Genetic Code: Introducing Pyrrolysine Dispatch

Total Page:16

File Type:pdf, Size:1020Kb

Genetic Code: Introducing Pyrrolysine Dispatch Current Biology, Vol. 12, R464–R466, July 9, 2002, ©2002 Elsevier Science Ltd. All rights reserved. PII S0960-9822(02)00947-8 Genetic Code: Introducing Pyrrolysine Dispatch Michael Ibba1 and Dieter Söll2 ATP-dependent attachment of lysine to tRNACUA, sug- gesting a mechanism by which the in-frame amber codon of mtmB1 could be translated as lysine. Monomethylamine methyltransferase of the archae- While this discovery of a new tRNA:aminoacyl-tRNA bacterium Methanosarcina barkeri contains a novel synthetase pair is unprecedented in its own right, it amino acid, pyrrolysine, encoded by the termination appears to be only the first step of a remarkable process. codon UAG. Initial studies suggest that pyrrolysine Solution of the crystal structure of monomethylamine may be co-translationally inserted during protein methyltransferase revealed that the UAG-encoded synthesis, probably by a mechanism analogous to residue is actually not lysine but pyrrolysine (Figure 1), that operating during selenocysteine incorporation. a new amino acid which — based on its structural context — appears to play a vital role in methylamine activation [4]. Taken together, these results provide Proteins derive much of their functional diversity from the tantalizing possibility that the in-frame amber three aspects of their structure: primary amino acid codon in mtmB1 is directly translated as pyrrolysine. sequence, post-translational modification of this There are two possible routes by which pyrrolysine sequence, and folding of the resulting polypeptide. could be introduced into monomethylamine methyl- Only the primary amino acid sequence is directly transferase: post-translational modification of lysine in determined by the genetic code, which allows for the the mature protein or co-translational insertion via incorporation of 20 standard amino acids during pyrrolysyl-tRNA formed by pre-translational modifica- protein synthesis. In addition, certain genetic contexts tion. While the present studies do not provide direct allow for the recoding of the termination codon UGA evidence to support either route, the finding of the as selenocysteine, giving a total of 21 naturally unusual tRNA:aminoacyl-tRNA synthetase pair needed occurring amino acids available for protein synthesis to generate an aminoacylated suppressor tRNA capable [1]. Efforts to increase the variety of protein structure of recognizing the UAG codon lends support to the and function have focused on expanding the genetic idea that pyrrolysine may be co-translationally inserted. code beyond these natural limits, to specifically This then raises the question of how pyrrolysyl- encode synthetic amino acids. To this end, compo- tRNACUA is synthesized? Again there are two possibil- nents of protein synthesis have been systematically ities, either free pyrrolysine is directly attached to tRNA redesigned, an approach which has already allowed or the pyrrolysyl moiety is synthesized by pre-transla- the site-specific incorporation of tyrosine analogues in tional modification of lysyl-tRNACUA. response to UAG (amber) termination codons [2,3]. The fact that lysine itself is a substrate for PylS Remarkably, recent work [4,5] suggests that nature in vitro would seem to argue against pyrrolysine being may have pre-empted aspects of this strategy; struc- directly attached to tRNA, given the implicit problem tural analysis of an archaeal methyltransferase has of substrate competition and subsequent errors in revealed that it contains the previously unknown protein synthesis. This problem could be circumvented amino acid pyrrolysine, which appears to be co-trans- if PylS first generates lysyl-tRNACUA and this is subse- lationally inserted during protein synthesis in response quently modified to give pyrrolysyl-tRNACUA. Compa- to a particular amber codon. rable indirect routes are used for the synthesis of The Methanosarcinaceae are among the most asparaginyl-, formylmethionyl-, glutaminyl- and seleno- metabolically versatile of the archaea, being able to cysteinyl-tRNAs from aminoacyl-tRNA precursors [8], thrive on a wide range of methanogenic substrates, including mono-, di- and trimethylamines [6]. An early Pyrrolysine step in catabolism of the methylamines is their NH activation by a specific methyltransferase, such as O 2 monomethylamine methyltransferase. Previous studies of the gene encoding Methanosarcina barkeri X OH monomethylamine methyltransferase (mtmB1) had N H revealed that it contained an in-frame amber codon O translated as lysine or a lysine derivative [7]. Examina- N tion of the region of the chromosome surrounding Lysine mtmB1 uncovered genes for a tRNA (tRNACUA) con- taining an amber anticodon and for a putative class II NH2 aminoacyl-tRNA synthetase (PylS). In vitro aminoacy- lation assays showed that PylS is able to catalyze the OH HN2 1 Department of Microbiology, The Ohio State University, 484 O West 12th Avenue, Columbus, Ohio 43210-1292, USA. E-mail: Current Biology [email protected] 2Departments of Molecular Biophysics and Biochemistry, and Chemistry, Yale University, New Haven, Figure 1. The structures of pyrrolysine and lysine. X indicates Connecticut 06520-8114, USA. E-mail: [email protected] a methyl, ammonium or hydroxyl group. Current Biology R465 Figure 2. Putative scheme for the co- ATP translational insertion of pyrrolysine at Lys Lys Pyl amber codons. An amber suppressing tRNA (tRNACUA) is PylS PylB,PylC,PylD first charged with lysine by PylS to give CUA CUA Lys-tRNACUA. Lys-tRNACUA undergoes pre-translational modification to produce Elongation Pyl-tRNACUA which is then used for the CUA factor(s) translation on in-frame amber codons during ribosomal protein synthesis. Protein Pyl Protein containing synthesis UAG-encoded pyrrolysine CUA 3’ GAU 5’ mRNA A site Ribosome Current Biology so there are numerous precedents. Srinivasan et al. replacement lowers the enzyme’s turnover number by [5] identified two additional genes of unknown over two orders of magnitude [13]. Fortunately, many function, pylB and pylC, which co-transcribed with of these questions concerning the incorporation and pylS and tRNACUA, and suggest that the products of function of pyrrolysine can be readily addressed these genes, and possibly that of another adjacent directly in Methanosarcina species, for which genetic gene, pylD, might participate in pyrrolysyl-tRNA tools enabling functional analyses have been devel- synthesis (Figure 2). oped (see for example [14]). The discovery of pyrrolysine raises all manner of The success of recent efforts to accommodate a questions, the most immediate of which concerns the variety of new amino acids within the protein synthe- distribution of this new amino acid. While mono- sis machinery [2,3,15] suggested that the genetic methylamine methyltransferase contains the only code might contain more information than the 21 example known to date, the presence of in-frame amber known amino acids [16]. The case of pyrrolysine would codons in the diverse genes for all three methanogen seem to provide a stunning confirmation of this pre- methyltransferases, and many other putative enzymes diction, and whatever the ‘where’, ‘how’ and ‘why’ of — such as methylases, transposases and various pyrrolysine incorporation, this amino acid represents open reading frames of unknown function, discussed a fascinating new addition to the natural set of protein in [6,9] — suggests the use of pyrrolysine might be building blocks. Let us hope there are many more widespread in the Methanosarcinaceae, and genome similar examples waiting to be discovered! sequence analyses indicate it might also be present in the bacterium Desulfitobacterium hafniense [5]. References These examples also raise a more fundamental 1. Commans, S. and Böck, A. (1999). Selenocysteine inserting tRNAs: question, namely how might in-frame UAG codons be an overview. FEMS Microbiol. Rev. 23, 335–351. decoded as pyrrolysine while the same codon main- 2. Wang, L., Brock, A., Herberich, B. and Schultz, P.G. (2001). Expand- ing the genetic code of Escherichia coli. Science 292, 498–500. tains its function in termination elsewhere? Seleno- 3. Wang, L., Brock, A. and Schultz, P.G. (2002). Adding L-3-(2-Naph- cysteine incorporation at in-frame termination UGA thyl)alanine to the genetic code of E. coli. J. Am. Chem. Soc. 124, codons poses a similar problem, which is overcome 1836–1837. through concerted interactions between specialized 4. Hao, B., Gong, W., Ferguson, T.K., James, C.M., Krzycki, J.A. and Chan, M.K. (2002). A novel UAG encoded residue in the structure of mRNA structures, elongation factors and accessory a methanogen methyltransferase. Science 296, 1462–1466. proteins (see for example [10], discussed in [11,12]). 5. Srinivasan. G., James, C.M. and Krzycki, J.A. (2002). Pyrrolysine Whether a similar mechanism exists for pyrrolysine is encoded by UAG in Archaea: charging of a UAG-decoding special- ized tRNA. Science 296, 1459–1462. an intriguing question for future study, the answer to 6. Galagan, J.E., Nusbaum, C., Roy, A., Endrizzi, M.G., Macdonald, P., which would provide a means to assign specific FitzHugh, W., Calvo, S., Engels, R., Smirnov, S., Atnoor, D. et al. amber codons to the new amino acid. Beyond the (2002). The Genome of M. acetivorans Reveals Extensive Metabolic issues of where pyrrolysine is present and how it gets and Physiological Diversity. Genome Res. 12, 532–542. 7. James, C.M., Ferguson, T.K., Leykam, J.F. and Krzycki, J.A. (2001). there, the question of its biochemical necessity arises.
Recommended publications
  • Selenocysteine, Pyrrolysine, and the Unique Energy Metabolism of Methanogenic Archaea
    Hindawi Publishing Corporation Archaea Volume 2010, Article ID 453642, 14 pages doi:10.1155/2010/453642 Review Article Selenocysteine, Pyrrolysine, and the Unique Energy Metabolism of Methanogenic Archaea Michael Rother1 and Joseph A. Krzycki2 1 Institut fur¨ Molekulare Biowissenschaften, Molekulare Mikrobiologie & Bioenergetik, Johann Wolfgang Goethe-Universitat,¨ Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany 2 Department of Microbiology, The Ohio State University, 376 Biological Sciences Building 484 West 12th Avenue Columbus, OH 43210-1292, USA Correspondence should be addressed to Michael Rother, [email protected] andJosephA.Krzycki,[email protected] Received 15 June 2010; Accepted 13 July 2010 Academic Editor: Jerry Eichler Copyright © 2010 M. Rother and J. A. Krzycki. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Methanogenic archaea are a group of strictly anaerobic microorganisms characterized by their strict dependence on the process of methanogenesis for energy conservation. Among the archaea, they are also the only known group synthesizing proteins containing selenocysteine or pyrrolysine. All but one of the known archaeal pyrrolysine-containing and all but two of the confirmed archaeal selenocysteine-containing protein are involved in methanogenesis. Synthesis of these proteins proceeds through suppression of translational stop codons but otherwise the two systems are fundamentally different. This paper highlights these differences and summarizes the recent developments in selenocysteine- and pyrrolysine-related research on archaea and aims to put this knowledge into the context of their unique energy metabolism. 1. Introduction found to correspond to pyrrolysine in the crystal structure [9, 10] and have its own tRNA [11].
    [Show full text]
  • The Vertical Distribution of Sediment Archaeal Community in the (Black Bloom) Disturbing Zhushan Bay of Lake Taihu
    Hindawi Publishing Corporation Archaea Volume 2016, Article ID 8232135, 8 pages http://dx.doi.org/10.1155/2016/8232135 Research Article The Vertical Distribution of Sediment Archaeal Community in the (Black Bloom) Disturbing Zhushan Bay of Lake Taihu Xianfang Fan1,2 and Peng Xing1 1 State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography & Limnology, Chinese Academy of Sciences, Nanjing 210008, China 2State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China Correspondence should be addressed to Peng Xing; [email protected] Received 20 August 2015; Revised 27 November 2015; Accepted 20 December 2015 Academic Editor: William B. Whitman Copyright © 2016 X. Fan and P. Xing. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Using the Illumina sequencing technology, we investigated the vertical distribution of archaeal community in the sediment of Zhushan Bay of Lake Taihu, where the black bloom frequently occurred in summer. Overall, the Miscellaneous Crenarchaeotal Group (MCG), Deep Sea Hydrothermal Vent Group 6 (DHVEG-6), and Methanobacterium dominated the archaeal community. However, we observed significant difference in composition of archaeal community among different depths of the sediment. DHVEG-6 dominated in the surface layer (0–3 cm) sediment. Methanobacterium was the dominating archaeal taxa in the L2 (3– 6 cm) and L3 (6–10) sediment. MCG was most abundant in the L4 (10–15 cm) and L5 (15–20 cm) sediment. Besides, DHVEG-6 was significantly affected by the concentration of total phosphorus ).(TP And loss on ignition (LOI) was an important environmental factor for Methanobacterium.
    [Show full text]
  • Selenocysteine, Identified As the Penultimate C-Terminal Residue in Human T-Cell Thioredoxin Reductase, Corresponds to TGA in the Human Placental Gene" (1996)
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Vadim Gladyshev Publications Biochemistry, Department of June 1996 Selenocysteine, identified as the penultimate C-terminal esiduer in human T-cell thioredoxin reductase, corresponds to TGA in the human placental gene Vadim Gladyshev University of Nebraska-Lincoln, [email protected] Kuan-Teh Jeang National Institutes of Health, Bethesda, MD Thressa C. Stadtman National Institutes of Health, Bethesda, MD Follow this and additional works at: https://digitalcommons.unl.edu/biochemgladyshev Part of the Biochemistry, Biophysics, and Structural Biology Commons Gladyshev, Vadim; Jeang, Kuan-Teh; and Stadtman, Thressa C., "Selenocysteine, identified as the penultimate C-terminal residue in human T-cell thioredoxin reductase, corresponds to TGA in the human placental gene" (1996). Vadim Gladyshev Publications. 23. https://digitalcommons.unl.edu/biochemgladyshev/23 This Article is brought to you for free and open access by the Biochemistry, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Vadim Gladyshev Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Proc. Natl. Acad. Sci. USA Vol. 93, 6146-6151, June 1996 Biochemistrypp. Selenocysteine, identified as the penultimate C-terminal residue in human T-cell thioredoxin reductase, corresponds to TGA in the human placental gene (selenium/thioredoxin reductase/TGA/selenocysteine) VADIM N. GLADYSHEV*, KUAN-TEH JEANGt, AND THRESSA C. STADTMAN*t *Laboratory of Biochemistry, National Heart, Lung, and Blood Institute, and tLaboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892 Contributed by Thressa C. Stadtman, February 27, 1996 ABSTRACT The possible relationship of selenium to im- peroxidase family (8).
    [Show full text]
  • Characterization of a Selenocysteine-Ligated P450 Compound I Reveals Direct Link Between Electron Donation and Reactivity Elizab
    Characterization of a Selenocysteine-ligated P450 Compound I Reveals Direct Link Between Electron Donation and Reactivity Elizabeth Onderko†, Alexey Silakov†, Timothy H. Yosca‡, and Michael T. Green‡,* ‡Departments of Chemistry & Molecular Biology and Biochemistry, University of California, Irvine, CA 92697 †Department of Chemistry, Penn State University, University Park, PA 16802 Contact: [email protected] Abstract Strong electron-donation from the axial thiolate-ligand of cytochrome P450 has been proposed to increase the reactivity of compound I with respect to C–H bond activation. However, it has proven difficult to test this hypothesis, and a direct link between reactivity and electron donation has yet to be established. To make this connection, we have prepared a selenolate-ligated cytochrome P450 compound I intermediate. This isoelectronic perturbation allows for direct comparisons with the wild type enzyme. Selenium incorporation was obtained using a cysteine auxotrophic E. coli strain. The intermediate was prepared with meta-chloroperbenzoic acid and characterized by UV-visible, Mössbauer, and electron paramagnetic resonance spectroscopies. Measurements revealed increased asymmetry around the ferryl moiety, consistent with increased electron donation from the axial selenolate-ligand. In line with this observation, we find that the selenolate-ligated compound I cleaves C–H bonds more rapidly than the wild-type intermediate. Background Cytochrome P450s are a class of thiolate-ligated heme proteins that are known for their ability to functionalize unactivated C–H bonds. In efforts to understand reactivity in these and other thiolate-heme systems, comparisons are often drawn between P450s and the histidine-ligated heme peroxidases. Both classes of heme enzymes share a similar active intermediate: a ferryl (or iron(IV)oxo) radical species, called compound I1-3.
    [Show full text]
  • Amino Acid Recognition by Aminoacyl-Trna Synthetases
    www.nature.com/scientificreports OPEN The structural basis of the genetic code: amino acid recognition by aminoacyl‑tRNA synthetases Florian Kaiser1,2,4*, Sarah Krautwurst3,4, Sebastian Salentin1, V. Joachim Haupt1,2, Christoph Leberecht3, Sebastian Bittrich3, Dirk Labudde3 & Michael Schroeder1 Storage and directed transfer of information is the key requirement for the development of life. Yet any information stored on our genes is useless without its correct interpretation. The genetic code defnes the rule set to decode this information. Aminoacyl-tRNA synthetases are at the heart of this process. We extensively characterize how these enzymes distinguish all natural amino acids based on the computational analysis of crystallographic structure data. The results of this meta-analysis show that the correct read-out of genetic information is a delicate interplay between the composition of the binding site, non-covalent interactions, error correction mechanisms, and steric efects. One of the most profound open questions in biology is how the genetic code was established. While proteins are encoded by nucleic acid blueprints, decoding this information in turn requires proteins. Te emergence of this self-referencing system poses a chicken-or-egg dilemma and its origin is still heavily debated 1,2. Aminoacyl-tRNA synthetases (aaRSs) implement the correct assignment of amino acids to their codons and are thus inherently connected to the emergence of genetic coding. Tese enzymes link tRNA molecules with their amino acid cargo and are consequently vital for protein biosynthesis. Beside the correct recognition of tRNA features3, highly specifc non-covalent interactions in the binding sites of aaRSs are required to correctly detect the designated amino acid4–7 and to prevent errors in biosynthesis5,8.
    [Show full text]
  • Generation of Recombinant Mammalian Selenoproteins Through Ge- Netic Code Expansion with Photocaged Selenocysteine
    bioRxiv preprint doi: https://doi.org/10.1101/759662; this version posted September 5, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Generation of Recombinant Mammalian Selenoproteins through Ge- netic Code Expansion with Photocaged Selenocysteine. Jennifer C. Peeler, Rachel E. Kelemen, Masahiro Abo, Laura C. Edinger, Jingjia Chen, Abhishek Chat- terjee*, Eranthie Weerapana* Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States Supporting Information Placeholder ABSTRACT: Selenoproteins contain the amino acid sele- neurons susceptible to ferroptotic cell death due to nocysteine and are found in all domains of life. The func- overoxidation and inactivation of GPX4-Cys.4 This ob- tions of many selenoproteins are poorly understood, servation demonstrates a potential advantage conferred partly due to difficulties in producing recombinant sele- by the energetically expensive production of selenopro- noproteins for cell-biological evaluation. Endogenous teins. mammalian selenoproteins are produced through a non- Sec incorporation deviates from canonical protein canonical translation mechanism requiring suppression of translation, requiring suppression of the UGA stop codon. the UGA stop codon, and a selenocysteine insertion se- In eukaryotes, Sec biosynthesis occurs directly on the quence (SECIS) element in the 3’ untranslated region of suppressor tRNA (tRNA[Ser]Sec). Specifically, tRNA[Ser]Sec the mRNA. Here, recombinant selenoproteins are gener- is aminoacylated with serine by seryl-tRNA synthetase ated in mammalian cells through genetic code expansion, (SerS), followed by phosphorylation by phosphoseryl- circumventing the requirement for the SECIS element, tRNA kinase (PSTK), and subsequent Se incorporation and selenium availability.
    [Show full text]
  • THE MASS of L-PYRROLYSINE in METHYLAMINE METHYLTRANSFERASES and the ROLE of ITS IMINE BOND in CATALYSIS DISSERTATION Presented I
    THE MASS OF L-PYRROLYSINE IN METHYLAMINE METHYLTRANSFERASES AND THE ROLE OF ITS IMINE BOND IN CATALYSIS DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in the Graduate School of The Ohio State University by Jitesh Anthony Aloysius Soares, M.S. The Ohio State University 2008 Dissertation Committee: Dr. Joseph A. Krzycki, Advisor Approved by Dr. Charles J. Daniels Dr. Mark Morrison ______________________ Dr. F. Robert Tabita Advisor Graduate Program in Microbiology ABSTRACT Methanosarcina barkeri is an archaeon capable of producing methane from methylamines. Methylamine methyltransferases initiate methanogenesis from methylamines by transferring methyl groups to a cognate corrinoid protein. Each gene encoding a methylamine methyltransferase has been shown to contain a single in-frame amber codon. Further studies have shown that in the monomethylamine methyltransferase, mtmB , the amber codon encodes a novel amino acid, L-pyrrolysine. X-ray crystal structures of MtmB have shown that the structure of this amino acid is a lysine residue with the epsilon-nitrogen in amide linkage to a (4R, 5R)-4-substituted pyrrolyine-5-carboxylate ring. However, these structures did not allow an assignment of the pyrroline ring C4 substituent as a methyl or amine group. In this thesis (Chapter 2) mass spectrometry of chymotryptic digests of methylamine methyltransferases is employed to show that pyrrolysine in present in all three types of methylamine methyltransferase at the position corresponding to the amber codon in their respective genes. The mass of this amber-encoded residue was observed to coincide with the predicted mass of pyrrolysine with a methyl- group at the C4 position.
    [Show full text]
  • Direct Charging of Trnacua with Pyrrolysine in Vitro and in Vivo
    letters to nature .............................................................. gene product (see Supplementary Fig. S1). The tRNA pool extracted from Methanosarcina acetivorans or tRNACUA transcribed in vitro Direct charging of tRNACUA with was used in charging experiments. Charged and uncharged tRNA species were separated by electrophoresis in a denaturing acid-urea pyrrolysine in vitro and in vivo 10,11 polyacrylamide gel and tRNACUA was specifically detected by northern blotting with an oligonucleotide probe. The oligonucleo- Sherry K. Blight1*, Ross C. Larue1*, Anirban Mahapatra1*, tide complementary to tRNA could hybridize to a tRNA in the David G. Longstaff1, Edward Chang1, Gang Zhao2†, Patrick T. Kang4, CUA Kari B. Green-Church5, Michael K. Chan2,3,4 & Joseph A. Krzycki1,4 pool of tRNAs isolated from wild-type M. acetivorans but not to the tRNA pool from a pylT deletion mutant of M. acetivorans (A.M., 1Department of Microbiology, 484 West 12th Avenue, 2Department of Chemistry, A. Patel, J. Soares, R.L. and J.A.K., unpublished observations). 3 100 West 18th Avenue, Department of Biochemistry, 484 West 12th Avenue, Both tRNACUA and aminoacyl-tRNACUA were detectable in the The Ohio State University, Columbus, Ohio 43210, USA isolated cellular tRNA pool (Fig. 1). Alkaline hydrolysis deacylated 4Ohio State University Biochemistry Program, 484 West 12th Avenue, The Ohio the cellular charged species, but subsequent incubation with pyrro- State University, Columbus, Ohio 43210, USA lysine, ATP and PylS-His6 resulted in maximal conversion of 50% of 5CCIC/Mass Spectrometry and Proteomics Facility, The Ohio State University, deacylated tRNACUA to a species that migrated with the same 116 W 19th Ave, Columbus, Ohio 43210, USA electrophoretic mobility as the aminoacyl-tRNACUA present in the * These authors contributed equally to this work.
    [Show full text]
  • Site-Specific Protein Modifications Through Pyrroline-Carboxy-Lysine Residues
    Site-specific protein modifications through pyrroline-carboxy-lysine residues Weijia Ou1, Tetsuo Uno1, Hsien-Po Chiu, Jan Grünewald, Susan E. Cellitti, Tiffany Crossgrove, Xueshi Hao, Qian Fan, Lisa L. Quinn, Paula Patterson, Linda Okach, David H. Jones, Scott A. Lesley, Ansgar Brock, and Bernhard H. Geierstanger2 Genomics Institute of the Novartis Research Foundation, 10675 John-Jay-Hopkins Drive, San Diego, CA 92121-1125 Edited* by Peter G. Schultz, The Scripps Research Institute, La Jolla, CA, and approved May 11, 2011 (received for review April 4, 2011) Pyrroline-carboxy-lysine (Pcl) is a demethylated form of pyrrolysine acids will face similar hurdles to achieve site-specificity without that is generated by the pyrrolysine biosynthetic enzymes when deleterious effects to the protein of interest. the growth media is supplemented with D-ornithine. Pcl is readily The most elegant way to generate homogenously, site-specifi- incorporated by the unmodified pyrrolysyl-tRNA/tRNA synthetase cally modified proteins is the in vivo incorporation of unnatural pair into proteins expressed in Escherichia coli and in mammalian amino acids (7–9). Over 70 unnatural amino acids featuring a cells. Here, we describe a broadly applicable conjugation chemistry wide array of functionalities can be incorporated at TAG codons that is specific for Pcl and orthogonal to all other reactive groups using specific tRNA/tRNA synthetase pairs engineered through on proteins. The reaction of Pcl with 2-amino-benzaldehyde or an in vivo selection process to be orthogonal to the cellular 2-amino-acetophenone reagents proceeds to near completion at machinery of the host cells. A set of reactive unnatural amino neutral pH with high efficiency.
    [Show full text]
  • Characteristics and Metabolic Patterns of Soil Methanogenic Archaea Communities in the High Latitude Natural Wetlands of China
    Characteristics and Metabolic Patterns of Soil Methanogenic Archaea Communities in the High Latitude Natural Wetlands of China Di Wu Northeast Forestry University Caihong Zhao Northeast Forestry University Hui Bai Forestry Science Research Institute of Heilongjiang Province Fujuan Feng Northeast Forestry University Xin Sui Heilongjiang University Guangyu Sun ( [email protected] ) Northeast Forestry University Research article Keywords: Wetlands, Methanogens, Community diversity, Indicator species, Methanogenic metabolic patterns Posted Date: August 12th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-54821/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/18 Abstract Background: Soil methanogenic microorganisms are one of the primary methane-producing microbes in wetlands. However, we still poorly understand the community characteristic and metabolic patterns of these microorganisms according to vegetation type and seasonal changes. Therefore, to better elucidate the effects of the vegetation type and seasonal factors on the methanogenic community structure and metabolic patterns, we detected the characteristics of the soil methanogenic mcrA gene from three types of natural wetlands in different seasons in the Xiaoxing'an Mountain region, China. Result: The results indicated that the distribution of Methanobacteriaceae (hydrogenotrophic methanogens) was higher in winter, while Methanosarcinaceae and Methanosaetaceae accounted for a higher proportion in summer. Hydrogenotrophic methanogenesis was the dominant trophic pattern in each wetland. The results of principal coordinate analysis and cluster analysis showed that the vegetation type considerably inuenced the methanogenic community composition. The methanogenic community structure in the Betula platyphylla – Larix gmelinii wetland was relatively different from the structure of the other two wetland types.
    [Show full text]
  • Translation of the Amber Codon in Methylamine Methyltransferase Genes of a Methanogenic Archaeon
    TRANSLATION OF THE AMBER CODON IN METHYLAMINE METHYLTRANSFERASE GENES OF A METHANOGENIC ARCHAEON DISSERTATION Presented in Partial Fulfillment of the Requirements for The Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Gayathri Srinivasan, M. S. * * * * * The Ohio State University 2003 Dissertation Committee: Dr. Joseph A. Krzycki, Advisor Approved by Dr. Charles J. Daniels Dr. Tina M. Henkin ________________________ (Advisor) Dr. John N. Reeve Department of Microbiology ABSTRACT Members of the Methanosarcinaceae family can in addition to hydrogen/carbon dioxide utilize several methylated compounds and convert them to methane. Methanogenesis from methylamines involves methylamine specific methyltransferases that transfer the methyl group from the methylamines to a corrinoid protein. The methylamine specific methyltransferase genes contain a single in-frame amber codon that is not read as a translational stop. The residue encoded by the amber codon, has been found to be a novel amino acid, pyrrolysine in MtmB. Multiple copies of monomethylamine methyltransferase genes (mtmB) containing a single amber codon within their open reading frames, along with the genes encoding their cognate corrinoid proteins (mtmC), exist within the genomes of the members of the Methanosarcinaceae family. The two copies of mtmCB genes from M. barkeri MS are differentially transcribed. Editing of the mtmB2 transcript was not detected suggesting a mechanism of amber codon readthrough occurring in the organism. Similar to selenocysteine incorporation at UGA codons, the Methanosarcinaceae also appear to have a unique mechanism for amber codon readthrough. An amber decoding tRNA gene, pylT, along with its cognate lysyl tRNA synthetase, pylS, are found near the MMA methyltransferase gene cluster.
    [Show full text]
  • Selenium Vs. Sulfur: Investigating the Substrate Specificity of a Selenocysteine Lyase
    University of Central Florida STARS Electronic Theses and Dissertations, 2004-2019 2019 Selenium vs. Sulfur: Investigating the Substrate Specificity of a Selenocysteine Lyase Michael Johnstone University of Central Florida Part of the Biotechnology Commons Find similar works at: https://stars.library.ucf.edu/etd University of Central Florida Libraries http://library.ucf.edu This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more information, please contact [email protected]. STARS Citation Johnstone, Michael, "Selenium vs. Sulfur: Investigating the Substrate Specificity of a Selenocysteine Lyase" (2019). Electronic Theses and Dissertations, 2004-2019. 6511. https://stars.library.ucf.edu/etd/6511 SELENIUM VS. SULFUR: INVESTIGATING THE SUBSTRATE SPECIFICITY OF A SELENOCYSTEINE LYASE by MICHAEL ALAN JOHNSTONE B.S. University of Central Florida, 2017 A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in the Burnett School of Biomedical Sciences in the College of Medicine at the University of Central Florida Orlando, Florida Summer Term 2019 Major Professor: William T. Self © 2019 Michael Alan Johnstone ii ABSTRACT Selenium is a vital micronutrient in many organisms. While traces are required for survival, excess amounts are toxic; thus, selenium can be regarded as a biological “double-edged sword”. Selenium is chemically similar to the essential element sulfur, but curiously, evolution has selected the former over the latter for a subset of oxidoreductases. Enzymes involved in sulfur metabolism are less discriminate in terms of preventing selenium incorporation; however, its specific incorporation into selenoproteins reveals a highly discriminate process that is not completely understood.
    [Show full text]