A Night at the Operon

Total Page:16

File Type:pdf, Size:1020Kb

A Night at the Operon book reviews A night at the operon The lac Operon: A Short History of a Genetic Paradigm by Benno Muller-Hill Walter de Gruyter:1996. Pp. 207. $35.95, DM54 This book opens with the lament that for young molecular biologists history does not exist, and that they have no interest in the long struggle that has made the subject what it is today. I hold the somewhat weaker view that history does exist for the young, but is divided into two epochs: the past two years, and everything that went before. That these have equal weight is a reflection of the expo­ nential growth of the subject, and the urgent need to possess the future and acquire it more rapidly than anybody else does not make for empathy with the past. Benno Muller-Hill says that "one has to grow old to understand the functioning of a The three winners: Fran~ois Jacob, Andre Lwoff and Jacques Monod receiving the 1965 Nobel Prize for science". He has written a history of the lac Physiology or Medicine for their research into the genetic control of enzyme activity. system of Escherichia coli. He warns us that it is not a definitive history, which comes as a discovery of operator-constitutive mutants, on which they were based, and to distinguish reliefbecause that kind ofhistorywould have which were cis dominant, affecting the regu­ prediction from retrodiction. been boring. What Muller-Hill has written is lation of both 13-galactosidase and lactose The move to research on eukaryotes partly historical, partly autobiographical, permease on the same chromosome. The began atthe end ofthe 1960s, and prokaryot­ and even partly philosophical. It is best realization that virulent mutants ofbacterio­ ic research started to decline. We argued for described as a collection of stories (with a few phage A were equivalent reinforced the con­ manyyears about whether the Jacob-Monod parables, too) disguised as a history ofwhat is clusion that they had to affect a site on the model would have anything to do with cell now a small and almost unoccupied corner DNA that interacted with the repressor and differentiation in higher organisms, and it is of molecular biology. controlled the expression of two different ironic that positive regulation is generally About 30 years ago the lac operon stood genes. Operator-zero mutants also acted in found, with many transcription factors act­ in the centre of the scientific stage, and pro­ cis, but these were later shown to be due ing to enhance gene expression. There was vided the experimental basis for discovering to nonsense mutants with strong polarity; disappointment at the general absence of the principles of the control of gene expres­ they had nothing to do with operators but operons and the resulting unitary control of sion. Parallel research on the lac operon and nevertheless required the idea of the operon, a group of genes by one operator. What has bacteriophage A formed the basis for the a unit of expression containing more than survived, though, is the central principle that operon theory of gene regulation put for­ one gene. regulation is mediated by specific recogni­ ward by Fran~ois Jacob and Jacques Monod Muller-Hill and Walter Gilbert succeed­ tion ofDNA sequences by proteins. in 1961. One central idea was that regulation ed in isolating the lac repressor in 1966. This When molecular biology finally comes to was negative, that is, if the genes were placed was quite an achievement, as the only assay an end, and a massive crash of the computer in a control vacuum they would be for this repressor was that it bound the system in the library at Alexandria corrupts unleashed and express as much as they could. inducer, IPTG, and calculations showed that most knowledge, I hope that historians of Their expression was held back by repres­ the value of the binding constant and the science will unearth a copy ofthis book. They sors, and they were turned on by the removal number of repressor molecules would not will surely debate whether all of the stories of repression, either by an inducer in the case allow detection by equilibrium dialysis. are true and whether they could have been of the lac genes, or by destruction of the Muller-Hill selected for a mutant that had written by the same person, and might even repressor in bacteriophage A. Repressors a higher affinity for the inducer than the suggest that Muller-Hill was atleast two peo­ were later found that required a small mole­ wild-type repressor and this tight-binding ple. What will certainly puzzle them is that it cule to make them active so they could turn mutant made the experiments feasible. is full of characters they have never encoun­ off their target genes. The contemporary student finds it hard tered before, and that even the famous ones So central was this idea of negative con­ to understand that this research always had are hard to recognize. The only thing they trol that it became established doctrine, and to be carried out by indirect means, and not will learn about Watson and Crick is that those few scientists who worked on positive by looking directly at genes as we do today. the former produced a naked lady for the regulation were dismissed and had to strug­ The design and interpretation of such exper­ latter's fiftieth birthday. Was this perhaps gle for a hearing. It was later found that cap iments was the core skill of molecular biolo­ part of some obscure symbolic ritual enacted factor acts positively on the lac operon, and gy, and critical experiments often resorted to each year to celebrate the birth of another that the A repressor exerts a positive effect on what Francis Crick once called "special model? D its own synthesis, so the dogma of negative genetic tricks", a primitive kind of genetic Sydney Brenner is at The Molecular Sciences control gradually disappeared. engineering. It was also important to ensure Institute, Inc., 9894 Genesee Avenue, La Jolla, Evidence for the theory came from the that theories did more than explain the facts California 92037, USA. NATURE I VOL 386j20 MARCH 1997 235 .
Recommended publications
  • Transformations of Lamarckism Vienna Series in Theoretical Biology Gerd B
    Transformations of Lamarckism Vienna Series in Theoretical Biology Gerd B. M ü ller, G ü nter P. Wagner, and Werner Callebaut, editors The Evolution of Cognition , edited by Cecilia Heyes and Ludwig Huber, 2000 Origination of Organismal Form: Beyond the Gene in Development and Evolutionary Biology , edited by Gerd B. M ü ller and Stuart A. Newman, 2003 Environment, Development, and Evolution: Toward a Synthesis , edited by Brian K. Hall, Roy D. Pearson, and Gerd B. M ü ller, 2004 Evolution of Communication Systems: A Comparative Approach , edited by D. Kimbrough Oller and Ulrike Griebel, 2004 Modularity: Understanding the Development and Evolution of Natural Complex Systems , edited by Werner Callebaut and Diego Rasskin-Gutman, 2005 Compositional Evolution: The Impact of Sex, Symbiosis, and Modularity on the Gradualist Framework of Evolution , by Richard A. Watson, 2006 Biological Emergences: Evolution by Natural Experiment , by Robert G. B. Reid, 2007 Modeling Biology: Structure, Behaviors, Evolution , edited by Manfred D. Laubichler and Gerd B. M ü ller, 2007 Evolution of Communicative Flexibility: Complexity, Creativity, and Adaptability in Human and Animal Communication , edited by Kimbrough D. Oller and Ulrike Griebel, 2008 Functions in Biological and Artifi cial Worlds: Comparative Philosophical Perspectives , edited by Ulrich Krohs and Peter Kroes, 2009 Cognitive Biology: Evolutionary and Developmental Perspectives on Mind, Brain, and Behavior , edited by Luca Tommasi, Mary A. Peterson, and Lynn Nadel, 2009 Innovation in Cultural Systems: Contributions from Evolutionary Anthropology , edited by Michael J. O ’ Brien and Stephen J. Shennan, 2010 The Major Transitions in Evolution Revisited , edited by Brett Calcott and Kim Sterelny, 2011 Transformations of Lamarckism: From Subtle Fluids to Molecular Biology , edited by Snait B.
    [Show full text]
  • The Life-Cycle of Operons
    Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Title The Life-cycle of Operons Permalink https://escholarship.org/uc/item/0sx114h9 Authors Price, Morgan N. Arkin, Adam P. Alm, Eric J. Publication Date 2005-11-18 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Title: The Life-cycle of Operons Authors: Morgan N. Price, Adam P. Arkin, and Eric J. Alm Author a±liation: Lawrence Berkeley Lab, Berkeley CA, USA and the Virtual Institute for Microbial Stress and Survival. A.P.A. is also a±liated with the Howard Hughes Medical Institute and the UC Berkeley Dept. of Bioengineering. Corresponding author: Eric Alm, [email protected], phone 510-486-6899, fax 510-486-6219, address Lawrence Berkeley National Lab, 1 Cyclotron Road, Mailstop 977-152, Berkeley, CA 94720 Abstract: Operons are a major feature of all prokaryotic genomes, but how and why operon structures vary is not well understood. To elucidate the life-cycle of operons, we compared gene order between Escherichia coli K12 and its relatives and identi¯ed the recently formed and destroyed operons in E. coli. This allowed us to determine how operons form, how they become closely spaced, and how they die. Our ¯ndings suggest that operon evolution is driven by selection on gene expression patterns. First, both operon creation and operon destruction lead to large changes in gene expression patterns. For example, the removal of lysA and ruvA from ancestral operons that contained essential genes allowed their expression to respond to lysine levels and DNA damage, respectively. Second, some operons have undergone accelerated evolution, with multiple new genes being added during a brief period.
    [Show full text]
  • GENE REGULATION Differences Between Prokaryotes & Eukaryotes
    GENE REGULATION Differences between prokaryotes & eukaryotes Gene function Description of Prokaryotic Chromosome and E.coli Review Differences between Prokaryotic & Eukaryotic Chromosomes Four differences Eukaryotic Chromosomes Form Length in single human chromosome Length in single diploid cell Proteins beside histones Proportion of DNA that codes for protein in prokaryotes eukaryotes humans Regulation of Gene Expression in Prokaryotes Terms promoter structural gene operator operon regulator repressor corepressor inducer The lac operon - Background E.coli behavior presence of lactose and absence of lactose behavior of mutants outcome of mutants The Lac operon Regulates production of b-galactosidase http://www.sumanasinc.com/webcontent/animations/content/lacoperon.html The trp operon Regulates the production of the enzyme for tryptophan synthesis http://bcs.whfreeman.com/thelifewire/content/chp13/1302002.html General Summary During transcription, RNA remains briefly bound to the DNA template Structural genes coding for polypeptides with related functions often occur in sequence Two kinds of regulatory control positive & negative General Summary Regulatory efficiency is increased because mRNA is translated into protein immediately and broken down rapidly. 75 different operons comprising 260 structural genes in E.coli Gene Regulation in Eukaryotes some regulation occurs because as little as one % of DNA is expressed Gene Expression and Differentiation Characteristic proteins are produced at different stages of differentiation producing cells with their own characteristic structure and function. Therefore not all genes are expressed at the same time As differentiation proceeds, some genes are permanently “turned” off. Example - different types of hemoglobin are produced during development and in adults. DNA is expressed at a precise time and sequence in time.
    [Show full text]
  • I = Chpt 15. Positive and Negative Transcriptional Control at Lac BMB
    BMB 400 Part Four - I = Chpt 15. Positive and Negative Transcriptional Control at lac B M B 400 Part Four: Gene Regulation Section I = Chapter 15 POSITIVE AND NEGATIVE CONTROL SHOWN BY THE lac OPERON OF E. COLI A. Definitions and general comments 1. Operons An operon is a cluster of coordinately regulated genes. It includes structural genes (generally encoding enzymes), regulatory genes (encoding, e.g. activators or repressors) and regulatory sites (such as promoters and operators). 2. Negative versus positive control a. The type of control is defined by the response of the operon when no regulatory protein is present. b. In the case of negative control, the genes in the operon are expressed unless they are switched off by a repressor protein. Thus the operon will be turned on constitutively (the genes will be expressed) when the repressor in inactivated. c. In the case of positive control, the genes are expressed only when an active regulator protein, e.g. an activator, is present. Thus the operon will be turned off when the positive regulatory protein is absent or inactivated. Table 4.1.1. Positive vs. negative control BMB 400 Part Four - I = Chpt 15. Positive and Negative Transcriptional Control at lac 3. Catabolic versus biosynthetic operons a. Catabolic pathways catalyze the breakdown of nutrients (the substrate for the pathway) to generate energy, or more precisely ATP, the energy currency of the cell. In the absence of the substrate, there is no reason for the catabolic enzymes to be present, and the operon encoding them is repressed. In the presence of the substrate, when the enzymes are needed, the operon is induced or de-repressed.
    [Show full text]
  • Escherichia Coli (Gene Fusion/Attenuator/Terminator/RNA Polymerase/Ribosomal Proteins) GERARD BARRY, CATHERINE L
    Proc. Natl. Acad. Sci. USA Vol. 76, No. 10, pp. 4922-4926, October 1979 Biochemistry Control features within the rplJL-rpoBC transcription unit of Escherichia coli (gene fusion/attenuator/terminator/RNA polymerase/ribosomal proteins) GERARD BARRY, CATHERINE L. SQUIRES, AND CRAIG SQUIRES Department of Biological Sciences, Columbia University, New York, New York 10027 Communicated by Cyrus Levinthal, July 2, 1979 ABSTRACT Gene fusions constructed in vitro have been regulation could occur (4-7). Yet under certain conditions, used to examine transcription regulatory signals from the operon coordinate of the RNA which encodes ribosomal proteins L10 and L7/12 and the RNA expression polymerase subunits and polymerase P and #I subunits (the rplJL-rpoBC operon). Por- ribosomal proteins is not observed. This is especially true of the tions of this operon, which were obtained by in vitro deletions, rplJL-rpoBC transcription unit which encodes the ribosomal have been placed between the ara promoter and the lacZgene proteins L10 and L7/12 and the RNA polymerase subunits 13 in the gene-fusion plasmid pMC81 developed by M. Casadaban and 13'. For example, only the ribosomal proteins are modulated and S. Cohen. The effect of the inserted DNA segment on the by the stringent regulation system (8, 9) whereas a transient expression of the IacZ gene (in the presence and absence of arabinose) permits the localization of regulatory signals to dis- stimulatory effect of rifampicin is specific for the RNA poly- crete regions of the rpIJL-rpoBC operon. An element that re- merase subunits (10, 11). In addition, different amounts of duces the level of distal gene expression to one-sixth is located mRNA hybridize to the rpl and rpo regions of the rplJL-rpoBC on a fragment which spans the rplL-rpoB intercistronic region.
    [Show full text]
  • The LIM and POU Homeobox Genes Ttx-3 and Unc-86 Act As Terminal
    © 2014. Published by The Company of Biologists Ltd | Development (2014) 141, 422-435 doi:10.1242/dev.099721 RESEARCH ARTICLE The LIM and POU homeobox genes ttx-3 and unc-86 act as terminal selectors in distinct cholinergic and serotonergic neuron types Feifan Zhang1, Abhishek Bhattacharya1, Jessica C. Nelson2, Namiko Abe1, Patricia Gordon1, Carla Lloret-Fernandez3, Miren Maicas3, Nuria Flames1,3, Richard S. Mann1, Daniel A. Colón-Ramos2 and Oliver Hobert1,4,* ABSTRACT factor initiates and maintains the terminal differentiation program of Transcription factors that drive neuron type-specific terminal dopaminergic neurons in the midbrain (Smidt and Burbach, 2009), differentiation programs in the developing nervous system are often whereas the Pet1 transcription factor initiates and maintains the expressed in several distinct neuronal cell types, but to what extent terminal differentiation program of serotonergic neurons (Liu et al., they have similar or distinct activities in individual neuronal cell types 2010). However, few neuronal transcription factors are expressed is generally not well explored. We investigate this problem using, as exclusively in only one specific neuronal cell type (Gray et al., 2004; a starting point, the C. elegans LIM homeodomain transcription factor Lein et al., 2007). For example, in addition to being expressed in ttx-3, which acts as a terminal selector to drive the terminal midbrain dopaminergic neurons, Nurr1 is expressed in other non- differentiation program of the cholinergic AIY interneuron class. Using dopaminergic neuronal cell types in which its function is not well a panel of different terminal differentiation markers, including understood, such as the adult olfactory bulb, specific cortical areas neurotransmitter synthesizing enzymes, neurotransmitter receptors and the hippocampus (Zetterström et al., 1996).
    [Show full text]
  • The Molecular Cloning and Characterisation
    THE MOLECULAR CLONING AND CHARACTERISATION OF NORMAL AND BETA-PLUS THALASSAEMIC HUMAN' GLOBIN GENES ' \ . ' by DAVID ANTHONY WESTAWAY a thesis submitted for the degree of Doctor of Philosophy in the University of London December, 1980 Department of Biochemistry St Mary's Hospital Medical School London W2 IPG VI ABSTRACT ^thalassaemia is a human hereditary diseases characterised by decreased output of p globin chains. Human & ~rp~r andy - globin cDNA plasmids, whose identity was confirmed by sequence analysis, were used to investigate the p- globin locus in j3 -thalassaemia. No gross alteration of the globin locus is associated-' with the disease. In order to identify the mutation conferring the thai phenotype, a chromosomal p globin gene has been cloned in phage lambda. Starting material was DNA from a Turkish Cypriot compound heterozygote, with a P gene .on one chromosome and a 6p fusion gene on the other chromosome. The DNA was digested with the restriction endonuclease Hsu 1 which generates a 7.5kb fragment from the p globin gene, and a 16kb fragment from the fusion gene. The Hsu 1 cleaved DNA was enriched for the 7.5kb size fraction and ligated to the lambda cloning vector ANEM788. 160,000 recombinants were screened and a positive scoring phage isolated. Restriction analysis confirmed that this phage contained a P globin gene. The 7.5kb insert was subcloned into the plasmid pAT153 and digestion with seven restriction endonucleases gave a pattern indistinguishable from that of a normal p globin gene. Thus within the 7.5kb of DNA cloned, which includes the p globin gene plus almost 6kb of flanking DNA, there have been no insertions or deletions greater than about 100 base-pairs.
    [Show full text]
  • Review Session
    REVIEW SESSION Wednesday, September 15 5:305:30 PMPM SHANTZSHANTZ 242242 EE Gene Regulation Gene Regulation Gene expression can be turned on, turned off, turned up or turned down! For example, as test time approaches, some of you may note that stomach acid production increases dramatically…. due to regulation of the genes that control synthesis of HCl by cells within the gastric pits of the stomach lining. Gene Regulation in Prokaryotes Prokaryotes may turn genes on and off depending on metabolic demands and requirements for respective gene products. NOTE: For prokaryotes, “turning on/off” refers almost exclusively to stimulating or repressing transcription Gene Regulation in Prokaryotes Inducible/RepressibleInducible/Repressible gene products: those produced only when specific chemical substrates are present/absent. ConstitutiveConstitutive gene products: those produced continuously, regardless of chemical substrates present. Gene Regulation in Prokaryotes Regulation may be Negative: gene expression occurs unless it is shut off by a regulator molecule or Positive: gene expression only occurs when a regulator mole turns it on Operons In prokaryotes, genes that code for enzymes all related to a single metabolic process tend to be organized into clusters within the genome, called operonsoperons. An operon is usually controlled by a single regulatory unit. Regulatory Elements ciscis--actingacting elementelement: The regulatory region of the DNA that binds the molecules that influences expression of the genes in the operon. It is almost always upstream (5’) to the genes in the operon. TransTrans--actingacting elementelement: The molecule(s) that interact with the cis-element and influence expression of the genes in the operon. The lac operon The lac operon contains the genes that must be expressed if the bacteria is to use the disaccharide lactose as the primary energy source.
    [Show full text]
  • (1965) Suggested That the Chioramphenicol Resistance Gene May Have Been Derived from Kiebsiella
    THE PATTERN OF EVOLUTIONARY CHANGE IN BACTERIA R. W. HEDGES Bacteriology Department, Royal Postgraduate Medical School, DuCane Rood, London, W.12 Received22.iii.71 1. INTRODUCTION DAYHOFF (1969) analysed evolutionary changes in amino-acid sequences of proteins. For several, e.g. the haemoglobins and cytochrome c, data were sufficient for" phylogenetic trees" to be constructed. Each "tree"relates to a single group of homologous proteins. It is satisfying that they conform with classical ideas on the pattern of evolution. In particular, the "trees for the evolution of various proteins did not show incongruities. Thus, it seems that the proteins of a particular species have evolved continuously together. This conclusion is based upon evidence from eukaryotes. Recently the analysis has been extended to prokaryotic organisms (Mandel, 1969; McLaughlin and Dayhoff; 1970). This paper questions whether data derived from such organisms can be used to construct "phylogenetic trees" to interpret the evolutionary history of the organisms in the same way as data from eukaryotes. There are many differences between the genetic organisation of pro- karyotes and eukaryotes. The bacterial chromosome and plasmids normally exist as circular DNA molecules, genetic transfer in bacteria rarely, if ever, involves transfer of complete genomes and the genetic information of the bacterial chromosome is organised so that in many cases a gene is closely linked to related genes (e.g. Demeree, 1964). The thesis argued is that genomes of bacteria evolved in a patchwork fashion and that even if one knew the complete evolutionary history of the amino-acid sequence of a particular protein one could deduce little about the evolutionary history of the bacteria.
    [Show full text]
  • Genes Classical and Genes Developmental: the Different Uses of the Gene in Evolutionary Synthesis
    Swarthmore College Works Biology Faculty Works Biology 2000 Genes Classical And Genes Developmental: The Different Uses Of The Gene In Evolutionary Synthesis Scott F. Gilbert Swarthmore College, [email protected] Follow this and additional works at: https://works.swarthmore.edu/fac-biology Part of the Biology Commons Let us know how access to these works benefits ouy Recommended Citation Scott F. Gilbert. (2000). "Genes Classical And Genes Developmental: The Different Uses Of The Gene In Evolutionary Synthesis". The Concept Of The Gene In Development And Evolution: Historical And Epistemological Perspectives. 178-192. DOI: 10.1017/CBO9780511527296.010 https://works.swarthmore.edu/fac-biology/422 This work is brought to you for free by Swarthmore College Libraries' Works. It has been accepted for inclusion in Biology Faculty Works by an authorized administrator of Works. For more information, please contact [email protected]. 8 Genes Classical and Genes Developmental The Different Use of Genes in Evolutionary Syntheses SCOTT F. GILBERT ABSTRACT Dobzhansky (1964) stated that "Nothing in biology makes sense except in the light of evolution/' and the function of the gene is no exception. The use of genes in population genetics and developmental genetics differs signifi- cantly. This is reflected in the roles that genes are postulated to play in evolution. In the Modern Synthesis of population genetics and evolution, genes become manifest by differences in alleles that are active in conferring differential reproductive success in adult individuals. The gene is thought to act as a particulate, atomic unit. In current syntheses of evolution and developmental genetics, important genes are manifest by their similarities across distantly related phyla, and they are active in the construction of embryos.
    [Show full text]
  • Are There Biomimetic Lessons from Genetic Regulatory Networks for Developing a Lunar Industrial Ecology?
    biomimetics Review Are There Biomimetic Lessons from Genetic Regulatory Networks for Developing a Lunar Industrial Ecology? Alex Ellery Department of Mechanical & Aerospace Engineering, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada; [email protected] Abstract: We examine the prospect for employing a bio-inspired architecture for a lunar industrial ecology based on genetic regulatory networks. The lunar industrial ecology resembles a metabolic system in that it comprises multiple chemical processes interlinked through waste recycling. Initially, we examine lessons from factory organisation which have evolved into a bio-inspired concept, the re- configurable holonic architecture. We then examine genetic regulatory networks and their application in the biological cell cycle. There are numerous subtleties that would be challenging to implement in a lunar industrial ecology but much of the essence of biological circuitry (as implemented in synthetic biology, for example) is captured by traditional electrical engineering design with emphasis on feedforward and feedback loops to implement robustness. Keywords: genetic regulatory networks; holonic architecture; industrial ecology; manufacturing architectures; in situ resource utilisation 1. Introduction Citation: Ellery, A. Are There Nature is renowned for its frugality. Biomimetics is the application of lessons from the Biomimetic Lessons from Genetic natural world into the engineered world—although mostly applicable to robotics, there are Regulatory Networks for Developing a biological lessons for other engineering applications. We shall examine lessons from biology Lunar Industrial Ecology? Biomimetics that point the way in which we may conduct and organise in situ resource utilisation 2021, 6, 50. https://doi.org/10.3390/ (ISRU) on the moon. Our first priority is to ensure that we engage the moon’s resources in biomimetics6030050 a sustainable manner.
    [Show full text]
  • Above the Gene, Beyond Biology
    ABOVE THE GENE, BEYOND BIOLOGY ABOVE THE GENE, BEYOND BIOLOGY TOWARD A PHILOSOPHY OF EPIGENETICS JAN BAEDKE University of Pittsburgh Press Published by the University of Pittsburgh Press, Pittsburgh, Pa., 15260 Copyright © 2018, University of Pittsburgh Press All rights reserved Manufactured in the United States of America Printed on acid-free paper 10 9 8 7 6 5 4 3 2 1 Cataloging-in-Publication data is available from the Library of Congress ISBN 13: 978-0-8229-4521-5 Cover art: (foreground) Line drawing adaptation of the epigenetic landscape into an ontogenetic landscape for locomotion, from E. Thelen and L. B. Smith, “Dynamic Systems Theories,” in Handbook of Child Psychology, 5th ed., vol. 1, edited by W. Da- mon and R. M. Lerner (New York: Wiley, 1998); (background) original art courtesy of DNA Art Gallery LLC. Cover design by Joel W. Coggins For A, U, and J, my epigenotype ”Epigenetics.” The science concerned with the causal analysis of development. CONRAD HAL WADDINGTON, 1952 I suppose the process of acceptance will pass through the usual four stages: 1. This is worthless nonsense, 2. This is an interesting, but perverse, point of view, 3. This is true, but quite unimportant, 4. I always said so. JOHN BURDON SANDERSON HALDANE, 1963 CONTENTS Acknowledgments xi INTRODUCTION. WHAT IS EPIGENETICS? 1 1. HOW EPIGENETICS DEALS WITH BIOLOGICAL COMPLEXITY 13 2. CHALLENGES OF EPIGENETICS IN LIGHT OF THE EXTENDED EVOLUTIONARY SYNTHESIS 41 3. CAUSAL EXPLANATION 90 4. MECHANISTIC EXPLANATION 129 5. ASSESSING THE EXPLANATORY POWER OF EPIGENETICS 168 CONCLUSION. A PHILOSOPHY OF EPIGENETICS 201 Notes 217 References 245 Index 301 ACKNOWLEDGMENTS .
    [Show full text]