Tooth Morphology and Food Processing in Ophiothrix Fragilis (Abildgaard, in O.F
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Filename Bibw.Wpd
May 11, 2016 filename bibw.wpd Wachsmuth, C. and F. Springer. 1897. North American Crinoidea Camerata. Memoirs of the Museum of Comparative Zoology [Harvard], vols. 20, 21 + atlas of eighty-three plates. [vol. 21 contains pp. 361-837 of the monograph] [source WKS p. 332 regarding Onychaster] [see plate 55 fig. 3 and text on p. 566: Remarks on Actinocrinus multiramosus W &Sp. from Keokuk group, from Indian creek, Montgomery Co., Ind. and from Canton, Washington Co., Ind.] [Onychaster rarely found by itself. Onychaster at Indian Creek is on A. multiramosos. Onychaster at Canton is on A. multiramosus and also on most specimens of Scytalocrinus robustus (Hall). Not seen on any other species] ["The fact that this Ophiurid is only found associated with certain species, and there always under similar conditions, and the frequency of this occurrence, would seem to indicate that the position between the arms of these crinoids was its favorite resting place, in which it either found protection, or some special facility for obtaining nourishment."] Waddington, Janet, Peter H. von Bitter, and Desmond Collins. 1978. Catalogue of type invertebrate, plant, and trace fossils in the Royal Ontario Museum. Life Sciences Miscellaneous Publications, Royal Ontario Museum, 151 pp. [Asterozoa on p. 132; the list is incomplete as it does not include material mentioned by Schuchert, nor Johnson's master's thesis Encrinaster primordialis which was listed in the Fritz ROM type catalog; also now there are newer types described by Eckert] Walcott, C. D. 1890. The value of the term "Hudson River Group" in geologic nomenclature. Bull. G.S.A. -
Marine Aquaculture Site – Grey Horse Channel Outer Video Survey June 2018
Marine Aquaculture Site – Grey Horse Channel Outer Video Survey June 2018 MARINE HARVEST ( SCOTLAND) LIMITED SEPTEMBER 2018 Registered in Scotland No. 138843 Stob Ban House 01397 715084 - Registered Office, Glen Nevis Business Park 1st Floor, Admiralty Park Fort William, PH33 6RX Kate. Stronach@marineharvest. com Admiralty Road, Rosyth, Fife Stob Ban House KY11 2YW Glen Nevis Business Park http:// marineharvest. com Fort William, PH33 6RX Grey Horse Channel Outer 2018 Baseline Video Survey Report 2 | 14 Video Survey Assessment for: Marine Harvest ( Scotland) Ltd. proposed Grey Horse Channel Outer Farm Requirement for survey: Baseline Date of survey: 26/06/2018 Surveyed by: Marine Harvest (Scotland) Ltd. Equipment used: Towed Sledge with HD camera A video survey was undertaken at Grey Horse Channel Outer to examine the epifauna on the seabed and the baseline assessment will be submitted as part of applications for licences at the proposed site. Marine Harvest (Scotland) Ltd. propose to install a new site north west of Greineam Island which will operate to a biomass of 2500t. The site will consist of 14 circular pens each 120m in circumferen ce and held in 75m matrix squares in a 2 x 7 grid. Modelling has been completed using AutoDEPOMOD and a predicted deposition footprint generated. The Grey Horse Channel Outer video survey provides seabed footage on transects through the area of seabed within the predicted footprint. Grey Horse Channel Outer Biotope Assessment The footage for the transects has been viewed to identify occurring species, habitat types and zonation using the Marine Habitat Classification Hierarchy and SACFOR abundance scale from the JNCC website ( 2017). -
Diversity and Phylogeography of Southern Ocean Sea Stars (Asteroidea)
Diversity and phylogeography of Southern Ocean sea stars (Asteroidea) Thesis submitted by Camille MOREAU in fulfilment of the requirements of the PhD Degree in science (ULB - “Docteur en Science”) and in life science (UBFC – “Docteur en Science de la vie”) Academic year 2018-2019 Supervisors: Professor Bruno Danis (Université Libre de Bruxelles) Laboratoire de Biologie Marine And Dr. Thomas Saucède (Université Bourgogne Franche-Comté) Biogéosciences 1 Diversity and phylogeography of Southern Ocean sea stars (Asteroidea) Camille MOREAU Thesis committee: Mr. Mardulyn Patrick Professeur, ULB Président Mr. Van De Putte Anton Professeur Associé, IRSNB Rapporteur Mr. Poulin Elie Professeur, Université du Chili Rapporteur Mr. Rigaud Thierry Directeur de Recherche, UBFC Examinateur Mr. Saucède Thomas Maître de Conférences, UBFC Directeur de thèse Mr. Danis Bruno Professeur, ULB Co-directeur de thèse 2 Avant-propos Ce doctorat s’inscrit dans le cadre d’une cotutelle entre les universités de Dijon et Bruxelles et m’aura ainsi permis d’élargir mon réseau au sein de la communauté scientifique tout en étendant mes horizons scientifiques. C’est tout d’abord grâce au programme vERSO (Ecosystem Responses to global change : a multiscale approach in the Southern Ocean) que ce travail a été possible, mais aussi grâce aux collaborations construites avant et pendant ce travail. Cette thèse a aussi été l’occasion de continuer à aller travailler sur le terrain des hautes latitudes à plusieurs reprises pour collecter les échantillons et rencontrer de nouveaux collègues. Par le biais de ces trois missions de recherches et des nombreuses conférences auxquelles j’ai activement participé à travers le monde, j’ai beaucoup appris, tant scientifiquement qu’humainement. -
DEEP SEA LEBANON RESULTS of the 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project
DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project March 2018 DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project Citation: Aguilar, R., García, S., Perry, A.L., Alvarez, H., Blanco, J., Bitar, G. 2018. 2016 Deep-sea Lebanon Expedition: Exploring Submarine Canyons. Oceana, Madrid. 94 p. DOI: 10.31230/osf.io/34cb9 Based on an official request from Lebanon’s Ministry of Environment back in 2013, Oceana has planned and carried out an expedition to survey Lebanese deep-sea canyons and escarpments. Cover: Cerianthus membranaceus © OCEANA All photos are © OCEANA Index 06 Introduction 11 Methods 16 Results 44 Areas 12 Rov surveys 16 Habitat types 44 Tarablus/Batroun 14 Infaunal surveys 16 Coralligenous habitat 44 Jounieh 14 Oceanographic and rhodolith/maërl 45 St. George beds measurements 46 Beirut 19 Sandy bottoms 15 Data analyses 46 Sayniq 15 Collaborations 20 Sandy-muddy bottoms 20 Rocky bottoms 22 Canyon heads 22 Bathyal muds 24 Species 27 Fishes 29 Crustaceans 30 Echinoderms 31 Cnidarians 36 Sponges 38 Molluscs 40 Bryozoans 40 Brachiopods 42 Tunicates 42 Annelids 42 Foraminifera 42 Algae | Deep sea Lebanon OCEANA 47 Human 50 Discussion and 68 Annex 1 85 Annex 2 impacts conclusions 68 Table A1. List of 85 Methodology for 47 Marine litter 51 Main expedition species identified assesing relative 49 Fisheries findings 84 Table A2. List conservation interest of 49 Other observations 52 Key community of threatened types and their species identified survey areas ecological importanc 84 Figure A1. -
UNIVERSITY of KERALA Zoology Core Course
1 UNIVERSITY OF KERALA First Degree Programme in Zoology Choice Based Credit and Semester System Zoology Core Course Syllabus-2015 Admission Onwards 2 FIRST DEGREE PROGRAMME IN ZOOLOGY Scheme of Instruction and Evaluation Course Study Components Instructional Credit Duration Evaluation Total Code Hrs/week of Univ. Credit T P Exam CE ESE Semster EN1111 English I 5 4 3 Hrs 20% 80% 1111 Additional language I 4 3 3 Hrs 20% 80% EN 1121 Foundation course I 4 2 3 Hrs 20% 80% CH1131.4 Complementary course I 2 2 3 Hrs 20% 80% Complementary course I 2 16 I Practical of CH1131.4 BO1131 Complementary course II 2 2 3 Hrs 20% 80% Complementary course II 2 Practical of BO1131 ZO1141 Core Course I 3 3 3 Hrs 20% 80% Core Course Practical of ZO1141 1 EN1211 English II 4 3 3 Hrs 20% 80% EN1212 English III 5 4 3 Hrs 20% 80% 1211 Additional language II 4 3 3 Hrs 20% 80% CH1231.4 Complementary course III 2 2 3 Hrs 20% 80% II Complementary course III 2 Practical of CH1231.4 17 BO1231 Complementary course IV 2 2 3 Hrs 20% 80% Complementary course II 2 Practical of BO1231 ZO1241 Core Course II 3 3 3 Hrs 20% 80% Core Course Practical of ZO1241 1 III EN1311 English IV 5 4 3 Hrs 20% 80% EN1312 Additional language III 5 4 3 Hrs 20% 80% CH1331 Complementary course V 3 3 3 Hrs 20% 80% CH1331.4 Complementary course V 2 Practical of CH1331.4 BO1331 Complementary course VI 3 3 3 Hrs 20% 80% 17 BO1332 Complementary course VI 2 Practical of BO1331 ZO1341 Core Course III 3 3 3 Hrs 20% 80% ZO1341 Core Course Practical of ZO1341 2 IV EN1411 English V 5 4 3 Hrs 20% 80% EN1411 Additional language II 5 4 3 Hrs 20% 80% CH1431.4 Complementary course VII 3 3 3 Hrs 20% 80% CH1432.4 Complementary course 2 4 3 Hrs 20% 80% Practical of CH1131.4, CH1231.4, CH1331.4, CH1431.4. -
An Enriched Chaetopterus Tube Mat Biotope in the Eastern English Channel
J. Mar. Biol. Ass. U.K. (2005), 85, 323^326 Printed in the United Kingdom An enriched Chaetopterus tube mat biotope in the eastern English Channel E.I.S.Rees*, M. Bergmann, M. Galanidi, H. Hinz, R. Shucksmith and M.J. Kaiser School of Ocean Sciences, University of Wales Bangor, Menai Bridge, Anglesey,Wales, LL59 5AB, UK. *Corresponding author, e-mail: [email protected] Patches of a very dense tube mat biotope were found during ¢sh habitat studies in the eastern English Channel. At three locations in the lows between linear sand banks o¡ the French coast an un-described small Chaetopterus sp. occurred with small Lanice conchilega as an enriched sediment stabilizing biotope. This biotope was distinct though having similarities to other tide swept sub-tidal biotopes dominated by L. conchilega. Using cameras and side-scan sonar it was seen to overlay heterogeneous cobbles and shell hash with intermittent rippled sand veneer. The patchiness of this enriching biogenic feature contributed to the variability in trawl catches of ¢sh. INTRODUCTION form of Chaetopterus has an easily collapsed muddy tube and is distinct from the widespread large parchment tube Classi¢cations of sub-tidal sedimentary biotopes from building species (Mary E. Petersen, personal communica- north-west European shelf seas (Connor et al., 1997, tion). Similar specimens of a small Chaetopterus, collected 2003) include several categories wherein tube worms are o¡ Brittany had previously been sent to Dr Petersen by so abundant that they form biogenic mats. Such mats have important ecological functions in trapping ¢ne sedi- Professor M. Glemarec. Taxonomic descriptions of the new species are in preparation by Dr Petersen. -
Marlin Marine Information Network Information on the Species and Habitats Around the Coasts and Sea of the British Isles
MarLIN Marine Information Network Information on the species and habitats around the coasts and sea of the British Isles Ophiothrix fragilis and/or Ophiocomina nigra brittlestar beds on sublittoral mixed sediment MarLIN – Marine Life Information Network Marine Evidence–based Sensitivity Assessment (MarESA) Review Eliane De-Bastos & Jacqueline Hill 2016-01-28 A report from: The Marine Life Information Network, Marine Biological Association of the United Kingdom. Please note. This MarESA report is a dated version of the online review. Please refer to the website for the most up-to-date version [https://www.marlin.ac.uk/habitats/detail/1068]. All terms and the MarESA methodology are outlined on the website (https://www.marlin.ac.uk) This review can be cited as: De-Bastos, E.S.R. & Hill, J., 2016. [Ophiothrix fragilis] and/or [Ophiocomina nigra] brittlestar beds on sublittoral mixed sediment. In Tyler-Walters H. and Hiscock K. (eds) Marine Life Information Network: Biology and Sensitivity Key Information Reviews, [on-line]. Plymouth: Marine Biological Association of the United Kingdom. DOI https://dx.doi.org/10.17031/marlinhab.1068.1 The information (TEXT ONLY) provided by the Marine Life Information Network (MarLIN) is licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 2.0 UK: England & Wales License. Note that images and other media featured on this page are each governed by their own terms and conditions and they may or may not be available for reuse. Permissions beyond the scope of this license are available here. -
Linnaeus, 1758) (Ophiuroidea, Echinodermata)
Journal of Experimental Marine Biology and Ecology 393 (2010) 176–181 Contents lists available at ScienceDirect Journal of Experimental Marine Biology and Ecology journal homepage: www.elsevier.com/locate/jembe Sediment preference and burrowing behaviour in the sympatric brittlestars Ophiura albida Forbes, 1839 and Ophiura ophiura (Linnaeus, 1758) (Ophiuroidea, Echinodermata) Karin Boos a,⁎, Lars Gutow b, Roger Mundry c, Heinz-Dieter Franke a a Biologische Anstalt Helgoland, Alfred Wegener Institute for Polar and Marine Research, PO Box 180, 27483 Helgoland, Germany b Alfred Wegener Institute for Polar and Marine Research, PO Box 12 01 61, 27515 Bremerhaven, Germany c Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany article info abstract Article history: Ophiura albida and Ophiura ophiura are widespread and highly abundant brittlestar species occurring Received 11 May 2010 sympatrically on soft bottoms along the western European coasts. Laboratory choice experiments revealed Received in revised form 23 July 2010 that O. albida preferred staying on fine rather than on coarse sediments, whereas O. ophiura did not Accepted 26 July 2010 distinguish between these types of sediment. Sediment-specific burrowing behaviour of the two species was investigated under different stress and food conditions in order to evaluate relations of predator avoidance Keywords: and feeding strategies with the observed sediment preference. In the presence of a predator, O. albida Brittlestars fi Burrowing burrowed preferentially in ne sediment while coarse sediment did not seem to support quick burrowing for Feeding behaviour efficient escape. Conversely, O. ophiura tended to escape the predator by fleeing across the sediment surface Predation rather than by burrowing, reflecting its unselectivity towards different sediment types. -
Key to the Common Shallow-Water Brittle Stars (Echinodermata: Ophiuroidea) of the Gulf of Mexico and Caribbean Sea
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/228496999 Key to the common shallow-water brittle stars (Echinodermata: Ophiuroidea) of the Gulf of Mexico and Caribbean Sea Article · January 2007 CITATIONS READS 10 702 1 author: Christopher Pomory University of West Florida 34 PUBLICATIONS 303 CITATIONS SEE PROFILE All content following this page was uploaded by Christopher Pomory on 21 May 2014. The user has requested enhancement of the downloaded file. All in-text references underlined in blue are added to the original document and are linked to publications on ResearchGate, letting you access and read them immediately. 1 Key to the common shallow-water brittle stars (Echinodermata: Ophiuroidea) of the Gulf of Mexico and Caribbean Sea CHRISTOPHER M. POMORY 2007 Department of Biology, University of West Florida, 11000 University Parkway, Pensacola, FL 32514, USA. [email protected] ABSTRACT A key is given for 85 species of ophiuroids from the Gulf of Mexico and Caribbean Sea covering a depth range from the intertidal down to 30 m. Figures highlighting important anatomical features associated with couplets in the key are provided. 2 INTRODUCTION The Caribbean region is one of the major coral reef zoogeographic provinces and a region of intensive human use of marine resources for tourism and fisheries (Aide and Grau, 2004). With the world-wide decline of coral reefs, and deterioration of shallow-water marine habitats in general, ecological and biodiversity studies have become more important than ever before (Bellwood et al., 2004). Ecological and biodiversity studies require identification of collected specimens, often by biologists not specializing in taxonomy, and therefore identification guides easily accessible to a diversity of biologists are necessary. -
Two New Brittle Star Species of the Genus Ophiothrix
Caribbean Journal of Science, Vol. 41, No. 3, 583-599, 2005 Copyright 2005 College of Arts and Sciences University of Puerto Rico, Mayagu¨ez Two New Brittle Star Species of the Genus Ophiothrix (Echinodermata: Ophiuroidea: Ophiotrichidae) from Coral Reefs in the Southern Caribbean Sea, with Notes on Their Biology GORDON HENDLER Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, California 90007, U.S.A. [email protected] ABSTRACT.—Two new species, Ophiothrix stri and Ophiothrix cimar, inhabit shallow reef-platforms and slopes in the Southern Caribbean, and occur together at localities in Costa Rica and Panama, nearly to Colombia. What appears to be an undescribed species resembling O. cimar has been reported from eastern Venezuela. In recent years, reefs where the species were previously observed have deteriorated because of environmental degradation. As a consequence, populations of the new species may have been reduced or eradicated. The new species have previously been mistaken for O. angulata, O. brachyactis, and O. lineata. Ophiothrix lineata, O. stri, and O. cimar have in common a suite of morphological features pointing to their systematic affinity, and a similar pigmentation pattern consisting of a thin, dark, medial arm stripe flanked by two pale stripes. Ophiothrix lineata is similar to Indo-Pacific members of the subgenus Placophiothrix and closely resembles Ophiothrix stri. The latter is extremely similar to O. synoecina, from Colombia, and both can live in association with the rock-boring echinoid Echinometra lucunter. Although O. synoecina is a protandric hermaphrodite that reportedly broods its young externally, the new species are gonochoric and do not brood. -
Aggregations of Brittle Stars Can Provide Similar Ecological Roles As Mussel Reefs
Aggregations of brittle stars can provide similar ecological roles as mussel reefs Geraldi, N. R., Bertolini, C., Emmerson, M. C., Roberts, D., Sigwart, J. D., & O'Connor, N. E. (2017). Aggregations of brittle stars can provide similar ecological roles as mussel reefs. MARINE ECOLOGY- PROGRESS SERIES, 563, 157-167. https://doi.org/10.3354/meps11993 Published in: MARINE ECOLOGY-PROGRESS SERIES Document Version: Peer reviewed version Queen's University Belfast - Research Portal: Link to publication record in Queen's University Belfast Research Portal Publisher rights © 2017 Inter-Research. This work is made available online in accordance with the publisher’s policies. Please refer to any applicable terms of use of the publisher. General rights Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact [email protected]. Download date:28. Sep. 2021 Aggregations of brittle stars can provide similar ecological roles as mussel reefs. Nathan R. Geraldi1,2,3*, Camilla Bertolini1,2 Mark C. Emmerson1,2, Dai Roberts1,2, Julia D. -
Report on the Development of a Marine Landscape Classification for the Irish Sea
Irish Sea Pilot - Report on the development of a marine landscape classification for the Irish Sea 7. Appendix II: RV Lough Foyle cruise (Irish) Sea Mounds (NW Irish Sea) Habitat Mapping Introduction and methods All surveys were undertaken aboard the RV Lough Foyle (DARD) during June 2003. Acoustic surveys A RoxAnn™ acoustic ground discrimination survey (AGDS) was undertaken of the main survey area between 1st and 3rd June 2003, by A. Mitchell. Two additional RoxAnn™ datasets were collected by M. Service on 23rd June 2003 during the multibeam sonar survey. All RoxAnn™ datasets were obtained using a hull-mounted 38kHz transducer, a GroundMaster RoxAnn™ signal processor combined with RoxMap software, saving at a rate of between 1 and 5s intervals. An Atlas differential Geographical Positioning Systems (dGPS), providing positional information, was integrated via the RoxMap laptop. Track spacing varied between 500m for the large area and 100m for the multibeam survey areas. Multibeam sonar datasets were collected for two of the (Irish) Sea Mounds on 23rd June 2003, using an EM2000 Multibeam Echosounder (MBES, Kongsberg Simrad Ltd; operators: J. Hancock and C. Harper.). The sonar has a frequency of 200kHz and a ping rate of 10Hz. It operates with 111 roll-stabilised beams per ping with a 1.5 degree beam width along-track and 2.5 degree beam width across-track. The system has an angular coverage of 120 degrees. In addition to bathymetric coverage, the system has an integrated seabed imaging capability through a combination of phase and amplitude detection (referred to here as ‘backscatter’). The EM2000 was deployed with the following ancillary parts: • Seapath 200 – this provides real-time heading, attitude, position and velocity solutions with a 1pps timing clock for update of the sonar together with full differential corrections supplied by the IALA GPS network.