Catalysis in Organic Chemistry

Total Page:16

File Type:pdf, Size:1020Kb

Catalysis in Organic Chemistry This is a digital copy of a book that was preserved for generations on library shelves before it was carefully scanned by Google as part of a project to make the world's books discoverable online. It has survived long enough for the copyright to expire and the book to enter the public domain. A public domain book is one that was never subject to copyright or whose legal copyright term has expired. Whether a book is in the public domain may vary country to country. Public domain books are our gateways to the past, representing a wealth of history, culture and knowledge that's often difficult to discover. Marks, notations and other marginalia present in the original volume will appear in this file - a reminder of this book's long journey from the publisher to a library and finally to you. Usage guidelines Google is proud to partner with libraries to digitize public domain materials and make them widely accessible. Public domain books belong to the public and we are merely their custodians. Nevertheless, this work is expensive, so in order to keep providing this resource, we have taken steps to prevent abuse by commercial parties, including placing technical restrictions on automated querying. We also ask that you: + Make non-commercial use of the files We designed Google Book Search for use by individuals, and we request that you use these files for personal, non-commercial purposes. + Refrain from automated querying Do not send automated queries of any sort to Google's system: If you are conducting research on machine translation, optical character recognition or other areas where access to a large amount of text is helpful, please contact us. We encourage the use of public domain materials for these purposes and may be able to help. + Maintain attribution The Google "watermark" you see on each file is essential for informing people about this project and helping them find additional materials through Google Book Search. Please do not remove it. + Keep it legal Whatever your use, remember that you are responsible for ensuring that what you are doing is legal. Do not assume that just because we believe a book is in the public domain for users in the United States, that the work is also in the public domain for users in other countries. Whether a book is still in copyright varies from country to country, and we can't offer guidance on whether any specific use of any specific book is allowed. Please do not assume that a book's appearance in Google Book Search means it can be used in any manner anywhere in the world. Copyright infringement liability can be quite severe. About Google Book Search Google's mission is to organize the world's information and to make it universally accessible and useful. Google Book Search helps readers discover the world's books while helping authors and publishers reach new audiences. You can search through the full text of this book on the web at http : //books . google . com/ CATALYSIS jj'f[: IN ORGANIC CHEMISTRY BT PAUL fjABATIER MEMBXR OF THB INBTITUTB DEAN OF THB FACUIAT OF BCIBNCBS OF TOULOUSB Translated by E. EMMET REID PBOFB880R OF ORGANIC CHBMISTBT JOHNB HOPKINB UNTVBBSITT NEWYORK D. VAN NOSTRAND COMPANY EIGHT WABBBN STOUT 1022 C* • • • • • •" CX)PYBIQHT; 1032 BY D. YAN NOSTBAND COMPANY Printed in the United States of America PREFACE BY his remarkable investigations on catalysis. Professor Sabatier has opened up new fields rich in scientific interest and fruitful in technical results. Catalytic hydrogenation will ever be an important chapter in chemistry. He is a teacher as well as an investigator and has done an important service in collecting from scattered sources a vast amount of information about catalysis and bringing the facts together in convenient and suggestive form in his book. I deem it a privilege to render his masterly work more accessible to English* speaking chemists. The text and the unsigned footnotes represent Professor Sabatier's work as closely as I can make them. I have retained the charac­ teristic italics. I have added a few notes which are signed by those responsible for them. In this connection I wish to thank my friends, among them Dr. Gibbs, Dr. Ittner, Dr. Adkins, and Dr. Richardson, for assistance, Professor Gomberg for verifying a number of Russian references, and Professor H. H. Lloyd for aid in proofreading. To the chapter on the theory of catalysis, I have added an illumi­ nating extension by Professor Bancroft, Chairman of the Committee on Catalysis of the National Research Council. In order to make the vast amount of detailed information in the book more readily available, I have prepared a subject index of some seven thousand entries and an author index of about eleven hundred names. It is a pleasure to present a brief sketch of his life and abounding activities. I have taken great pains to check the hundreds of references, but doubtless errors will be found. Corrections of any kind will be appreciated if sent me. E. EMMET REID. JOHNS HOPKINS UNIVERSITY, BALTIMORE, MD. August, 1021. 500141 V TABLE OF CONTENTS [References are to Paragraphs] CHAPTER I CATALYSIS IN GENERAL DvnrarBON or CATALTBIB 1 HISTORICAL 4 DIVERSITY IN CATALTBIB 5 Homogeneous systems 8 Heterogeneous systems 7 AtTTOGATALTBIB 8 NBOATTVB CATALTBIB 9 Stabilisers 13 Reversal of Catalytic Reactions 14 Reversible reactions, Limits 19 Velocity of Catalytic Reaction* 23 Influence of Temperature 24 Influence of Pressure 80 Influence of Mass of Catalyst 82 CHAPTER U ON CATALYSTS Solvents 88 DIWBSB MATBBIALB CAN GAUSS CATALTBIB 41 Element* a* Catalysts 42 Non-metals 48 Metals 80 Nickel, Conditions of Preparation 83 Copper 89 Platinum, Various Forms used 81 Colloidal Metals, Methods of Preparation 87 Oxide* a* Catalyst* 73 Water 73 Metallic Oxides 78 Influence of their Physical State 78 Mineral Acid* 81 Bases 83 Fluorides, Chlorides, Bromide*, Iodide* 84 Cyanides 96 Inorganic 8alt* of Oxygen Acid* 98 Various Compound* 104 DURATION or THE ACTION OF CATALYSTS Ill Poisoning of Nickel 112 Poisoning of Platinum 118 Fouling of Catalysts 118 Regeneration of Catalysts 123 Mixture of Catalysts with Inert Material* 128 vu viii CONTENTS CHAPTER IH MECHANISM OP CATALYSIS Ideas of Berzelius 120 Physical Theory of Catalysis 131 Properties of Wood Charcoal 131 Heat of Imbibition 133 Absorption of Gas by finely divided Metals 136 Physical Interpretation of their Catalytic Role 138 Insufficiency of the Physical Theory 141 Chemical Theory of Catalysis 145 Reciprocal Catalysis 146 Induced Catalysis 149 Auto-oxidations 150 Oxidation Catalysts 152 Catalysis with Isolatable Intermediate Compounds 156 Action of Iodine in Chlorination 156 Catalysis in the Lead Chamber 158 Action of Sulphuric Acid on Alcohols 159 Method of Squibb 161 Use of Copper in Oxidations 162 Action of Nickel on Carbon Monoxide 163 Catalysis without Isolatable Intermediate Compounds 164 Hydrogenation with Finely Divided Metals 165 Dehydration with Anhydrous Oxides 169 Decompositions of Acids 171 The Friedel and Crafts Reaction 173 The Action of Acids and Bases in Hydrolysis 175 Advantages of the Theory of Temporary Combinations 180 Theories of Catalysis by W. D. BANCROFT 180a CHAPTER IV ISOMERIZATION — POLYMERIZATION — DBPOLYMBRIZATION —CONDENSATIONS BY ADDITION |1. Isomcrization 181 Changes of Geometrical Isomers 182 Changes of Optical Isomers 186 Migration of Double and Triple Bonds 190 Decyclizations 193 Cyclisations and Transformations of Rings 194 Migration of Atoms 199 12. Polymerizations 209 Ethylene Hydrocarbons 210 Acetylene Hydrocarbons 212 Cyclic Hydrocarbons 216 Aldehydes 218 Aldolisation 219 Polyaldehydes 222 Passage into Esters ' 225 Ketones 229 Nitrites and Amides 230 13. Depolymerizations • 234 14. Condensation by the Addition of Dissimilar Molecules 236 CONTENTS ix Aldehydes and Nitrocompounds 236 Ketones 238 Acetylation of Aldehydes 240 Hydrocarbons 241 CHAPTER V OXIDATIONS L Direct Oxidation with Gaseous Oxygen 244 Classification of Direct Oxidations 244 Platinum and Related Metals 245 Copper 253 Various Metals 254 Carbon 257 Metallic Oxides 258 Metallic Chlorides 263 Manganese Salts 264 Oxidation of Oils 265 Silicates 267 11. Oxidation effected by Oxygen Compounds 268 Hydrogen Peroxide 268 Nitric Acid 269 Hypochlorites 270 Chlorates 271 Sulphur Trioxide 272 Permanganates 275 Persulphates ? 276 Nitrobenzene 277 CHAPTER VI VARIOUS SUBSTITUTIONS IN MOLECULES S 1. Introduction of Halogens 278 Chlorination 278 Iodine 278 Bromine 279 Sulphur 280 Phosphorus 281 Carbon 282 Metallic Chlorides 283 Aluminum Bromide 289 Brominatiork 290 Iodine 291 Manganese 292 Metallic Chlorides or Bromides 293 Iodtnation 294 12. Introduction of Sulphur 295 8 3. Introduction of Sulphur Dioxide 297 S 4. Introduction of Carbon Monoxide 298 S 5. Introduction of Metallic Atoms 299 Formation of Alcoholates 299 Formation of Organo-magnesium Complexes 300 X CONTENTS CHAPTER Vn Hydration Classification of Hydrations 905 Addition of Water 306 Ethylene Compounds 306 Acetylene Derivatives 308 Nitriles and Imides 311 Addition of Water with Decomposition, in Liquid Medium 313 Hydrolysis of Eaten 313 Use of Acids 313 Use of Bases 318 Hydrolysis of Chlorine Derivatives 320 Ethers 321 Acetals 322 Polysaccharides 323 Olucosides 327 Amides and their Analogs 331 Addition of Water with Decomposition, in Gaseous Medium 337 Hydrolysis of Esters 337 Ethers 338 Carbon Disulphide 339 Alcoholysis 340 CHAPTER VHI HYDROGENATION Hydrogenation in Gaseous System, Generalities, Use of Nickel 342 Historical 342 Method of Sabatier and Senderens 343 Hydrogen Generator 346 Reaction Tube 347
Recommended publications
  • IIIHI||||||||III US005304628A United States Patent (19) (11) Patent Number: 5,304,628 Kinoshita Et Al
    IIIHI||||||||III US005304628A United States Patent (19) (11) Patent Number: 5,304,628 Kinoshita et al. (45) Date of Patent: Apr. 19, 1994 (54) RADIATION-CURING RESIN (56) References Cited COMPOSITION U.S. PATENT DOCUMENTS 3,280,078 10/1966 Hostettler et al. .................. 522/163 (75) Inventors: Masashi Kinoshita, Tokyo; Hidenobu 4,500,704 2/1985 Kruper, Jr. et al. o Ishikawa, Chiba, both of Japan 4,686,276 8/1987 Myers ................. 4,808,658 2/1989 Walz et al. ..... - . 528/49 73) Assignee: Dainippon Ink and Chemicals, Inc., 4,948,700 8/1990 Maeda et al. ...... 522A101 Tokyo, Japan 5, 100,767 3/1992 Yanagawa et al. 522/100 5,102,702 4/1992 Grundke et al........ ... 525/526 (21) Appl. No.: 924,748 5,175,231 12/1992 Rappaport et al. ................. 528/106 Primary Examiner-Susan Berman 22 Filed: Aug. 4, 1992 Attorney, Agent, or Firm-Armstrong, Westerman, 30 Foreign Application Priority Data Hattori, McLeland & Naughton (57) ABSTRACT Aug. 5, 1991 JP Japan .................................. 3-195340 A radiation-curing resin composition comprising (A) a 51) Int. Cl......................... C08F 2/50; C08G 63/52; resin having a carboxylic acid group and an unsaturated C08G 18/OO double bond and (B) a compound containing a cyclo 52 U.S.C. ...................................... 528/370; 528/44; carbonate group. The composition is excellent in stabil 528/75; 528/306; 522/16; 522/97; 522/100; ity and curing properties and provides a cured film 522/101; 522/163 excellent in water resistance, solvent resistance, chemi 58) Field of Search ..................... 522/163, 92,93, 94, cal resistance, and heat resistance.
    [Show full text]
  • Retention Indices for Frequently Reported Compounds of Plant Essential Oils
    Retention Indices for Frequently Reported Compounds of Plant Essential Oils V. I. Babushok,a) P. J. Linstrom, and I. G. Zenkevichb) National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA (Received 1 August 2011; accepted 27 September 2011; published online 29 November 2011) Gas chromatographic retention indices were evaluated for 505 frequently reported plant essential oil components using a large retention index database. Retention data are presented for three types of commonly used stationary phases: dimethyl silicone (nonpolar), dimethyl sili- cone with 5% phenyl groups (slightly polar), and polyethylene glycol (polar) stationary phases. The evaluations are based on the treatment of multiple measurements with the number of data records ranging from about 5 to 800 per compound. Data analysis was limited to temperature programmed conditions. The data reported include the average and median values of retention index with standard deviations and confidence intervals. VC 2011 by the U.S. Secretary of Commerce on behalf of the United States. All rights reserved. [doi:10.1063/1.3653552] Key words: essential oils; gas chromatography; Kova´ts indices; linear indices; retention indices; identification; flavor; olfaction. CONTENTS 1. Introduction The practical applications of plant essential oils are very 1. Introduction................................ 1 diverse. They are used for the production of food, drugs, per- fumes, aromatherapy, and many other applications.1–4 The 2. Retention Indices ........................... 2 need for identification of essential oil components ranges 3. Retention Data Presentation and Discussion . 2 from product quality control to basic research. The identifi- 4. Summary.................................. 45 cation of unknown compounds remains a complex problem, in spite of great progress made in analytical techniques over 5.
    [Show full text]
  • United States Patent (19) (11) 3,855,105 Diveley (45) Dec
    United States Patent (19) (11) 3,855,105 Diveley (45) Dec. 17, 1974 54 THOPHOSPHORYLATING ASATURATED 3,284,540 1 1/1966 D'Alelio.............................. 260/869 HYDROCARBON GROUP 75 Inventor: William R. Diveley, Oakwood Hills, Primary Examiner-Benjamin R. Padgett Del. Attorney, Agent, or Firm-George H. Hopkins 73 Assignee: Hercules incorporated, Wilmington, (57) ABSTRACT Del. Disclosed is a process for making certain organo thio 22) Filed: June 16, 1969 phosphates and dithiophosphates, a number of which 21 ) Appl. No.: 833,741 have utility as insecticides. The process comprises ef fecting by free radical catalysis at about 0-150°C. re Related U.S. Application Data action of an organic compound characterized by a sat (63) Continuation-in-part of Ser. No. 514,652, Dec. 17, urated carbon with at least one hydrogen replaceable 1965, abandoned. under free radical conditions, and halo-thiophosphate of the formula: 52 U.S. C. ..... 204/162 R, 204/158 R, 260/329 R, 260/329 P, 260/340.6, 260/347.2, 260/958, 7, OR . 1 / 260/963, 260/971 X-S-P (51) Int. Cl................................................ B01j 1/10 N 58 Field of Search ............ 204/162, 158; 260/329, OR 260/340.6, 347.2,958, 963,971 wherein X is a halo radical, Z is selected from the (56) References Cited group consisting of the oxo and thioxo radicals, and R UNITED STATES PATENTS and R' are organic radicals. 3,256,370 6/1966 Fitch et al........................... 260/972 24 Claims, No Drawings 3,855, 105 2 THIOPHOSPHORYLATING ASATURATED rated carbons, each of which has one or more hydrogen HYDROCARBON GROUP radicals replaceable under free radical conditions.
    [Show full text]
  • Opportunities for Catalysis in the 21St Century
    Opportunities for Catalysis in The 21st Century A Report from the Basic Energy Sciences Advisory Committee BASIC ENERGY SCIENCES ADVISORY COMMITTEE SUBPANEL WORKSHOP REPORT Opportunities for Catalysis in the 21st Century May 14-16, 2002 Workshop Chair Professor J. M. White University of Texas Writing Group Chair Professor John Bercaw California Institute of Technology This page is intentionally left blank. Contents Executive Summary........................................................................................... v A Grand Challenge....................................................................................................... v The Present Opportunity .............................................................................................. v The Importance of Catalysis Science to DOE.............................................................. vi A Recommendation for Increased Federal Investment in Catalysis Research............. vi I. Introduction................................................................................................ 1 A. Background, Structure, and Organization of the Workshop .................................. 1 B. Recent Advances in Experimental and Theoretical Methods ................................ 1 C. The Grand Challenge ............................................................................................. 2 D. Enabling Approaches for Progress in Catalysis ..................................................... 3 E. Consensus Observations and Recommendations..................................................
    [Show full text]
  • Dehydrogenation by Heterogeneous Catalysts
    Dehydrogenation by Heterogeneous Catalysts Daniel E. Resasco School of Chemical Engineering and Materials Science University of Oklahoma Encyclopedia of Catalysis January, 2000 1. INTRODUCTION Catalytic dehydrogenation of alkanes is an endothermic reaction, which occurs with an increase in the number of moles and can be represented by the expression Alkane ! Olefin + Hydrogen This reaction cannot be carried out thermally because it is highly unfavorable compared to the cracking of the hydrocarbon, since the C-C bond strength (about 246 kJ/mol) is much lower than that of the C-H bond (about 363 kJ/mol). However, in the presence of a suitable catalyst, dehydrogenation can be carried out with minimal C-C bond rupture. The strong C-H bond is a closed-shell σ orbital that can be activated by oxide or metal catalysts. Oxides can activate the C-H bond via hydrogen abstraction because they can form O-H bonds, which can have strengths comparable to that of the C- H bond. By contrast, metals cannot accomplish the hydrogen abstraction because the M- H bonds are much weaker than the C-H bond. However, the sum of the M-H and M-C bond strengths can exceed the C-H bond strength, making the process thermodynamically possible. In this case, the reaction is thought to proceed via a three centered transition state, which can be described as a metal atom inserting into the C-H bond. The C-H bond bridges across the metal atom until it breaks, followed by the formation of the corresponding M-H and M-C bonds.1 Therefore, dehydrogenation of alkanes can be carried out on oxides as well as on metal catalysts.
    [Show full text]
  • Sustainable Catalysis
    Green Process Synth 2016; 5: 231–232 Book review Sustainable catalysis DOI 10.1515/gps-2016-0016 Sustainable catalysis provides an excellent in-depth over- view of the applications of non-endangered elements in Michael North (Ed.) all aspects of catalysis from heterogeneous to homogene- Sustainable catalysis: with non-endangered metals ous, from catalyst supports to ligands. The Royal Society of Chemistry, 2015 Four volumes of the book series are divided into RSC Green Chemistry series nos. 38–41 two sub-topics devoted to (i) metal-based catalysts and Part 1 (ii) catalysts without metals or other endangered ele- Print ISBN: 978-1-78262-638-1 ments. Each sub-topic comprises of two books due to the PDF eISBN: 978-1-78262-211-6 detailed analysis of catalytic applications described. All Part 2 chapters are written by the world-leading researchers in Print ISBN: 978-1-78262-639-8 the area; however, covering far beyond the scope of their PDF eISBN: 978-1-78262-642-8 immediate research interests, which makes the book par- ticularly valuable for a wide range of readers. Sustainable catalysis: without metals or other Sustainable catalysis: with non-endangered metals endangered elements begins with a very brief chapter which describes the Part 1 concept of elemental sustainability, overviewing the Print ISBN: 978-1-78262-640-4 abundance of the critical elements and perspectives on PDF eISBN: 978-1-78262-209-3 sustainable catalysts. The chapters follow the groups of EPUB eISBN: 978-1-78262-752-4 the periodic table from left to right, from alkaline metals to Part 2 lead spanning 22 chapters.
    [Show full text]
  • WO 2015/061786 A2 30 April 2015 (30.04.2015) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2015/061786 A2 30 April 2015 (30.04.2015) P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every E21B 43/26 (2006.01) E21B 47/06 (2006.01) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (21) International Application Number: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, PCT/US20 14/062440 DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (22) International Filing Date: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, 27 October 2014 (27.10.2014) KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, (25) Filing Language: English PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, (26) Publication Language: English SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: 61/895,873 25 October 2013 (25. 10.2013) US (84) Designated States (unless otherwise indicated, for every 61/898, 107 31 October 2013 (3 1. 10.2013) US kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, (72) Inventors; and TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, (71) Applicants : CONWAY, Andrew, Bryce [US/US]; 1501 TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, Timbercreek Drive, Weatherford, OK 73096 (US).
    [Show full text]
  • The Early History of Catalysis
    The Early History of Catalysis By Professor A. J. B. Robertson Department of Chemistry, King’s College, London One hundred and forty years ago it was Berzelius proceeded to propose the exist- possible for one man to prepare an annual ence of a new force which he called the report on the progress of the whole of “catalytic force” and he called “catalysis” the chemistry, and for many years this task was decomposition of bodies by this force. This undertaken by the noted Swedish chemist is probably the first recognition of catalysis J. J. Berzelius for the Stockholm Academy of as a wide-ranging natural phenomenon. Sciences. In his report submitted in 1835 and Metallic catalysts had in fact been used in published in 1836 Berzelius reviewed a num- the laboratory before 1800 by Joseph Priestley, ber of earlier findings on chemical change in the discoverer of oxygen, and by the Dutch both homogeneous and heterogeneous sys- chemist Martinus van Marum, both of whom tems, and showed that these findings could be made observations on the dehydrogenation of rationally co-ordinated by the introduction alcohol on metal catalysts. However, it seems of the concept of catalysis. In a short paper likely that these investigators regarded the summarising his ideas on catalysis as a new metal merely as a source of heat. In 1813, force, he wrote (I): Louis Jacques Thenard discovered that ammonia is decomposed into nitrogen and “It is, then, proved that several simple or compound bodies, soluble and insoluble, have hydrogen when passed over various red-hot the property of exercising on other bodies an metals, and ten years later, with Pierre action very different from chemical affinity.
    [Show full text]
  • Rational Chemical Design of Solar-Powered Nano Photocatalysts for Environmental Applications
    Rational Chemical Design of Solar-Powered Nano Photocatalysts for Environmental Applications Being a Thesis submitted for the Degree of Doctor of Philosophy degree (PhD) in the University of Hull By Khadijah Mohammedsaleh M Katubi (January 2015) Declaration I, Khadijah Mohammedsaleh M Katubi of Student Number: 200892573, hereby declare that this project, Rational Chemical Design of Solar-Powered Nano Photocatalysts for Environmental Applications being the requirement of the Hull University PhD Faculty of Science of Engineering (FOSE), Chemistry department, Academic Year 2015, is entirely of my own effort and work with the exception of excerpts cited from other works of which the sources were duly noted and acknowledged in the bibliography. Copyright © 2015 by Khadijah Mohammedsaleh M Katubi. All rights reserved. No part of this publication may be reproduced without the written permission of the copyright holder E-mail: [email protected] and [email protected] Acknowledgements Firstly, I would like to express my deepest gratitude to Almighty Allah for the assistance. Allah has given me patience, continued support and guidance without which this work would not be accomplished. Secondly, I owe sincere thanks to my supervisor Dr M. Grazia Francesconi for her continued backing, sincere affection and the assistance given to me throughout my PhD. I would also like to thank Dr Nigel A. Young for his assistance in FT-IR and UV-Vis spectroscopy. Lots of thanks go to Dr M. Grazia Francesconi, Dr Timothy J. Prior, Dr Vincent Rocher and PhD Simon Fellows for the assistance and sharing knowledge in XRD analysis. Many thanks go to Zabeada Aslamb at Leeds University for their help in TEM, SAED and EELS.
    [Show full text]
  • Friedel-Crafts Alkylation of Aromatic Compounds with Phosphorus Estersla B
    ALKYLATION OF AROMATIC COMPOUNDS WITH PHOSPHORUS ESTERS 1339 Analyse der Verbindungen: Die Einlagerungsverbin- Kalium-titandisulfid: Kalium 21,0%, Titan 33, 8%, dungen wurden vorsichtig mit HN03 aufgeschlossen. Schwefel 44,2%, Summe: 99,0%. Zusammen- Das im Fall der Wolframverbindungen dabei ausfal- setzung: Ko^TiSj,^ . lende W03 wurde alkalisch gelöst. Wolfram und Mo- Reaktionsprodukt von WS* mit Li-naphthalid (Uber- lybdän wurden als Oxinat, Titan als TiOa und Schwe- schuß) : Lithium 9,8%, Wolfram 66,3%, Schwefel fel als BaS04 bestimmt. Die Bestimmung der Alkali- 23,5%, Summe: 99,6%. Verhältnis 1 W : 2 Lili95S. metalle erfolgte flammenphotometrisch. Reaktionsprodukt WS2 mit Na-naphthalid (Überschuß) : Kalium-wolf ramdisulfid: Präparat I: Kalium 8,3%, Natrium 26,9%, Wolfram 53,1%, Schwefel 18,8%, Wolfram 66,9%, Schwefel 23,7%, Summe: 98,9%. Summe: 98,8%. Verhältnis: 1 W : 2 Na2,0S. Zusammensetzung: K0.59WS2)0 . Präparat II: Kalium 8,1%, Wolfram 67,1%, Schwe- fel 23,4%, Summe: 98,6%. Zusammensetzung: K0.57WS2,O . Kalium-molybdändisulfid: Kalium 10,86%, Molybdän Wir danken der Deutschen Forschungsgemeinschaft 53,6%, Sdiwefel 35,5%, Summe: 99,9%. Zusam- und dem Fonds der Chemie für die Unterstützung die- mensetzung: K0!49MoS1?98 . ser Arbeit. 1 Auszug aus der Dissertation E. BAYER. Tübingen 1970. 5 T. E. HOVEN-ESCH U. J. SMID, J. Amer. chem. Soc. 87, 669 2 W. RÜDORFF, Chimia [Zürich] 19,489 [1965], [1965]. 3 H. M. SICK, Dissertation Tübingen 1959. 6 W. BILTZ, P. EHRLICH U. M. MEISEL, Z. anorg. allg. Chem. 4 C. STEIN. J. POULENARD, L. BONNETAIN U. J. GOLE, C. R. 234,97 [1934], hebd.
    [Show full text]
  • Physical Organic Chemistry
    CHM 8304 Physical Organic Chemistry Catalysis Outline: General principles of catalysis • see section 9.1 of A&D – principles of catalysis – differential bonding 2 Catalysis 1 CHM 8304 General principles • a catalyst accelerates a reaction without being consumed • the rate of catalysis is given by the turnover number • a reaction may alternatively be “promoted” (accelerated, rather than catalysed) by an additive that is consumed • a heterogeneous catalyst is not dissolved in solution; catalysis typically takes place on its surface • a homogeneous catalyst is dissolved in solution, where catalysis takes place • all catalysis is due to a decrease in the activation barrier, ΔG‡ 3 Catalysts • efficient at low concentrations -5 -4 -5 – e.g. [Enz]cell << 10 M; [Substrates]cell < 10 - 10 M • not consumed during the reaction – e.g. each enzyme molecule can catalyse the transformation of 20 - 36 x 106 molecules of substrate per minute • do not affect the equilibrium of reversible chemical reactions – only accelerate the rate of approach to equilibrium end point • most chemical catalysts operate in extreme reaction conditions while enzymes generally operate under mild conditions (10° - 50 °C, neutral pH) • enzymes are specific to a reaction and to substrates; chemical catalysts are far less selective 4 Catalysis 2 CHM 8304 Catalysis and free energy • catalysis accelerates a reaction by stabilising a TS relative to the ground state ‡ – free energy of activation, ΔG , decreases – rate constant, k, increases • catalysis does not affect the end point
    [Show full text]
  • (12) United States Patent (10) Patent N0.: US 6,225,009 B1 Fleischer Et Al
    US006225009B1 (12) United States Patent (10) Patent N0.: US 6,225,009 B1 Fleischer et al. (45) Date of Patent: *May 1, 2001 (54) ELECTROCHEMICAL CELL WITH A NON- (51) Int. Cl.7 ........................... .. H01M 4/52; H01M 4/60; LIQUID ELECTROLYTE H01M 10/40 52 US. Cl. ........................ .. 429/306; 429/213; 429/220; (75) Inventors: Niles A Fleischer; J00st Manassen, ( ) 429/221; 429/224 lgiithRzfsllfech?ggzs?ogig?lgigméylm; (58) Field Of Search ............................ ..442299//23236 320261, 221234; Marvin S. Antelman, Rehovot, all of ’ ’ (IL) (56) References Cited (73) Assignee: E.C.R. -Electr0-Chemical Research US. PATENT DOCUMENTS Ltd” Rehovot (IL) 4,366,216 * 12/1982 McGinness ........................ .. 429/213 ( * ) Notice: PawntSubject is to mendedany disclaimer, or adjusted the term under of this 35 4,847,174 * 7/1989 §$1I1l:r:1_etj1_'_Palmer et a1. ....... .. 429/112 U-S-C- 154(b) by 0 days- 5,731,105 * 3/1998 Fleischer et al. .............. .. 429/213 X This patent is subject to a terminal dis- * Cited by examiner Clalmer' Primary Examiner—Stephen Kalafut (21) APPL NO; 09/068,864 (74) Attorney, Agent, or Firm—Mark M. Friedman (22) PCT Filed: Sep. 23, 1997 (57) ABSTRACT (86) PCT NO; PCT/US97/16901 A non-liquid electrolyte containing electrochemical cell which operates ef?ciently at room temperature. The cell § 371 Datei May 19, 1998 includes (a) a non-liquid electrolyte in which protons are _ mobile, (b) an anode active material based on an organic § 102(6) Date' May 19’ 1998 com P ound which is a source of P rotons durin g cell (87) PCT Pub.
    [Show full text]