Where in the Cell Is the Minor Spliceosome?

Total Page:16

File Type:pdf, Size:1020Kb

Where in the Cell Is the Minor Spliceosome? COMMENTARY Where in the cell is the minor spliceosome? Joan A. Steitz*†, Gideon Dreyfuss‡, Adrian R. Krainer§, Angus I. Lamond¶, A. Gregory Materaʈ, and Richard A. Padgett** *Yale University and Howard Hughes Medical Institute, New Haven, CT 06536; ‡University of Pennsylvania School of Medicine and Howard Hughes Medical Institute, Philadelphia, PA 19104-6148; §Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724; ¶University of Dundee, Dundee DD1 5EH, United Kingdom; ʈUniversity of North Carolina, Chapel Hill, NC 27599; and **Cleveland Clinic, Cleveland, OH 44195 he nucleus, a hallmark of spliceosome has subsequently been stud- of the LNA probes under the specific eukaryotes, segregates the ge- ied with respect to its protein composi- hybridization conditions used for cell nome and the cellular machin- tion and mechanism (8, 9), as well as its staining. Furthermore, control anti-U2 eries that transcribe and phylogenetic distribution and evolution- and anti-U5 probes did not show selec- Tprocess mRNAs from the translation ary origins (10). The minor spliceosome tive nucleoplasmic staining with nucleo- apparatus in the cytoplasm. Compart- excises Ϸ1 in 300 introns from human lar exclusion, as is well documented for mentalization prevents primary gene pre-mRNAs (11)—which encode pro- components of the major spliceosome transcripts (pre-mRNAs) from engaging teins with a wide range of functions (4, 16, 17). in translation before they are fully ma- (12)—consistent with the lower abun- Pessa et al. (2) performed in situ hy- tured. Thus, major mRNA processing dance (Ϸ1%) of its snRNPs relative to bridization on embryonic and adult Ј events—pre-mRNA splicing and 3 those of the major spliceosome. At least mouse tissue sections and on human polyadenylation—take place in the nu- seven proteins are unique to the minor cells, using full-length antisense cRNAs cleus. A recent paper by Ko¨nig et al. (1) spliceosome (13). GFP-tagged versions verified for specificity in Northern blots challenged this view, claiming that the of two—the U11/U12-associated pro- under identical conditions. They found splicing of hundreds of genes occurs in teins 35K and 31K (MADP-1)—were that both digoxigenin-labeled and radio- the cytoplasm, after export of unspliced reported to concentrate in the nucleus actively labeled probes for U11, U12, pre-mRNAs from the nucleus. This pa- of plant and HeLa cells, respectively U4atac, and U6atac snRNAs all strongly per sparked intense controversy. Be- (14, 15). label the nucleoplasm. Importantly, un- cause the central issue of whether Ko¨nig et al. (1) called this previous der the same conditions, probes specific mRNA formation and mRNA transla- work into question by localizing two mi- for the U1, U2, and U6 snRNAs of the tion occur in separate compartments is nor spliceosomal snRNAs in the cyto- major spliceosome exhibit strong nuclear so fundamental to eukaryotic cell biol- plasm of vertebrate cells and suggesting staining with nucleolar exclusion, as ogy, we examine here the experimental bases for this claim and contrast them expected. Comparable results were ob- with the findings of Pessa et al. (2), in tained by fluorescence in situ hybridiza- this issue of PNAS, which provide con- The minor spliceosome tion on HeLa cells, showing nearly complete overlap of the labeling for U2 tradictory evidence. excises Ϸ1 in 300 introns The vast majority of introns are and U12, and for U11 and U4, snRNAs. spliced by the major spliceosome: a from human pre-mRNAs. In their second approach, Ko¨nig et al. complex RNA–protein machine contain- (1) used cellular fractionation, followed ing the U1, U2, U4/U6, and U5 small by RT-PCR analysis, to reveal the pres- nuclear ribonucleoproteins (snRNPs). ence of unspliced minor introns in that the excision of minor introns takes Splicing can occur cotranscriptionally the cytoplasm. The extent of cross- place outside the nucleus, with func- and is generally thought to be com- contamination of the respective nuclear pleted in the nucleus before mRNA ex- tional and evolutionary implications. In and cytoplasmic fractions was only par- port. Although the biogenesis of four of response, Pessa et al. (2) present new in tially addressed. Data for three genes the major spliceosomal snRNPs (U1, situ hybridization and cell fractionation with minor introns clearly showed U2, U4, and U5) involves a cytoplasmic studies on the full set of minor snRNPs, spliced mRNA in the nuclear fraction. phase, the mature snRNPs and associ- extending prior evidence for the nuclear Although the authors attributed this to ated protein splicing factors ultimately location of the minor spliceosomal ‘‘the likely presence of material derived concentrate in the nucleus. snRNA and protein components. Al- from outer nuclear structures in the nu- A minor class of introns is removed though the two papers examine different clear fractions,’’ these results actually by a closely related machinery termed sets of cells and tissues, it is highly un- support the idea that minor-intron splic- the ‘‘minor spliceosome.’’ The U11 and likely that both conclusions can be ing occurs in the nucleus, although per- U12 snRNPs were described in 1988 as correct. haps not exclusively there. Indeed, when low-abundance particles similar to the U6atac was inactivated with an anti- Contrasting Data well characterized snRNPs of the major sense oligonucleotide, the minor-intron- spliceosome (3). In 1993, these particles Ko¨nig et al. (1) concluded that splicing spliced mRNAs in the nuclear fraction were localized, like their U1 and U2 of the minor class of introns is disappeared; it seems unlikely that all counterparts, by in situ hybridization to cytoplasmic on the basis of two main the spliced mRNA in the nuclear frac- the nucleoplasm of mammalian cells (4). experimental approaches. First, they In 1996, they were assigned functions in conducted in situ hybridization employ- the splicing of minor-class introns (5, 6), ing antisense locked nucleic acid (LNA) Author contributions: J.A.S., G.D., A.R.K., A.I.L., A.G.M., and and the U4atac and U6atac snRNAs of probes for U12 and U6atac snRNAs on R.A.P. wrote the paper. the minor spliceosome were identified embryonic and adult zebrafish tissues The authors declare no conflict of interest. (7). Thus, although four snRNPs are and on mouse 3T3 cells. In all cases, the See companion article on page 8655. unique to the minor spliceosome, the two probes showed predominantly cyto- †To whom correspondence should be addressed. E-mail: same U5 snRNP is shared by the minor plasmic signals. No Northern analyses [email protected]. and major spliceosomes. The minor were included to confirm the specificity © 2008 by The National Academy of Sciences of the USA www.pnas.org͞cgi͞doi͞10.1073͞pnas.0804024105 PNAS ͉ June 24, 2008 ͉ vol. 105 ͉ no. 25 ͉ 8485–8486 Downloaded by guest on October 2, 2021 tion in untreated cells respresented cyto- complex (19). Subsequently, assembled version of the U4 snRNA can substitute plasmic contamination. snRNPs are reimported into the nu- in vivo for U4atac in the minor spliceo- Pessa et al. (2) also conducted cleus. The minor snRNAs contain all of some (24), which would not be possible nuclear/cytoplasmic fractionation of the signals required for nuclear import, if the two splicing events occurred exclu- HeLa cells and quantitated the relative including the m3G cap and an Sm site sively in separate cellular compartments. abundance of snRNA and protein com- bound by an apparently identical set of Similarly, mutation of a minor 5Ј splice ponents of the minor spliceosome. Sm proteins. Like the major snRNPs, site in a construct expressed in vivo effi- Although U6 and U6atac are approxi- the Sm core of the U11 snRNP is as- ciently activates an internal cryptic mately equally nuclear and cytoplasmic, sembled by the SMN complex (20), and major-class intron by weakening interac- presumably as a result of leakage of the minor U4atac and U6atac snRNPs tions with U11 snRNA (25); if minor- RNA polymerase III transcripts during possess protein compositions identical to intron splicing were cytoplasmic, why fractionation (18), the vast majorities of the major U4 and U6 snRNPs (21). wouldn’t this intron always be excised by the U11, U12, and U4atac snRNAs are Thus, for the conclusions of Ko¨nig et al. the major spliceosome before the minor nuclear and mirror the distributions of (1) to be correct, an as yet uncharacter- spliceosome encountered it? Moreover, U1, U2, and U4, respectively. Moreover, ized mechanism would be required to cytoplasmic mRNAs containing un- three additional proteins that are unique selectively slow or prevent the reimport spliced minor introns would be suscepti- to the minor spliceosome—U11-59K, of newly assembled minor snRNPs. ble to nonsense-mediated mRNA decay -35K, and -25K—are likewise predomi- Contrary to the conclusions of Ko¨nig (26), unless some selective mechanism nantly in the nuclear fraction, as re- et al. (1), much functional evidence existed to prevent their translation. vealed by Western blotting with poly- indicates that splicing of minor-class clonal antibody probes (13). Additional introns—like that of major-class introns— In conclusion, although science occa- RNA and protein controls exhibit their occurs predominantly, if not exclusively, sionally leaps forward when established established nuclear or cytoplasmic in the nucleus (8, 9). Minor-intron splic- principles are questioned, in this case we locations. ing can be reproduced in vitro in HeLa believe that the paradigm of nuclear nuclear extracts under conditions nearly pre-mRNA splicing has survived the Previous Findings identical to those used for major-intron recent challenge. The experiments of The results of Pessa et al. (2) strongly splicing (5) but does not occur in cyto- Pessa et al. (2) provide strong evidence support the large body of prior evidence plasmic extracts except upon addition of that casts doubt on the claim that the arguing for the nuclear location of splic- one or more nuclear components, as is minor spliceosome is localized in a dif- ing by both the major and minor splice- also the case for major-intron splicing ferent cellular compartment from the osomes.
Recommended publications
  • Determinants of Exon 7 Splicing in the Spinal Muscular Atrophy Genes, SMN1 and SMN2 Luca Cartegni,*,† Michelle L
    Determinants of Exon 7 Splicing in the Spinal Muscular Atrophy Genes, SMN1 and SMN2 Luca Cartegni,*,† Michelle L. Hastings,* John A. Calarco,‡ Elisa de Stanchina, and Adrian R. Krainer Cold Spring Harbor Laboratory, Cold Spring Harbor, NY Spinal muscular atrophy is a neurodegenerative disorder caused by the deletion or mutation of the survival-of- motor-neuron gene, SMN1. An SMN1 paralog, SMN2, differs by a CrT transition in exon 7 that causes substantial skipping of this exon, such that SMN2 expresses only low levels of functional protein. A better understanding of SMN splicing mechanisms should facilitate the development of drugs that increase survival motor neuron (SMN) protein levels by improving SMN2 exon 7 inclusion. In addition, exonic mutations that cause defective splicing give rise to many genetic diseases, and the SMN1/2 system is a useful paradigm for understanding exon-identity determinants and alternative-splicing mechanisms. Skipping of SMN2 exon 7 was previously attributed either to the loss of an SF2/ASF–dependent exonic splicing enhancer or to the creation of an hnRNP A/B–dependent exonic splicing silencer, as a result of the CrT transition. We report the extensive testing of the enhancer-loss and silencer- gain models by mutagenesis, RNA interference, overexpression, RNA splicing, and RNA-protein interaction ex- periments. Our results support the enhancer-loss model but also demonstrate that hnRNP A/B proteins antagonize SF2/ASF–dependent ESE activity and promote exon 7 skipping by a mechanism that is independent of the CrT transition and is, therefore, common to both SMN1 and SMN2. Our findings explain the basis of defective SMN2 splicing, illustrate the fine balance between positive and negative determinants of exon identity and alternative splicing, and underscore the importance of antagonistic splicing factors and exonic elements in a disease context.
    [Show full text]
  • Dissertation
    Regulation of gene silencing: From microRNA biogenesis to post-translational modifications of TNRC6 complexes DISSERTATION zur Erlangung des DOKTORGRADES DER NATURWISSENSCHAFTEN (Dr. rer. nat.) der Fakultät Biologie und Vorklinische Medizin der Universität Regensburg vorgelegt von Johannes Danner aus Eggenfelden im Jahr 2017 Das Promotionsgesuch wurde eingereicht am: 12.09.2017 Die Arbeit wurde angeleitet von: Prof. Dr. Gunter Meister Johannes Danner Summary ‘From microRNA biogenesis to post-translational modifications of TNRC6 complexes’ summarizes the two main projects, beginning with the influence of specific RNA binding proteins on miRNA biogenesis processes. The fate of the mature miRNA is determined by the incorporation into Argonaute proteins followed by a complex formation with TNRC6 proteins as core molecules of gene silencing complexes. miRNAs are transcribed as stem-loop structured primary transcripts (pri-miRNA) by Pol II. The further nuclear processing is carried out by the microprocessor complex containing the RNase III enzyme Drosha, which cleaves the pri-miRNA to precursor-miRNA (pre-miRNA). After Exportin-5 mediated transport of the pre-miRNA to the cytoplasm, the RNase III enzyme Dicer cleaves off the terminal loop resulting in a 21-24 nt long double-stranded RNA. One of the strands is incorporated in the RNA-induced silencing complex (RISC), where it directly interacts with a member of the Argonaute protein family. The miRNA guides the mature RISC complex to partially complementary target sites on mRNAs leading to gene silencing. During this process TNRC6 proteins interact with Argonaute and recruit additional factors to mediate translational repression and target mRNA destabilization through deadenylation and decapping leading to mRNA decay.
    [Show full text]
  • Srsf10 and the Minor Spliceosome Control Tissue-Specific and Dynamic
    SHORT REPORT Srsf10 and the minor spliceosome control tissue-specific and dynamic SR protein expression Stefan Meinke1, Gesine Goldammer1, A Ioana Weber1,2, Victor Tarabykin2, Alexander Neumann1†, Marco Preussner1*, Florian Heyd1* 1Freie Universita¨ t Berlin, Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, Berlin, Germany; 2Institute of Cell Biology and Neurobiology, Charite´-Universita¨ tsmedizin Berlin, corporate member of Freie Universita¨ t Berlin, Humboldt-Universita¨ t zu Berlin, and Berlin Institute of Health, Berlin, Germany Abstract Minor and major spliceosomes control splicing of distinct intron types and are thought to act largely independent of one another. SR proteins are essential splicing regulators mostly connected to the major spliceosome. Here, we show that Srsf10 expression is controlled through an autoregulated minor intron, tightly correlating Srsf10 with minor spliceosome abundance across different tissues and differentiation stages in mammals. Surprisingly, all other SR proteins also correlate with the minor spliceosome and Srsf10, and abolishing Srsf10 autoregulation by Crispr/ Cas9-mediated deletion of the autoregulatory exon induces expression of all SR proteins in a human cell line. Our data thus reveal extensive crosstalk and a global impact of the minor spliceosome on major intron splicing. *For correspondence: [email protected] (MP); [email protected] (FH) Introduction Present address: †Omiqa Alternative splicing (AS) is a major mechanism that controls gene expression (GE) and expands the Corporation, c/o Freie proteome diversity generated from a limited number of primary transcripts (Nilsen and Graveley, Universita¨ t Berlin, Altensteinstraße, Germany 2010). Splicing is carried out by a multi-megadalton molecular machinery called the spliceosome of which two distinct complexes exist.
    [Show full text]
  • Pseudophosphorylated Αb-Crystallin Is a Nuclear Chaperone Imported Into the Nucleus with Help of the SMN Complex
    Pseudophosphorylated αB-Crystallin Is a Nuclear Chaperone Imported into the Nucleus with Help of the SMN Complex John den Engelsman1, Chantal van de Schootbrugge1, Jeongsik Yong2, Ger J. M. Pruijn1, Wilbert C. Boelens1* 1 Department of Biomolecular Chemistry, Institute for Molecules and Materials and Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, The Netherlands, 2 Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Twin Cities, Minneapolis, Minnesota, United States of America Abstract The human small heat shock protein αB-crystallin (HspB5) is a molecular chaperone which is mainly localized in the cytoplasm. A small fraction can also be found in nuclear speckles, of which the localization is mediated by successional phosphorylation at Ser-59 and Ser-45. αB-crystallin does not contain a canonical nuclear localization signal sequence and the mechanism by which αB-crystallin is imported into the nucleus is not known. Here we show that after heat shock pseudophosphorylated αB-crystallin mutant αB-STD, in which all three phosphorylatable serine residues (Ser-19, Ser-45 and Ser-59) were replaced by negatively charged aspartate residues, is released from the nuclear speckles. This allows αB-crystallin to chaperone proteins in the nucleoplasm, as shown by the ability of αB- STD to restore nuclear firefly luciferase activity after a heat shock. With the help of a yeast two-hybrid screen we found that αB-crystallin can interact with the C-terminal part of Gemin3 and confirmed this interaction by co- immunoprecipitation. Gemin3 is a component of the SMN complex, which is involved in the assembly and nuclear import of U-snRNPs.
    [Show full text]
  • Molecular Functions of the SMN Complex Hosted at Stephen J
    Special Issue Article Journal of Child Neurology Volume 22 Number 8 August 2007 990-994 © 2007 Sage Publications 10.1177/0883073807305666 Molecular Functions of the SMN Complex http://jcn.sagepub.com hosted at http://online.sagepub.com Stephen J. Kolb, MD, PhD, Daniel J. Battle, PhD, and Gideon Dreyfuss, PhD The SMN complex is essential for the biogenesis of spliceoso- contains 7 additional proteins known as Gemin2-8, each likely mal small nuclear ribonucleoproteins and likely functions in to play a role in ribonucleoprotein biogenesis. This review the assembly, metabolism, and transport of a diverse number focuses on the current understanding of the mechanism of the of other ribonucleoproteins. Specifically, the SMN complex role of the SMN complex in small nuclear ribonucleoprotein assembles 7 Sm proteins into a core structure around a highly assembly and considers the relationship of this function to conserved sequence of ribonucleic acid (RNA) found in small spinal muscular atrophy. nuclear RNAs. The complex recognizes specific sequences and structural features of small nuclear RNAs and Sm proteins and assembles small nuclear ribonucleoproteins in a stepwise Keywords: spinal muscular atrophy; ribonucleoproteins; fashion. In addition to the SMN protein, the SMN complex Gemin2-8 utations in the survival motor neuron gene Since 1995, when mutations in SMN were shown to (SMN) that decrease expression of the func- cause spinal muscular atrophy,2 there has been great Mtional SMN protein result in spinal muscular progress toward understanding the molecular functions of atrophy. Within the pediatric population, spinal muscular the SMN protein in cells, the cellular pathways that are atrophy can be included in the list of single gene defect affected by decreased expression of SMN, and the design of diseases where the loss of a single essential protein potential therapeutic strategies to treat patients with this dis- expressed in all tissues and cells results in the selective ease.
    [Show full text]
  • The SMN Complex Is Associated with Snrnps Throughout Their
    The SMN Complex Is Associated with snRNPs throughout Their Cytoplasmic Assembly Pathway Séverine Massenet, Livio Pellizzoni, Sergey Paushkin, Iain W Mattaj, Gideon Dreyfuss To cite this version: Séverine Massenet, Livio Pellizzoni, Sergey Paushkin, Iain W Mattaj, Gideon Dreyfuss. The SMN Complex Is Associated with snRNPs throughout Their Cytoplasmic Assembly Pathway. Molecular and Cellular Biology, American Society for Microbiology, 2002, 22 (18), pp.6533-6541. 10.1128/MCB.22.18.6533-6541.2002. hal-01652727 HAL Id: hal-01652727 https://hal.univ-lorraine.fr/hal-01652727 Submitted on 30 Nov 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. MOLECULAR AND CELLULAR BIOLOGY, Sept. 2002, p. 6533–6541 Vol. 22, No. 18 0270-7306/02/$04.00ϩ0 DOI: 10.1128/MCB.22.18.6533–6541.2002 Copyright © 2002, American Society for Microbiology. All Rights Reserved. The SMN Complex Is Associated with snRNPs throughout Their Cytoplasmic Assembly Pathway Se´verine Massenet,1 Livio Pellizzoni,1 Sergey Paushkin,1 Iain W. Mattaj,2 and Gideon Dreyfuss1* Howard Hughes Medical Institute and Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6148,1 and European Molecular Biology Laboratory, D-69117 Heidelberg, Germany2 Downloaded from Received 20 March 2002/Returned for modification 2 May 2002/Accepted 14 June 2002 The common neurodegenerative disease spinal muscular atrophy is caused by reduced levels of the survival of motor neurons (SMN) protein.
    [Show full text]
  • From Transcript to Protein Meeting Review
    Cell, Vol. 85, 963±972, June 28, 1996, Copyright 1996 by Cell Press From Transcript to Protein Meeting Review Gideon Dreyfuss,* Matthias Hentze,² additional protein splicing factors. Recognition of in- and Angus I. Lamond³ trons involves both protein±RNA and RNA±RNA interac- *Howard Hughes Medical Institute tions being made by splicing factors with conserved Department of Biochemistry and Biophysics sequence elements on the pre-mRNA at the 59 and 39 University of Pennsylvania School of Medicine intron±exon junctions and at the branch site (reviewed Philadelphia, Pennsylvania 19104-6148 by Moore et al., 1993; Nilsen, 1994). Considerable effort ² European Molecular Biology Laboratory is currently being directed toward identifying the protein Meyerhofstrasse 1 components of spliceosomes, determining how they in- Postfach 102209 teract with pre-mRNA and with each other during the D69117 Heidelberg splicing reaction, and analyzing how these interactions Germany are regulated. ³ Department of Biochemistry B. Seraphin (EMBL, Heidelberg) and P. Legrain (Insti- University of Dundee tut Pasteur, Paris) reported studies on how 59 splice Dundee DD1 4HN sites and branch sites in budding yeast pre-mRNAs are United Kingdom recognized by splicing factors. Legrain described an exhaustive mutagenesis of the branch point consensus sequence, analyzed using an in vivo assay system, One of the most interesting formats for a scientific meet- which showed that certain base substitutions could dif- ing involves bringing together researchers working in ferentially affect the splicing of pre-mRNA and its trans- overlapping or closely related fields where the opportu- port out of the nucleus. Although base pairing at the nity can arise for cross-fertilization and exchange of branch point between the pre-mRNA and U2 snRNA ideas.
    [Show full text]
  • SMN Deficiency Causes Tissue-Specific Perturbations in The
    SMN Deficiency Causes Tissue-Specific Perturbations in the Repertoire of snRNAs and Widespread Defects in Splicing Zhenxi Zhang,1,2 Francesco Lotti,1,2 Kimberly Dittmar,1 Ihab Younis,1 Lili Wan,1 Mumtaz Kasim,1 and Gideon Dreyfuss1,* 1Howard Hughes Medical Institute, Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6148, USA 2These authors contributed equally to this work. *Correspondence: [email protected] DOI 10.1016/j.cell.2008.03.031 SUMMARY strictly dependent on the SMN complex (Meister et al., 2001; Pellizzoni et al., 2002b; Wan et al., 2005). The survival of motor neurons (SMN) protein is Genetic lesions in the SMN gene (SMN1) that result in func- essential for the biogenesis of small nuclear RNA tional SMN protein deficiency are the cause of spinal muscular (snRNA)-ribonucleoproteins (snRNPs), the major atrophy (SMA) (Lefebvre et al., 1995), a common genetic motor components of the pre-mRNA splicing machinery. neuron degenerative disease and a leading genetic cause of Though it is ubiquitously expressed, SMN deficiency infant mortality (Cifuentes-Diaz et al., 2002; Iannaccone et al., causes the motor neuron degenerative disease spinal 2004; Talbot and Davies, 2001). A second copy of the gene, SMN2, contains a single nucleotide mutation in exon 7 that muscular atrophy (SMA). We show here that SMN results in frequent skipping of this exon and, consequently, low deficiency, similar to that which occurs in severe levels of functional SMN protein (Lorson et al., 1999). Although SMA, has unexpected cell type-specific effects on SMN is ubiquitously expressed in all tissues and is essential for the repertoire of snRNAs and mRNAs.
    [Show full text]
  • Messenger-Rna-Binding Proteins and the Messages They Carry
    REVIEWS MESSENGER-RNA-BINDING PROTEINS AND THE MESSAGES THEY CARRY Gideon Dreyfuss*, V.Narry Kim‡ and Naoyuki Kataoka* From sites of transcription in the nucleus to the outreaches of the cytoplasm, messenger RNAs are associated with RNA-binding proteins. These proteins influence pre-mRNA processing as well as the transport, localization, translation and stability of mRNAs. Recent discoveries have shown that one group of these proteins marks exon–exon junctions and has a role in mRNA export. These proteins communicate crucial information to the translation machinery for the surveillance of nonsense mutations and for mRNA localization and translation. PRE-mRNA To function properly, eukaryotic messenger RNAs must Recent discoveries showed that this mature mRNP The primary transcript of the contain, in addition to a string of codons, information contains proteins that it acquired strictly in the wake of genomic DNA, which contains that specifies their nuclear export, subcellular localiza- the splicing reaction. These proteins, which are exons, introns and other tion, translation and stability. An important theme to arranged in the form of a complex called the exon–exon sequences. emerge over the past few years is that much of this infor- junction complex (EJC), mark the position of SPLICING mation is provided by specific RNA-binding proteins. exon–exon junctions. EJC proteins have a role in the The removal of introns from the These proteins — collectively referred to as heteroge- nuclear export of mRNAs that are produced by splicing, pre-mRNA. neous nuclear ribonucleoproteins (hnRNP proteins) and several of the mRNP’s components persist in the or mRNA–protein complex proteins (mRNP pro- same position after export of the mRNP to the cyto- TERMINATION CODONS The stop signals for translation: teins) — are PRE-mRNA/mRNA-binding proteins that plasm.
    [Show full text]
  • Spliceosomal Usnrnp Biogenesis, Structure and Function Cindy L Will* and Reinhard Lührmann†
    290 Spliceosomal UsnRNP biogenesis, structure and function Cindy L Will* and Reinhard Lührmann† Significant advances have been made in elucidating the for each of the two reaction steps. Components of the biogenesis pathway and three-dimensional structure of the UsnRNPs also appear to catalyze the two transesterifi- UsnRNPs, the building blocks of the spliceosome. U2 and cation reactions leading to excision of the intron and U4/U6•U5 tri-snRNPs functionally associate with the pre-mRNA ligation of the 5′ and 3′ exons. Here we describe recent at an earlier stage of spliceosome assembly than previously advances in our understanding of snRNP biogenesis, thought, and additional evidence supporting UsnRNA-mediated structure and function, focusing primarily on the major catalysis of pre-mRNA splicing has been presented. spliceosomal UsnRNPs from higher eukaryotes. Addresses Identification of a novel UsnRNA export factor Max Planck Institute of Biophysical Chemistry, Department of Cellular UsnRNP biogenesis is a complex process, many aspects of Biochemistry, Am Fassberg 11, 37077 Göttingen, Germany. which remain poorly understood. Although less is known *e-mail: [email protected] about the maturation process of the minor U11, U12 and †e-mail: [email protected] U4atac UsnRNPs, it is assumed that they follow a pathway Current Opinion in Cell Biology 2001, 13:290–301 similar to that described below for the major UsnRNPs 0955-0674/01/$ — see front matter (see Figure 1). The UsnRNAs, with the exception of U6 © 2001 Elsevier Science Ltd. All rights reserved. and U6atac (see below), are transcribed by RNA polymerase II as snRNA precursors that contain additional Abbreviations ′ CBC cap-binding complex 3 nucleotides and acquire a monomethylated, m7GpppG NLS nuclear localization signal (m7G) cap structure.
    [Show full text]
  • A U1 Snrnp–Specific Assembly Pathway Reveals the SMN Complex As a Versatile Hub for RNP Exchange
    ARTICLES A U1 snRNP–specific assembly pathway reveals the SMN complex as a versatile hub for RNP exchange Byung Ran So, Lili Wan, Zhenxi Zhang, Pilong Li, Eric Babiash, Jingqi Duan, Ihab Younis & Gideon Dreyfuss Despite equal snRNP stoichiometry in spliceosomes, U1 snRNP (U1) is typically the most abundant vertebrate snRNP. Mechanisms regulating U1 overabundance and snRNP repertoire are unknown. In Sm-core assembly, a key snRNP-biogenesis step mediated by the SMN complex, the snRNA-specific RNA-binding protein (RBP) Gemin5 delivers pre-snRNAs, which join SMN–Gemin2–recruited Sm proteins. We show that the human U1-specific RBP U1-70K can bridge pre-U1 to SMN–Gemin2–Sm, in a Gemin5-independent manner, thus establishing an additional and U1-exclusive Sm core–assembly pathway. U1-70K hijacks SMN–Gemin2–Sm, enhancing Sm-core assembly on U1s and inhibiting that on other snRNAs, thereby promoting U1 overabundance and regulating snRNP repertoire. SMN–Gemin2’s ability to facilitate transactions between different RBPs and RNAs explains its multi-RBP valency and the myriad transcriptome perturbations associated with SMN deficiency in neurodegenerative spinal muscular atrophy. We propose that SMN–Gemin2 is a versatile hub for RNP exchange that functions broadly in RNA metabolism. In eukaryotes, U1 small nuclear ribonucleoprotein (snRNP) is snRNP code, owing to its noncanonical Sm site (AUUUGUG or necessary for precursor (pre)-mRNA splicing1,2 and telescripting, AUUUCUG), which has weaker binding affinity to Gemin5 (ref. 19), suppression of premature cleavage, and polyadenylation that ensures and second, its Sm-core assembly strongly depends on stem-loop full-length transcription3–7.
    [Show full text]
  • Trp53 Ablation Fails to Prevent Microcephaly in Mouse Pallium with Impaired Minor Intron Splicing
    bioRxiv preprint doi: https://doi.org/10.1101/2021.03.05.434172; this version posted March 6, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Trp53 ablation fails to prevent microcephaly in mouse pallium with impaired minor intron splicing Running title: Cell cycle defects drive the microcephaly caused by minor splicing disruption. Alisa K. White1#, Marybeth Baumgartner2#, Madisen F. Lee1, Kyle D. Drake1, Gabriela S. Aquino1, Rahul N. Kanadia1,3,* 1Physiology and Neurobiology Department, University of Connecticut, Storrs, CT 06269, USA 2Department of Genetics, Yale School of Medicine, New Haven, CT 06510 3Institute of Systems Genomics, University of Connecticut, Storrs, CT 06269, USA #Authors contributed equally *Corresponding author Correspondence to Dr. Rahul N. Kanadia can be sent by mail, to 75 N Eagleville Rd, Storrs, CT 06269; by phone, at (860)-486-0286; or by e-mail, at [email protected]. Keywords. Cortical development; microcephaly; cell cycle; minor spliceosome; U11 snRNA bioRxiv preprint doi: https://doi.org/10.1101/2021.03.05.434172; this version posted March 6, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract. Mutations in minor spliceosome component RNU4ATAC, a small nuclear RNA (snRNA), are linked to primary microcephaly. We have reported that in the conditional knockout (cKO) mice for Rnu11, another minor spliceosome snRNA, minor intron splicing defect in minor intron-containing genes (MIGs) regulating cell cycle resulted in cell cycle defects, with a concomitant increase in γH2aX+ cells and p53-mediated apoptosis.
    [Show full text]