MYC Is Critical for Type I IFN Production in Human Plasmacytoid Dendritic Cells Tae Whan Kim,*,1 Seunghee Hong,*,1 Yin Lin,* Elise Murat,* HyeMee Joo,* Taeil Kim,†,2 Virginia Pascual,* and Yong-Jun Liu*,† Type I IFNs are crucial mediators of human innate and adaptive immunity and are massively produced from plasmacytoid dendritic cells (pDCs).
    [Show full text]
  • Profound Treg Perturbations Correlate with COVID-19 Severity
    bioRxiv preprint doi: https://doi.org/10.1101/2020.12.11.416180; this version posted December 15, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Profound Treg perturbations correlate with COVID-19 severity Silvia Galván-Peña1*, Juliette Leon1,2*, Kaitavjeet Chowdhary1, Daniel A. Michelson1, Brinda Vijaykumar1, Liang Yang1, Angela Magnuson1, Zachary Manickas-Hill3,4, Alicja Piechocka- Trocha3,4, Daniel P. Worrall3,4, Kathryn E. Hall3,5, Musie Ghebremichael3,4, Bruce D. Walker3,4,6, Jonathan Z. Li3,7, Xu G. Yu3,4, MGH COVID-19 Collection & Processing Team, Diane Mathis1 and Christophe Benoist1,8,+ 1Department of Immunology, Harvard Medical School, Boston, MA, USA 2 INSERM UMR 1163, University of Paris, Imagine Institute, Paris, France 3Massachusetts Consortium on Pathogen Readiness, Boston, MA, USA 4Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA 5Department of Medicine, Massachusetts General Hospital, Boston, MA, USA 6Howard Hughes Medical Institute, Center for the AIDS Programme of Research in South Africa. 7Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA 8Lead contact * Equal contribution +Address correspondence to: Christophe Benoist Department of Immunology Harvard Medical School 77 Avenue Louis Pasteur, Boston, MA 02115 e-mail: [email protected] Phone: (617) 432-7741 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.12.11.416180; this version posted December 15, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
    [Show full text]
  • Cellular and Molecular Signatures in the Disease Tissue of Early
    Cellular and Molecular Signatures in the Disease Tissue of Early Rheumatoid Arthritis Stratify Clinical Response to csDMARD-Therapy and Predict Radiographic Progression Frances Humby1,* Myles Lewis1,* Nandhini Ramamoorthi2, Jason Hackney3, Michael Barnes1, Michele Bombardieri1, Francesca Setiadi2, Stephen Kelly1, Fabiola Bene1, Maria di Cicco1, Sudeh Riahi1, Vidalba Rocher-Ros1, Nora Ng1, Ilias Lazorou1, Rebecca E. Hands1, Desiree van der Heijde4, Robert Landewé5, Annette van der Helm-van Mil4, Alberto Cauli6, Iain B. McInnes7, Christopher D. Buckley8, Ernest Choy9, Peter Taylor10, Michael J. Townsend2 & Costantino Pitzalis1 1Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK. Departments of 2Biomarker Discovery OMNI, 3Bioinformatics and Computational Biology, Genentech Research and Early Development, South San Francisco, California 94080 USA 4Department of Rheumatology, Leiden University Medical Center, The Netherlands 5Department of Clinical Immunology & Rheumatology, Amsterdam Rheumatology & Immunology Center, Amsterdam, The Netherlands 6Rheumatology Unit, Department of Medical Sciences, Policlinico of the University of Cagliari, Cagliari, Italy 7Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK 8Rheumatology Research Group, Institute of Inflammation and Ageing (IIA), University of Birmingham, Birmingham B15 2WB, UK 9Institute of
    [Show full text]
  • High Transdominant Revm10 Protein Levels Are Required to Inhibit HIV-1 Replication in Cell Lines and Primary T Cells: Implication for Gene Therapy of AIDS
    Gene Therapy (1997) 4, 128–139 1997 Stockton Press All rights reserved 0969-7128/97 $12.00 High transdominant RevM10 protein levels are required to inhibit HIV-1 replication in cell lines and primary T cells: implication for gene therapy of AIDS I Plavec1, M Agarwal1,KEHo2, M Pineda1, J Auten1, J Baker1, H Matsuzaki3, S Escaich4, M Bonyhadi1 and E Bo¨ hnlein1 1Progenesys Program, SyStemix Inc, 3155 Porter Drive, Palo Alto, CA 94304, USA Expression of antiviral genes in CD4+ T cells has been pro- uniformly higher than from internal promoters (eg CMV, posed as a strategy for gene therapy of AIDS. Over the PGK). Analysis of selected vectors in acutely and chron- past years, we and others have developed retroviral vec- ically HIV-infected cell lines suggested that threshold levels tors encoding the RevM10 protein, a dominant-negative of RevM10 expression are required to achieve inhibition of mutant of the HIV-1 Rev trans-activator protein. We could HIV replication. LTR-driven RevM10 expression also demonstrate gene transfer and inhibition of HIV-1 repli- yielded high steady-state protein levels in activated primary cation in cultured T cell lines and primary T cells. However, T cells resulting in inhibition of HIV replication, and there little is known about the levels of the antiviral protein was no apparent difference between the MoMLV, MPSV required to achieve a therapeutic effect, particularly in pri- and MESV-LTR vectors. However, RevM10 expression mary cells. In this report, we compare different vector was down-regulated in resting primary cells and conse- designs with regard to expression of the antiviral gene to quently anti-HIV efficacy was significantly reduced.
    [Show full text]