Weighting Techniques in Data Compression: Theory and Algorithms

Total Page:16

File Type:pdf, Size:1020Kb

Weighting Techniques in Data Compression: Theory and Algorithms Weighting Techniques in Data Compression: Theory and Algorithms PROEFONTWERP ter verkrijging van de graad van doctor aan de Technische Universiteit Eindhoven, op gezag van de Rector Magnificus, prof.dr. R.A. van Santen, voor een commissie aangewezen door het College voor Promoties in het openbaar te verdedigen op vrijdag 13 december 2002 om 16.00 uur door Paulus Adrianus Jozef Volf geboren te Eindhoven De documentatie van het proefontwerp is goedgekeurd door de promotoren: prof.ir. M.P.J. Stevens en prof.dr.ir. J.P.M. Schalkwijk Copromotor: dr.ir. F.M.J. Willems CIP-DATA LIBRARY TECHNISCHE UNIVERSITEIT EINDHOVEN Volf, Paulus A.J. Weigthing techniques in data compression : theory and algorithms / by Paulus A.J. Volf. – Eindhoven : Technische Universiteit Eindhoven, 2002. Proefontwerp. – ISBN 90-386-1980-4 NUR 965 Trefw.: datacompressie / informatietheorie / coderingstheorie. Subject headings: data compression / source coding / trees mathematics / information theory. SUMMARY HIS thesis is concerned with text compression. Text compression is a technique used on Tcomputer systems to compress data, such that the data occupies less storage space, or can be transmitted in shorter time. The compressor has to compact the data in such a way that a decompressor can restore the compacted data to its original form, without any distortion. The algorithms discussed in this thesis process the data sequence symbol by symbol. The underlying idea of these algorithms is that the few symbols preceding the new symbol in the data sequence, called the context of that symbol, predict its probability distribution. Therefore, while processing the data sequence these algorithms collect statistics on how often a symbol follows a certain context, for different context lengths. These statistics are stored in a special data structure, the context tree. From the statistical information in the context tree the compression algorithms estimate the probability distribution of the new symbol in the data sequence for different context lengths. Since the estimates of the probability distribution for the different context lengths will differ, these estimates have to be combined into a single estimate. The main difference between the compression algorithms is in how they combine these different estimates. The project has been set-up around the context-tree weighting (CTW) algorithm, a recently developed data compression algorithm that efficiently weights over different context lengths. The goal is to position this algorithm as a viable solution in the data compression world, next to well-known algorithms like Lempel-Ziv and the PPM-family. Therefore, the final design should be a data compression program based on CTW, that proves its applicability on a regular PC. This leads to a set of requirements for its performance, its speed and its memory usage. The design process has led to two design proposals. The first proposed design consists of three components: an implementation of an arithmetic coder, a CTW implementation, and a forward decomposition. The arithmetic coder translates the estimated probability distributions for the data symbols into a code word. This design uses a straightforward implementation of the Witten-Neal-Cleary arithmetic coder. The CTW implementation is the modelling algorithm that estimates the probability distribution of the new symbol, based on its context, and on the data seen so far. This implementation is a refinement of a previous implementation. For the new implementation, both the computational work, and the data structures and search algorithms have been examined and redesigned. Furthermore, different pruning algorithms for the context trees have been investigated and evaluated. Finally, the parameters have been fine-tuned. The forward decomposition is a completely new component. It analyses the data in a first pass, and it converts the data symbols to bits by means of a decomposition, based on the Huffman code. The decomposition reduces the length of frequent symbols, while it tries to preserve the structure of iii iv SUMMARY the original alphabet. This reduces the average number of updates of the context trees. The first complete design has been evaluated in terms of the requirements. It meets these requirements, but the performance requirement is only met in a “weak” way, i.e. only the average performance of the design, measured over a standard set of test files, is better than the performance of its competitors. The goal of the second proposed design is to improve the performance such that it is compet- itive on every individual file of the standard set of test files. A new idea is proposed to achieve this: let two different modelling algorithms process the data sequence in parallel, while for each symbol a third algorithm will try to switch to the modelling algorithm that performs locally best. This idea is implemented in the second proposed design by adding two components, the snake algorithm and the companion algorithm, to the first design. The companion algorithm is the second modelling algorithm, that runs in parallel to CTW. It is based on PPMA, and it has been specifically designed to be complementary to CTW. This algorithm has been simplified, without losing its desired modelling behaviour, and it has been modified, such that it can use the same data structures as CTW. The snake algorithm is a weighting technique that for every symbol com- bines the two estimated probability distributions that it receives from CTW and the companion algorithm. The snake algorithm is a derivative of the more complex switching algorithm. Both algorithms have been developed for this project. They are analysed and implemented here for the first time. The complete second proposed design has been evaluated. It meets the strict definition of the performance requirement, it is one of the best data compression programs to date, at the cost of a lower speed and a higher memory usage. By offering the user a choice between both design solutions, the project has been completed successfully. The most important contribution of this work is the idea of switching between two modelling algorithms. One way to improve a data compression algorithm is by trying to find efficient mod- elling techniques for different (often larger) classes of sources. This work presents an alternative. Switching proves to be an efficient method to design a system that benefits from the strengths of both modelling algorithms, without going through the effort to capture them into a single, more complex, modelling algorithm. SAMENVATTING ET onderwerp van dit proefschrift is tekstcompresssie. Tekstcompressie is een techniek die Hop computersystemen wordt toegepast om data te comprimeren, zodat de data minder plaats in beslag nemen, of zodat deze in kortere tijd verzonden kunnen worden. De compressor moet de data wel zodanig samenpakken dat een decompressor nog in staat is de samengepakte data weer in hun oorspronkelijke vorm te herstellen, zonder dat daarbij enige mate van vervorming optreedt. De compressie-algoritmes die in dit proefschrift besproken worden verwerken de datarij sym- bool voor symbool. De achterliggende gedachte bij deze algoritmes is dat het groepje symbolen dat aan het nieuwe symbool in de datarij voorafgaat, dit noemen we de context van het nieuwe symbool, zijn kansverdeling bepaalt. Daarom bouwen deze algoritmes tijdens het verwerken van de datarij statistieken op over hoe vaak een symbool op een bepaalde context volgt, en dit voor verschillende lengtes van de context. Deze statistieken worden opgeslagen in een speciale datastructuur, de context-boom. Aan de hand van de statistische informatie in de context-boom schatten de compressie-algoritmes de kansverdeling van het nieuwe symbool in de datarij, voor verschillende lengtes van de context. Aangezien de verschillende context-lengtes zullen resul- teren in verschillende schattingen voor deze kansverdeling, moeten deze schattingen nog gecom- bineerd worden. De wijze waarop het compressie-algoritme de verschillende schattingen samen- voegt, verschilt per algoritme, en is een van de belangrijkste kenmerken van zo’n algoritme. Het project is opgezet rond het context-boom weeg (CTW) algoritme, een recent ontwikkeld datacompressie algoritme dat op een effici¨ente manier over de verschillende context-lengtes weegt. Het doel is om aan te tonen dat dit algoritme net zo bruikbaar is in praktische toepas- singen als bewezen algoritmes zoals Lempel-Ziv en de PPM-familie. Daarom moet het uitein- delijke ontwerp een datacompressieprogramma worden dat gebaseerd is op het CTW algoritme, en dat op een gewone PC uitgevoerd kan worden. Om dit te realiseren zijn er eisen aan het ontwerp gesteld op het gebied van de compressieratio, snelheid en geheugengebruik. Het ontwerpproces heeft uiteindelijk tot twee ontwerpvoorstellen geleid. Het eerste voor- gestelde ontwerp bestaat uit drie componenten: een implementatie van een aritmetische coder, een CTW implementatie, en een voorwaartse decompositie. De aritmetische encoder vertaalt de geschatte kansverdeling van de datasymbolen in een codewoord. Het ontwerp gebruikt een eenvoudige implementatie van de Witten-Neal-Cleary aritmetische coder. Het CTW algoritme is het eigenlijke modelleringsalgoritme dat de kansverdeling van het nieuwe datasymbool schat, gebaseerd op zijn context en de datarij tot nu toe. De hier gebruikte implementatie is een verbe- tering van eerdere implementaties. Voor de nieuwe implementatie zijn zowel het rekenwerk, als v vi SAMENVATTING de datastructuren en de daarbij behorende zoekalgoritmes
Recommended publications
  • The Deep Learning Solutions on Lossless Compression Methods for Alleviating Data Load on Iot Nodes in Smart Cities
    sensors Article The Deep Learning Solutions on Lossless Compression Methods for Alleviating Data Load on IoT Nodes in Smart Cities Ammar Nasif *, Zulaiha Ali Othman and Nor Samsiah Sani Center for Artificial Intelligence Technology (CAIT), Faculty of Information Science & Technology, University Kebangsaan Malaysia, Bangi 43600, Malaysia; [email protected] (Z.A.O.); [email protected] (N.S.S.) * Correspondence: [email protected] Abstract: Networking is crucial for smart city projects nowadays, as it offers an environment where people and things are connected. This paper presents a chronology of factors on the development of smart cities, including IoT technologies as network infrastructure. Increasing IoT nodes leads to increasing data flow, which is a potential source of failure for IoT networks. The biggest challenge of IoT networks is that the IoT may have insufficient memory to handle all transaction data within the IoT network. We aim in this paper to propose a potential compression method for reducing IoT network data traffic. Therefore, we investigate various lossless compression algorithms, such as entropy or dictionary-based algorithms, and general compression methods to determine which algorithm or method adheres to the IoT specifications. Furthermore, this study conducts compression experiments using entropy (Huffman, Adaptive Huffman) and Dictionary (LZ77, LZ78) as well as five different types of datasets of the IoT data traffic. Though the above algorithms can alleviate the IoT data traffic, adaptive Huffman gave the best compression algorithm. Therefore, in this paper, Citation: Nasif, A.; Othman, Z.A.; we aim to propose a conceptual compression method for IoT data traffic by improving an adaptive Sani, N.S.
    [Show full text]
  • Answers to Exercises
    Answers to Exercises A bird does not sing because he has an answer, he sings because he has a song. —Chinese Proverb Intro.1: abstemious, abstentious, adventitious, annelidous, arsenious, arterious, face- tious, sacrilegious. Intro.2: When a software house has a popular product they tend to come up with new versions. A user can update an old version to a new one, and the update usually comes as a compressed file on a floppy disk. Over time the updates get bigger and, at a certain point, an update may not fit on a single floppy. This is why good compression is important in the case of software updates. The time it takes to compress and decompress the update is unimportant since these operations are typically done just once. Recently, software makers have taken to providing updates over the Internet, but even in such cases it is important to have small files because of the download times involved. 1.1: (1) ask a question, (2) absolutely necessary, (3) advance warning, (4) boiling hot, (5) climb up, (6) close scrutiny, (7) exactly the same, (8) free gift, (9) hot water heater, (10) my personal opinion, (11) newborn baby, (12) postponed until later, (13) unexpected surprise, (14) unsolved mysteries. 1.2: A reasonable way to use them is to code the five most-common strings in the text. Because irreversible text compression is a special-purpose method, the user may know what strings are common in any particular text to be compressed. The user may specify five such strings to the encoder, and they should also be written at the start of the output stream, for the decoder’s use.
    [Show full text]
  • Superior Guarantees for Sequential Prediction and Lossless Compression Via Alphabet Decomposition
    Journal of Machine Learning Research 7 (2006) 379–411 Submitted 8/05; Published 2/06 Superior Guarantees for Sequential Prediction and Lossless Compression via Alphabet Decomposition Ron Begleiter [email protected] Ran El-Yaniv [email protected] Department of Computer Science Technion - Israel Institute of Technology Haifa 32000, Israel Editor: Dana Ron Abstract We present worst case bounds for the learning rate of a known prediction method that is based on hierarchical applications of binary context tree weighting (CTW) predictors. A heuristic application of this approach that relies on Huffman’s alphabet decomposition is known to achieve state-of- the-art performance in prediction and lossless compression benchmarks. We show that our new bound for this heuristic is tighter than the best known performance guarantees for prediction and lossless compression algorithms in various settings. This result substantiates the efficiency of this hierarchical method and provides a compelling explanation for its practical success. In addition, we present the results of a few experiments that examine other possibilities for improving the multi- alphabet prediction performance of CTW-based algorithms. Keywords: sequential prediction, the context tree weighting method, variable order Markov mod- els, error bounds 1. Introduction Sequence prediction and entropy estimation are fundamental tasks in numerous machine learning and data mining applications. Here we consider a standard discrete sequence prediction setting where performance is measured via the log-loss (self-information). It is well known that this setting is intimately related to lossless compression, where in fact high quality prediction is essentially equivalent to high quality lossless compression.
    [Show full text]
  • Improved Adaptive Arithmetic Coding in MPEG-4 AVC/H.264 Video Compression Standard
    Improved Adaptive Arithmetic Coding in MPEG-4 AVC/H.264 Video Compression Standard Damian Karwowski Poznan University of Technology, Chair of Multimedia Telecomunications and Microelectronics [email protected] Summary. An Improved Adaptive Arithmetic Coding is presented in the paper to be applicable in contemporary hybrid video encoders. The proposed Adaptive Arithmetic Encoder makes the improvement of the state-of-the-art Context-based Adaptive Binary Arithmetic Coding (CABAC) method that is used in the new worldwide video compression standard MPEG-4 AVC/H.264. The improvements were obtained by the use of more accurate mechanism of data statistics estimation and bigger size context pattern relative to the original CABAC. Experimental results revealed bitrate savings of 1.5% - 3% when using the proposed Adaptive Arithmetic Encoder instead of CABAC in the framework of MPEG-4 AVC/H.264 video encoder. 1 Introduction In order to improve compression performance of video encoder, entropy coding is used at the final stage of coding. Two types of entropy coding methods are used in the new generation video encoders: Context-Adaptive Variable Length Coding and more efficient Context-Adaptive Arithmetic Coding. The state- of-the-art entropy coding method used in video compression is Context-based Adaptive Binary Arithmetic Coding (CABAC) [4, 5] that found the appli- cation in the new worldwide Advanced Video Coding (AVC) standard (ISO MPEG-4 AVC and ITU-T Rec. H.264) [1, 2, 3]. Through the application of sophisticated mechanisms of data statistics modeling in CABAC, it is distin- guished by the highest compression performance among standardized entropy encoders used in video compression.
    [Show full text]
  • Applications of Information Theory to Machine Learning Jeremy Bensadon
    Applications of Information Theory to Machine Learning Jeremy Bensadon To cite this version: Jeremy Bensadon. Applications of Information Theory to Machine Learning. Metric Geometry [math.MG]. Université Paris Saclay (COmUE), 2016. English. NNT : 2016SACLS025. tel-01297163 HAL Id: tel-01297163 https://tel.archives-ouvertes.fr/tel-01297163 Submitted on 3 Apr 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. NNT: 2016SACLS025 These` de doctorat de L'Universit´eParis-Saclay pr´epar´ee`aL'Universit´eParis-Sud Ecole´ Doctorale n°580 Sciences et technologies de l'information et de la communication Sp´ecialit´e: Math´ematiqueset informatique par J´er´emy Bensadon Applications de la th´eoriede l'information `al'apprentissage statistique Th`esepr´esent´eeet soutenue `aOrsay, le 2 f´evrier2016 Composition du Jury : M. Sylvain Arlot Professeur, Universit´eParis-Sud Pr´esident du jury M. Aur´elienGarivier Professeur, Universit´ePaul Sabatier Rapporteur M. Tobias Glasmachers Junior Professor, Ruhr-Universit¨atBochum Rapporteur M. Yann Ollivier Charg´ede recherche, Universit´eParis-Sud Directeur de th`ese Remerciements Cette th`eseest le r´esultatde trois ans de travail, pendant lesquels j'ai c^otoy´e de nombreuses personnes qui m'ont aid´e,soit par leurs conseils ou leurs id´ees, soit simplement par leur pr´esence, `aproduire ce document.
    [Show full text]
  • Skip Context Tree Switching
    Skip Context Tree Switching Marc G. Bellemare [email protected] Joel Veness [email protected] Google DeepMind Erik Talvitie [email protected] Franklin and Marshall College Abstract fixed in advance. As we discuss in Section 3, reorder- Context Tree Weighting is a powerful proba- ing these variables can lead to significant performance im- bilistic sequence prediction technique that effi- provements given limited data. This idea was leveraged ciently performs Bayesian model averaging over by the class III algorithm of Willems et al.(1996), which the class of all prediction suffix trees of bounded performs Bayesian model averaging over the collection of depth. In this paper we show how to generalize prediction suffix trees defined over all possible fixed vari- D this technique to the class of K-skip prediction able orderings. Unfortunately, the O(2 ) computational suffix trees. Contrary to regular prediction suffix requirements of the class III algorithm prohibit its use in trees, K-skip prediction suffix trees are permitted most practical applications. to ignore up to K contiguous portions of the con- Our main contribution is the Skip Context Tree Switching text. This allows for significant improvements in (SkipCTS) algorithm, a polynomial-time compromise be- predictive accuracy when irrelevant variables are tween the linear-time CTW and the exponential-time class present, a case which often occurs within record- III algorithm. We introduce a family of nested model aligned data and images. We provide a regret- classes, the Skip Context Tree classes, which form the ba- based analysis of our approach, and empirically sis of our approach.
    [Show full text]
  • Bi-Level Image Compression with Tree Coding
    Downloaded from orbit.dtu.dk on: Oct 05, 2021 Bi-level image compression with tree coding Martins, Bo; Forchhammer, Søren Published in: Proceedings of the Data Compression Conference Link to article, DOI: 10.1109/DCC.1996.488332 Publication date: 1996 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Martins, B., & Forchhammer, S. (1996). Bi-level image compression with tree coding. In Proceedings of the Data Compression Conference (pp. 270-279). IEEE. https://doi.org/10.1109/DCC.1996.488332 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Bi-level Image Compression with Tree Coding Bo Martins and Smen Forchhammer Dept. of Telecommunication, 343, Technical University of Denmark DK-2800 Lyngby, Denmark phone: f45 4525 2525, e-mail: [email protected] and [email protected] Abstract Presently, tree coders are the best bi-level image coders.
    [Show full text]
  • Appendix a Information Theory
    Appendix A Information Theory This appendix serves as a brief introduction to information theory, the foundation of many techniques used in data compression. The two most important terms covered here are entropy and redundancy (see also Section 2.3 for an alternative discussion of these concepts). A.1 Information Theory Concepts We intuitively know what information is. We constantly receive and send information in the form of text, sound, and images. We also feel that information is an elusive nonmathematical quantity that cannot be precisely defined, captured, or measured. The standard dictionary definitions of information are (1) knowledge derived from study, experience, or instruction; (2) knowledge of a specific event or situation; intelligence; (3) a collection of facts or data; (4) the act of informing or the condition of being informed; communication of knowledge. Imagine a person who does not know what information is. Would those definitions make it clear to them? Unlikely. The importance of information theory is that it quantifies information. It shows how to measure information, so that we can answer the question “how much information is included in this piece of data?” with a precise number! Quantifying information is based on the observation that the information content of a message is equivalent to the amount of surprise in the message. If I tell you something that you already know (for example, “you and I work here”), I haven’t given you any information. If I tell you something new (for example, “we both received a raise”), I have given you some information. If I tell you something that really surprises you (for example, “only I received a raise”), I have given you more information, regardless of the number of words I have used, and of how you feel about my information.
    [Show full text]
  • The Context Tree Weighting Method : Basic Properties
    The Context Tree Weighting Method : Basic Properties Frans M.J. Willems, Yuri M. Shtarkov∗and Tjalling J. Tjalkens Eindhoven University of Technology, Electrical Engineering Department, P.O. Box 513, 5600 MB Eindhoven, The Netherlands Abstract We describe a new sequential procedure for universal data compression for FSMX sources. Using a context tree, this method recursively weights the coding distribu- tions corresponding to all FSMX models, and realizes an efficient coding distribution for unknown models. Computational and storage complexity of the proposed pro- cedure are linear in the sequence length. We give upper bounds on the cumulative redundancies, but also on the codeword length for individual sequences. With a slight modification, the procedure can be used to determine the FSMX model that gives the largest contribution to the coding probability, i.e. the minimum description length model. This model estimator is shown to converge with probability one to the actual model, for ergodic sources that are not degenerated. A suboptimal method is presented that finds a model with a description length that is not more than a prescribed number of bits larger than the minimum description length. This method makes it possible to choose a desired trade-off between performance and complexity. In the last part of the manuscript, lower bounds on the maximal individual redun- dancies, that can be achieved by arbitrary coding procedures, are found. It follows from these bounds, that the context tree weighting procedure is almost optimal. 1 Introduction, old and new concepts Sequential universal source coding procedures for FSMX sources often make use of a context tree which contains for each string (context) the number of zeros and the number of ones that have followed this context, in the source sequence seen so far.
    [Show full text]
  • Universal Loseless Compression: Context Tree Weighting(CTW)
    Universal Loseless Compression: Context Tree Weighting(CTW) Youngsuk Park Dept. Electrical Engineering, Stanford University Dec 9, 2014 Youngsuk Park Universal Loseless Compression: Context Tree Weighting(CTW) Yes. Universal w.r.t class of finite-state coders, and converging to entropy rate for stationary ergodic distribution No. convergence is slow In the case where the actual model is unknown, we can still compress the sequence with universal compression. e.g. Lempel Ziv, and CTW Aren't the LZ good enough? We explore CTW. Universal Coding with Model Classes Traditional Shannon theory assume a (probabilistic) model of data is known, and aims at compressing the data optimally w.r.t. the model. e.g. Huffman coding and Arithmetic coding Youngsuk Park Universal Loseless Compression: Context Tree Weighting(CTW) Yes. Universal w.r.t class of finite-state coders, and converging to entropy rate for stationary ergodic distribution No. convergence is slow Aren't the LZ good enough? We explore CTW. Universal Coding with Model Classes Traditional Shannon theory assume a (probabilistic) model of data is known, and aims at compressing the data optimally w.r.t. the model. e.g. Huffman coding and Arithmetic coding In the case where the actual model is unknown, we can still compress the sequence with universal compression. e.g. Lempel Ziv, and CTW Youngsuk Park Universal Loseless Compression: Context Tree Weighting(CTW) Yes. Universal w.r.t class of finite-state coders, and converging to entropy rate for stationary ergodic distribution No. convergence is slow We explore CTW. Universal Coding with Model Classes Traditional Shannon theory assume a (probabilistic) model of data is known, and aims at compressing the data optimally w.r.t.
    [Show full text]
  • Improved Context-Based Adaptive Binary Arithmetic Coding in MPEG-4 AVC/H.264 Video Codec
    Improved Context-Based Adaptive Binary Arithmetic Coding in MPEG-4 AVC/H.264 Video Codec Abstract. An improved Context-based Adaptive Binary Arithmetic Coding (CABAC) is presented for application in compression of high definition video. In comparison to standard CABAC, the improved CABAC codec works with proposed more sophisticated mechanism of data statistics estimation that is based on the Context-Tree Weighting (CTW) method. Compression performance of the improved CABAC was tested and confronted with coding efficiency of the state-of-the-art CABAC algorithm used in MPEG-4 AVC. Experimental results revealed that 1.5%-8% coding efficiency gain is possible after application of the improved CABAC in MPEG-4 AVC High Profile. Keywords: entropy coding, adaptive arithmetic coding, CABAC, AVC, advanced video coding 1 Introduction An important part of video encoder is the entropy encoder that is used for removing correlation that exists within coded data. Numerous techniques of entropy coding were elaborated, many of them have been applied in video compression. The state-of- the-art entropy coding technique used in video compression is the Context-based Adaptive Binary Arithmetic Coding (CABAC) [3, 5, 6, 14] that is used in the newest Advanced Video Coding (AVC) standard (ISO MPEG-4 AVC and ITU-T Rec. H.264) [1, 5, 6]. In comparison to other entropy coders used in video compression, CABAC encoder uses efficient arithmetic coding and far more sophisticated mechanisms of data statistics modeling which are extremely important from the compression performance point of view. The goal of the paper is to show that it is possible to reasonably increase compression performance of adaptive entropy encoder by using more accurate techniques of conditional probabilities estimation.
    [Show full text]
  • A Novel Encoding Algorithm for Textual Data Compression
    bioRxiv preprint doi: https://doi.org/10.1101/2020.08.24.264366; this version posted August 24, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. A Novel Encoding Algorithm for Textual Data Compression Anas Al-okaily1,* and Abdelghani Tbakhi1 1Department of Cell Therapy and Applied Genomics, King Hussein Cancer Center, Amman, 11941, Jordan *[email protected] ABSTRACT Data compression is a fundamental problem in the fields of computer science, information theory, and coding theory. The need for compressing data is to reduce the size of the data so that the storage and the transmission of them become more efficient. Motivated from resolving the compression of DNA data, we introduce a novel encoding algorithm that works for any textual data including DNA data. Moreover, the design of this algorithm paves a novel approach so that researchers can build up on and resolve better the compression problem of DNA or textual data. Introduction The aim of compression process is to reduce the size of data as much as possible to save space and speed up transmission of data. There are two forms of compression processes: lossless and lossy. Lossless algorithms guarantee exact restoration of the original data, while lossy do not (due, for instance, to exclude unnecessary data such as data in video and audio where their loss will not be detected by users). The focus in this paper is the lossless compression. Data can be in different formats such as text, numeric, images, audios, and videos.
    [Show full text]