Catalysis in Organic Chemistry
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
IIIHI||||||||III US005304628A United States Patent (19) (11) Patent Number: 5,304,628 Kinoshita Et Al
IIIHI||||||||III US005304628A United States Patent (19) (11) Patent Number: 5,304,628 Kinoshita et al. (45) Date of Patent: Apr. 19, 1994 (54) RADIATION-CURING RESIN (56) References Cited COMPOSITION U.S. PATENT DOCUMENTS 3,280,078 10/1966 Hostettler et al. .................. 522/163 (75) Inventors: Masashi Kinoshita, Tokyo; Hidenobu 4,500,704 2/1985 Kruper, Jr. et al. o Ishikawa, Chiba, both of Japan 4,686,276 8/1987 Myers ................. 4,808,658 2/1989 Walz et al. ..... - . 528/49 73) Assignee: Dainippon Ink and Chemicals, Inc., 4,948,700 8/1990 Maeda et al. ...... 522A101 Tokyo, Japan 5, 100,767 3/1992 Yanagawa et al. 522/100 5,102,702 4/1992 Grundke et al........ ... 525/526 (21) Appl. No.: 924,748 5,175,231 12/1992 Rappaport et al. ................. 528/106 Primary Examiner-Susan Berman 22 Filed: Aug. 4, 1992 Attorney, Agent, or Firm-Armstrong, Westerman, 30 Foreign Application Priority Data Hattori, McLeland & Naughton (57) ABSTRACT Aug. 5, 1991 JP Japan .................................. 3-195340 A radiation-curing resin composition comprising (A) a 51) Int. Cl......................... C08F 2/50; C08G 63/52; resin having a carboxylic acid group and an unsaturated C08G 18/OO double bond and (B) a compound containing a cyclo 52 U.S.C. ...................................... 528/370; 528/44; carbonate group. The composition is excellent in stabil 528/75; 528/306; 522/16; 522/97; 522/100; ity and curing properties and provides a cured film 522/101; 522/163 excellent in water resistance, solvent resistance, chemi 58) Field of Search ..................... 522/163, 92,93, 94, cal resistance, and heat resistance. -
Retention Indices for Frequently Reported Compounds of Plant Essential Oils
Retention Indices for Frequently Reported Compounds of Plant Essential Oils V. I. Babushok,a) P. J. Linstrom, and I. G. Zenkevichb) National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA (Received 1 August 2011; accepted 27 September 2011; published online 29 November 2011) Gas chromatographic retention indices were evaluated for 505 frequently reported plant essential oil components using a large retention index database. Retention data are presented for three types of commonly used stationary phases: dimethyl silicone (nonpolar), dimethyl sili- cone with 5% phenyl groups (slightly polar), and polyethylene glycol (polar) stationary phases. The evaluations are based on the treatment of multiple measurements with the number of data records ranging from about 5 to 800 per compound. Data analysis was limited to temperature programmed conditions. The data reported include the average and median values of retention index with standard deviations and confidence intervals. VC 2011 by the U.S. Secretary of Commerce on behalf of the United States. All rights reserved. [doi:10.1063/1.3653552] Key words: essential oils; gas chromatography; Kova´ts indices; linear indices; retention indices; identification; flavor; olfaction. CONTENTS 1. Introduction The practical applications of plant essential oils are very 1. Introduction................................ 1 diverse. They are used for the production of food, drugs, per- fumes, aromatherapy, and many other applications.1–4 The 2. Retention Indices ........................... 2 need for identification of essential oil components ranges 3. Retention Data Presentation and Discussion . 2 from product quality control to basic research. The identifi- 4. Summary.................................. 45 cation of unknown compounds remains a complex problem, in spite of great progress made in analytical techniques over 5. -
United States Patent (19) (11) 3,855,105 Diveley (45) Dec
United States Patent (19) (11) 3,855,105 Diveley (45) Dec. 17, 1974 54 THOPHOSPHORYLATING ASATURATED 3,284,540 1 1/1966 D'Alelio.............................. 260/869 HYDROCARBON GROUP 75 Inventor: William R. Diveley, Oakwood Hills, Primary Examiner-Benjamin R. Padgett Del. Attorney, Agent, or Firm-George H. Hopkins 73 Assignee: Hercules incorporated, Wilmington, (57) ABSTRACT Del. Disclosed is a process for making certain organo thio 22) Filed: June 16, 1969 phosphates and dithiophosphates, a number of which 21 ) Appl. No.: 833,741 have utility as insecticides. The process comprises ef fecting by free radical catalysis at about 0-150°C. re Related U.S. Application Data action of an organic compound characterized by a sat (63) Continuation-in-part of Ser. No. 514,652, Dec. 17, urated carbon with at least one hydrogen replaceable 1965, abandoned. under free radical conditions, and halo-thiophosphate of the formula: 52 U.S. C. ..... 204/162 R, 204/158 R, 260/329 R, 260/329 P, 260/340.6, 260/347.2, 260/958, 7, OR . 1 / 260/963, 260/971 X-S-P (51) Int. Cl................................................ B01j 1/10 N 58 Field of Search ............ 204/162, 158; 260/329, OR 260/340.6, 347.2,958, 963,971 wherein X is a halo radical, Z is selected from the (56) References Cited group consisting of the oxo and thioxo radicals, and R UNITED STATES PATENTS and R' are organic radicals. 3,256,370 6/1966 Fitch et al........................... 260/972 24 Claims, No Drawings 3,855, 105 2 THIOPHOSPHORYLATING ASATURATED rated carbons, each of which has one or more hydrogen HYDROCARBON GROUP radicals replaceable under free radical conditions. -
Opportunities for Catalysis in the 21St Century
Opportunities for Catalysis in The 21st Century A Report from the Basic Energy Sciences Advisory Committee BASIC ENERGY SCIENCES ADVISORY COMMITTEE SUBPANEL WORKSHOP REPORT Opportunities for Catalysis in the 21st Century May 14-16, 2002 Workshop Chair Professor J. M. White University of Texas Writing Group Chair Professor John Bercaw California Institute of Technology This page is intentionally left blank. Contents Executive Summary........................................................................................... v A Grand Challenge....................................................................................................... v The Present Opportunity .............................................................................................. v The Importance of Catalysis Science to DOE.............................................................. vi A Recommendation for Increased Federal Investment in Catalysis Research............. vi I. Introduction................................................................................................ 1 A. Background, Structure, and Organization of the Workshop .................................. 1 B. Recent Advances in Experimental and Theoretical Methods ................................ 1 C. The Grand Challenge ............................................................................................. 2 D. Enabling Approaches for Progress in Catalysis ..................................................... 3 E. Consensus Observations and Recommendations.................................................. -
Dehydrogenation by Heterogeneous Catalysts
Dehydrogenation by Heterogeneous Catalysts Daniel E. Resasco School of Chemical Engineering and Materials Science University of Oklahoma Encyclopedia of Catalysis January, 2000 1. INTRODUCTION Catalytic dehydrogenation of alkanes is an endothermic reaction, which occurs with an increase in the number of moles and can be represented by the expression Alkane ! Olefin + Hydrogen This reaction cannot be carried out thermally because it is highly unfavorable compared to the cracking of the hydrocarbon, since the C-C bond strength (about 246 kJ/mol) is much lower than that of the C-H bond (about 363 kJ/mol). However, in the presence of a suitable catalyst, dehydrogenation can be carried out with minimal C-C bond rupture. The strong C-H bond is a closed-shell σ orbital that can be activated by oxide or metal catalysts. Oxides can activate the C-H bond via hydrogen abstraction because they can form O-H bonds, which can have strengths comparable to that of the C- H bond. By contrast, metals cannot accomplish the hydrogen abstraction because the M- H bonds are much weaker than the C-H bond. However, the sum of the M-H and M-C bond strengths can exceed the C-H bond strength, making the process thermodynamically possible. In this case, the reaction is thought to proceed via a three centered transition state, which can be described as a metal atom inserting into the C-H bond. The C-H bond bridges across the metal atom until it breaks, followed by the formation of the corresponding M-H and M-C bonds.1 Therefore, dehydrogenation of alkanes can be carried out on oxides as well as on metal catalysts. -
Sustainable Catalysis
Green Process Synth 2016; 5: 231–232 Book review Sustainable catalysis DOI 10.1515/gps-2016-0016 Sustainable catalysis provides an excellent in-depth over- view of the applications of non-endangered elements in Michael North (Ed.) all aspects of catalysis from heterogeneous to homogene- Sustainable catalysis: with non-endangered metals ous, from catalyst supports to ligands. The Royal Society of Chemistry, 2015 Four volumes of the book series are divided into RSC Green Chemistry series nos. 38–41 two sub-topics devoted to (i) metal-based catalysts and Part 1 (ii) catalysts without metals or other endangered ele- Print ISBN: 978-1-78262-638-1 ments. Each sub-topic comprises of two books due to the PDF eISBN: 978-1-78262-211-6 detailed analysis of catalytic applications described. All Part 2 chapters are written by the world-leading researchers in Print ISBN: 978-1-78262-639-8 the area; however, covering far beyond the scope of their PDF eISBN: 978-1-78262-642-8 immediate research interests, which makes the book par- ticularly valuable for a wide range of readers. Sustainable catalysis: without metals or other Sustainable catalysis: with non-endangered metals endangered elements begins with a very brief chapter which describes the Part 1 concept of elemental sustainability, overviewing the Print ISBN: 978-1-78262-640-4 abundance of the critical elements and perspectives on PDF eISBN: 978-1-78262-209-3 sustainable catalysts. The chapters follow the groups of EPUB eISBN: 978-1-78262-752-4 the periodic table from left to right, from alkaline metals to Part 2 lead spanning 22 chapters. -
WO 2015/061786 A2 30 April 2015 (30.04.2015) P O P C T
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2015/061786 A2 30 April 2015 (30.04.2015) P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every E21B 43/26 (2006.01) E21B 47/06 (2006.01) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (21) International Application Number: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, PCT/US20 14/062440 DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (22) International Filing Date: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, 27 October 2014 (27.10.2014) KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, (25) Filing Language: English PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, (26) Publication Language: English SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: 61/895,873 25 October 2013 (25. 10.2013) US (84) Designated States (unless otherwise indicated, for every 61/898, 107 31 October 2013 (3 1. 10.2013) US kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, (72) Inventors; and TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, (71) Applicants : CONWAY, Andrew, Bryce [US/US]; 1501 TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, Timbercreek Drive, Weatherford, OK 73096 (US). -
The Early History of Catalysis
The Early History of Catalysis By Professor A. J. B. Robertson Department of Chemistry, King’s College, London One hundred and forty years ago it was Berzelius proceeded to propose the exist- possible for one man to prepare an annual ence of a new force which he called the report on the progress of the whole of “catalytic force” and he called “catalysis” the chemistry, and for many years this task was decomposition of bodies by this force. This undertaken by the noted Swedish chemist is probably the first recognition of catalysis J. J. Berzelius for the Stockholm Academy of as a wide-ranging natural phenomenon. Sciences. In his report submitted in 1835 and Metallic catalysts had in fact been used in published in 1836 Berzelius reviewed a num- the laboratory before 1800 by Joseph Priestley, ber of earlier findings on chemical change in the discoverer of oxygen, and by the Dutch both homogeneous and heterogeneous sys- chemist Martinus van Marum, both of whom tems, and showed that these findings could be made observations on the dehydrogenation of rationally co-ordinated by the introduction alcohol on metal catalysts. However, it seems of the concept of catalysis. In a short paper likely that these investigators regarded the summarising his ideas on catalysis as a new metal merely as a source of heat. In 1813, force, he wrote (I): Louis Jacques Thenard discovered that ammonia is decomposed into nitrogen and “It is, then, proved that several simple or compound bodies, soluble and insoluble, have hydrogen when passed over various red-hot the property of exercising on other bodies an metals, and ten years later, with Pierre action very different from chemical affinity. -
Rational Chemical Design of Solar-Powered Nano Photocatalysts for Environmental Applications
Rational Chemical Design of Solar-Powered Nano Photocatalysts for Environmental Applications Being a Thesis submitted for the Degree of Doctor of Philosophy degree (PhD) in the University of Hull By Khadijah Mohammedsaleh M Katubi (January 2015) Declaration I, Khadijah Mohammedsaleh M Katubi of Student Number: 200892573, hereby declare that this project, Rational Chemical Design of Solar-Powered Nano Photocatalysts for Environmental Applications being the requirement of the Hull University PhD Faculty of Science of Engineering (FOSE), Chemistry department, Academic Year 2015, is entirely of my own effort and work with the exception of excerpts cited from other works of which the sources were duly noted and acknowledged in the bibliography. Copyright © 2015 by Khadijah Mohammedsaleh M Katubi. All rights reserved. No part of this publication may be reproduced without the written permission of the copyright holder E-mail: [email protected] and [email protected] Acknowledgements Firstly, I would like to express my deepest gratitude to Almighty Allah for the assistance. Allah has given me patience, continued support and guidance without which this work would not be accomplished. Secondly, I owe sincere thanks to my supervisor Dr M. Grazia Francesconi for her continued backing, sincere affection and the assistance given to me throughout my PhD. I would also like to thank Dr Nigel A. Young for his assistance in FT-IR and UV-Vis spectroscopy. Lots of thanks go to Dr M. Grazia Francesconi, Dr Timothy J. Prior, Dr Vincent Rocher and PhD Simon Fellows for the assistance and sharing knowledge in XRD analysis. Many thanks go to Zabeada Aslamb at Leeds University for their help in TEM, SAED and EELS. -
Friedel-Crafts Alkylation of Aromatic Compounds with Phosphorus Estersla B
ALKYLATION OF AROMATIC COMPOUNDS WITH PHOSPHORUS ESTERS 1339 Analyse der Verbindungen: Die Einlagerungsverbin- Kalium-titandisulfid: Kalium 21,0%, Titan 33, 8%, dungen wurden vorsichtig mit HN03 aufgeschlossen. Schwefel 44,2%, Summe: 99,0%. Zusammen- Das im Fall der Wolframverbindungen dabei ausfal- setzung: Ko^TiSj,^ . lende W03 wurde alkalisch gelöst. Wolfram und Mo- Reaktionsprodukt von WS* mit Li-naphthalid (Uber- lybdän wurden als Oxinat, Titan als TiOa und Schwe- schuß) : Lithium 9,8%, Wolfram 66,3%, Schwefel fel als BaS04 bestimmt. Die Bestimmung der Alkali- 23,5%, Summe: 99,6%. Verhältnis 1 W : 2 Lili95S. metalle erfolgte flammenphotometrisch. Reaktionsprodukt WS2 mit Na-naphthalid (Überschuß) : Kalium-wolf ramdisulfid: Präparat I: Kalium 8,3%, Natrium 26,9%, Wolfram 53,1%, Schwefel 18,8%, Wolfram 66,9%, Schwefel 23,7%, Summe: 98,9%. Summe: 98,8%. Verhältnis: 1 W : 2 Na2,0S. Zusammensetzung: K0.59WS2)0 . Präparat II: Kalium 8,1%, Wolfram 67,1%, Schwe- fel 23,4%, Summe: 98,6%. Zusammensetzung: K0.57WS2,O . Kalium-molybdändisulfid: Kalium 10,86%, Molybdän Wir danken der Deutschen Forschungsgemeinschaft 53,6%, Sdiwefel 35,5%, Summe: 99,9%. Zusam- und dem Fonds der Chemie für die Unterstützung die- mensetzung: K0!49MoS1?98 . ser Arbeit. 1 Auszug aus der Dissertation E. BAYER. Tübingen 1970. 5 T. E. HOVEN-ESCH U. J. SMID, J. Amer. chem. Soc. 87, 669 2 W. RÜDORFF, Chimia [Zürich] 19,489 [1965], [1965]. 3 H. M. SICK, Dissertation Tübingen 1959. 6 W. BILTZ, P. EHRLICH U. M. MEISEL, Z. anorg. allg. Chem. 4 C. STEIN. J. POULENARD, L. BONNETAIN U. J. GOLE, C. R. 234,97 [1934], hebd. -
Physical Organic Chemistry
CHM 8304 Physical Organic Chemistry Catalysis Outline: General principles of catalysis • see section 9.1 of A&D – principles of catalysis – differential bonding 2 Catalysis 1 CHM 8304 General principles • a catalyst accelerates a reaction without being consumed • the rate of catalysis is given by the turnover number • a reaction may alternatively be “promoted” (accelerated, rather than catalysed) by an additive that is consumed • a heterogeneous catalyst is not dissolved in solution; catalysis typically takes place on its surface • a homogeneous catalyst is dissolved in solution, where catalysis takes place • all catalysis is due to a decrease in the activation barrier, ΔG‡ 3 Catalysts • efficient at low concentrations -5 -4 -5 – e.g. [Enz]cell << 10 M; [Substrates]cell < 10 - 10 M • not consumed during the reaction – e.g. each enzyme molecule can catalyse the transformation of 20 - 36 x 106 molecules of substrate per minute • do not affect the equilibrium of reversible chemical reactions – only accelerate the rate of approach to equilibrium end point • most chemical catalysts operate in extreme reaction conditions while enzymes generally operate under mild conditions (10° - 50 °C, neutral pH) • enzymes are specific to a reaction and to substrates; chemical catalysts are far less selective 4 Catalysis 2 CHM 8304 Catalysis and free energy • catalysis accelerates a reaction by stabilising a TS relative to the ground state ‡ – free energy of activation, ΔG , decreases – rate constant, k, increases • catalysis does not affect the end point -
(12) United States Patent (10) Patent N0.: US 6,225,009 B1 Fleischer Et Al
US006225009B1 (12) United States Patent (10) Patent N0.: US 6,225,009 B1 Fleischer et al. (45) Date of Patent: *May 1, 2001 (54) ELECTROCHEMICAL CELL WITH A NON- (51) Int. Cl.7 ........................... .. H01M 4/52; H01M 4/60; LIQUID ELECTROLYTE H01M 10/40 52 US. Cl. ........................ .. 429/306; 429/213; 429/220; (75) Inventors: Niles A Fleischer; J00st Manassen, ( ) 429/221; 429/224 lgiithRzfsllfech?ggzs?ogig?lgigméylm; (58) Field Of Search ............................ ..442299//23236 320261, 221234; Marvin S. Antelman, Rehovot, all of ’ ’ (IL) (56) References Cited (73) Assignee: E.C.R. -Electr0-Chemical Research US. PATENT DOCUMENTS Ltd” Rehovot (IL) 4,366,216 * 12/1982 McGinness ........................ .. 429/213 ( * ) Notice: PawntSubject is to mendedany disclaimer, or adjusted the term under of this 35 4,847,174 * 7/1989 §$1I1l:r:1_etj1_'_Palmer et a1. ....... .. 429/112 U-S-C- 154(b) by 0 days- 5,731,105 * 3/1998 Fleischer et al. .............. .. 429/213 X This patent is subject to a terminal dis- * Cited by examiner Clalmer' Primary Examiner—Stephen Kalafut (21) APPL NO; 09/068,864 (74) Attorney, Agent, or Firm—Mark M. Friedman (22) PCT Filed: Sep. 23, 1997 (57) ABSTRACT (86) PCT NO; PCT/US97/16901 A non-liquid electrolyte containing electrochemical cell which operates ef?ciently at room temperature. The cell § 371 Datei May 19, 1998 includes (a) a non-liquid electrolyte in which protons are _ mobile, (b) an anode active material based on an organic § 102(6) Date' May 19’ 1998 com P ound which is a source of P rotons durin g cell (87) PCT Pub.